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Abstract. Designing efficient steel solidification methods could con-
tribute to a sustainable future manufacturing. Current computational
models, including physics-based and machine learning-based design, have
not led to a robust solidification design. Predicting phase-change inter-
face is the crucial step for steel solidification design. In the present work,
we propose a simplified model for thermal radiation to be included in the
phase-change equations. The proposed model forms a set of nonlinear
partial differential equations and it accounts for both thermal radiation
and phase change in the design. As numerical solver we implement a fully
implicit time integration scheme and a Newton-type algorithm is used to
deal with the nonlinear terms. Computational results are presented for
two test examples of steel solidification. The findings here could be used
to understand effect of thermal radiation in steel solidification. Com-
bining the present approach with physics-based computer modeling can
provide a potent tool for steel solidification design.

Keywords: Steel solidification · Phase change · Thermal radiation ·

Computational design.

1 Introduction

Melting and solidification processes are natural phenomena and occur in many
industrial processes such as crystal growth, continuous casting and metal weld-
ing among others. During solidification the phase front travels at the interface
between the liquid and solid materials. In all applications that involve high tem-
perature, radiation is expected to greatly influence the thermal features and it
cannot be neglected. Experimental predictions of the impact of radiation in ma-
terials during the solidification process can be very demanding and laborious.
Although the new development of modern engineering technologies, accurate
prediction of effects of radiative heat transfer in this type of phase-change ma-
terials still faces several complex issues and can be experimentally demanding
and challenging. It is well-known that any experimental system intended for in-
vestigation always involves meticulous design and subsequent procurement of
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materials, fabrication or construction of the system, which necessitates heavy
financial resources and involves practically more time, see for instance [1–3].
Hence, computational simulations are commonly preferred for designing, mod-
elling and simulation of thermal systems. This numerical investigation helps to
accumulate functional data, and identify operating conditions or environment
at which the best performance of a workable system could be obtained. Compu-
tational simulations therefore can play a crucial role and provide accurate and
effective thermal predictions in this class of applications. The present work aims
to develop robust computational tools for highly accurate simulations of steel
solidification processes.

Many developed methods considered mathematical models based on the en-
thalpy formulation for simulating the phase-change in the materials. These types
of phase change models have been coupled with the natural convection and the
mechanical deformation to account for the fluid flow dynamics and internal
cracks respectively (see [4], [5], [6], [7], [8] among others). Existence of a weak
solution of heterogeneous Stefan problem using enthalpy formulation is presnt-
edn in [9]. Coupling radiation with phase-change models is very complicated and
highly demanding. A full radiative heat transfer model consists of an integro-
differential equations that are spatially, spectrally, and directionally dependent
[10, 11]. These equations are therefore extremely difficult to solve, especially
when coupled with the energy transport equation and phase-change closures.
However, for optically thick materials with high scattering effects, the ther-
mal radiation can be well approximated with the Rosseland model proposed in
[12]. This simplification significantly reduces the computational costs compared
to solving the full radiative heat transfer model, see for example [13]. In the
present study, we are interested in coupling a class of phase-change models [14,
15] with the Rosseland diffusion approximation of radiative heat transfer. The
phase change model employed is considered as intermediate formulation between
the enthalpy and the so-called phase-field formulations, where a phase param-
eter that takes constant values in the solid and liquid phases is employed. The
Rosseland approximation includes thermal radiation into the system through
a nonlinear diffusion term with convective boundary conditions. The coupled
system is expected to provide an accurate representation for radiation trans-
port in both participating and non-participating optically thick media. For the
numerical solution of the coupled Rosseland-phase-change model, we propose a
consistent finite difference method using staggered grids. The Newton’s method
is employed to deal with the non-linearity in the mathematical model and two-
dimensional numerical results are presented for two test examples to illustrate
the effects of radiation on the steel solidification.

This paper is organized as follows. In section 2 we introduce the mathemati-
cal equations used for modelling steel solidification. Formulation of the proposed
fully implicit method is presented in section 3. Section 4 is devoted to numer-
ical results for two test examples for steel solidification problems. Concluding
remarks are presented in Section 5.
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2 Mathematical models for steel solidification

In general applications, modelling steel solidification involves a computational
domain Ω = Ωl(t)∪Ωs(t)∪Γ (t) with time-dependent liquid domain Ωl(t), solid
domain Ωs(t) and the interface Γ (t) between both domains. The material prop-
erties are expected to vary from one state to another according for the interface
location. In this case, the set of governing equations is difficult to solve and one
way to overcome the numerical difficulties is to use a new formation over the
entire computational domain Ω. In the current work, we reformulate the system
using the enthalpy formulation and the semi-phase-field technique described in
[14, 15] among others. Thus, given a bounded two-dimensional domain Ω ⊂ R2

with Lipschitz continuous boundary ∂Ω and a time interval [0, T ], we focus on
solving the time-dependent heat equation coupled with the phase change

η(φ)
∂T

∂t
+ ρL

∂Fε(T )

∂t
−∇ · (Kc (φ)∇T ) = 0, (x, t) ∈ Ω × [0, T ],

Kc(φ)n(x̂) · ∇T + ~c(φ)(T − Tb) = 0, (x̂, t) ∈ ∂Ω × [0, T ], (1)

T (x, 0) = T0(x), x ∈ Ω,

where n(x̂) denotes the outward normal in x̂ with respect to ∂Ω, T (x, t) is
the temperature field, Tb the boundary temperature, T0 the initial temperature,
ρ the density, L the latent heat of fusion and φ is the regularized phase-field
function defined as

φ = Fε(T ) =
1

2
− 1

2
tanh

(
Tf − T

ε

)
,

with Tf is the melting temperature and ε is a small parameter selected such that
the resulting function Fε is differentiable. In (1),

η(φ) = ρscs + φ (ρlcl − ρscs) , Kc(φ) = Ks + φ (Kl −Ks) ,

uation
~c(φ) = ~s + φ (~l − ~s) , α(φ) = αs + φ (αl − αs) ,

where ρi, ci, Ki, ~i and αi are respectively, the density, specific heat, thermal
conductivity, convective heat transfer coefficient and hemispheric emissivity of
the phase i with subscripts s and l refer to the solid and liquid phases.

In the present study, to enhance steel solidification modelling we include
thermal radiation in grey optically thick media. For a weakly semitransparent
medium with large scattering such as steel, an asymptotic expansion for the
radiative transfer equation yields the equilibrium diffusion or the Rosseland ap-
proximation [12]. When coupled to the phase change equations (1), the Rosseland
approximation yields

η(φ)
∂T

∂t
+ ρL

∂Fε(T )

∂t
−∇ · (Kr (φ)∇T ) = 0, (x, t) ∈ Ω × [0, T ],

Kc(φ)n(x̂) · ∇T + ~c(φ)(T − Tb) = α(φ)π (B(Tb)−B(T )), (2)

T (x, 0) = T0(x), x ∈ Ω,
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Fig. 1. The staggered grid used for the space discretization.

where B(T ) is the spectral intensity of the black-body radiation defined by the
Planck function as

B(T ) = σRT
4,

with σR = 5.67× 10−8 is the Stefan-Boltzmann constant. Here, the conduction
coefficient Kt (T ) is defined as a function of the temperature by

Kr (φ) = Kc(φ) +
4π

3κ(φ)

∂B

∂T
,

where κ is the absorption coefficient. It should be stressed that the Rosseland
approach is widely accepted as an accurate model for radiation transport in
both participating and non-participating optically thick media. These equations
do not have analytical solutions for phase change and their numerical solutions
lead to computationally demanding problems due to the nonlinear diffusion and
the presence of internal and external thermal boundary layers.

3 Numerical methods for the nonlinear system

Different numerical methods can be used for solving systems (1) and (2) (see
chapter 4 in [16]). The convergence analysis of iterative methods resulted from
implicit time discretization of the enthpay formulation coupled with finite dif-
ference of the space variables is studied in [17]. Since it is easier to combine
upwinding with finite volume discretization than other methods, we consider in
this study a space discretization based on volume control and cell averaging.
For the time integration we implement a fully implicit backward second-order
scheme allowing for large stability in the simulations. Hence, we divide the time
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interval into subintervals [tn, tn+1] of equal length ∆t and tn = n∆t. For sim-
plicity, we discretize the spatial domain into cells with sizes (∆x)i and (∆y)j
in the x and y directions, respectively. We also define the maximum cell size
h = maxij ((∆x)i, (∆y)j) and the averaged gridpoints as shown in Figure 1 by

(∆x)i+ 1
2

= xi+1 − xi, (∆y)j+ 1
2

= yj+1 − yj ,

xi+ 1
2

=
xi+1 + xi

2
, yj+ 1

2
=
yj+1 + yj

2
.

Using the notation Wn
ij to denote the approximation value of the function W at

time t = tn and the gridpoint (xi, yj), the semi-discrete form of the system (2)
reads

η(φn+1
i+ 1

2 j+
1
2

)D2
tT

n+1
i+ 1

2 j+
1
2

+ ρLD2
tφ

n+1
i+ 1

2 j+
1
2

−D2
h (KrT )

n+1
ij = 0, (3)

where the temporal difference D2
t is defined as

D2
tW

n+1 =
3Wn+1 − 4Wn +Wn−1

2∆t
,

and the spatial difference operator D2
h is given by D2

h = D2
x +D2

y with

D2
x(KW )ij =

Ki,j +Ki+1j

2

Wi+1j −Wij

(∆x)2
i+ 1

2

−
Kti−1j

+Kij
2

Wij −Wi−1j

(∆x)2
i+ 1

2

,

D2
y(KW )ij =

Ki,j +Kij+1

2

Wij+1 −Wij

(∆y)2
j+ 1

2

− Kij−1 +Kij
2

Wij −Wij−1

(∆y)2
j+ 1

2

,

with the cell averages of a function W are given by

Wi+1j =
1

(∆x)i+ 1
2

∫ yj+1

yj

W (xi, y)dy,

Wij+1 =
1

(∆y)j+ 1
2

∫ xi+1

xi

W (x, yj)dx, (4)

Wij =
1

(∆x)i+ 1
2
(∆y)j+ 1

2

∫ xi+1

xi

∫ yj+1

yj

W (x, y)dxdy.

Here, the function value of Wi+ 1
2 j+

1
2

at the cell centre is simply approximated
by bilinear interpolation as

Wi+ 1
2 j+

1
2

=
Wij +Wi+ij +Wij+1 +Wi+1j+1

4
,

and the discrete phase-field function φn+1
i+ 1

2 j+
1
2

in (3) is defined by

φn+1
i+ 1

2 j+
1
2

= Fε

(
Tn+1
i+ 1

2 j+
1
2

)
.
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Algorithm 1

1: Given F , tolerance τ and initial guess T (0) chosen to be the solution at the previous
time step, the Newton-GMRES algorithm for solving (2) uses the following steps:
(we denote by GMRES(A,q,z(0),τ) the result of GMRES algorithm applied to
linear system Az = q with initial guess z(0) and tolerance τ).

2: for k = 0, 1, . . . do
3: Compute the residual

H(T (k)) = T (k) −F(T (k)).

4: Solve using GMRES

d(k) = GMRES
(
H′(T (k)),−H(T (k)),d(0), τ (k)

)
.

5: Update the solution
T

(k+1)
L = T (k) + ξd(k).

6: Check the convergence

if
(
‖T (k+1)‖L2 ≤ τ

)
stop.

7: end for

Similarly, the gradient in the boundary condition in (2) is approximated by
upwinding without using ghost points. For example, on the left boundary of the
domain, the boundary discretization is

−Kc
(
φn+1

1
2 j+

1
2

) Tn+1
3
2 j+

1
2

− Tn+1
1
2 j+

1
2

(∆x) 1
2

+ ~c
(
φn+1

1
2 j+

1
2

)(
Tn+1

1
2 j+

1
2

− Tb
)

=

α
(
φn+1

1
2 j+

1
2

)
π
(
B(Tb)−B

(
Tn+1

1
2 j+

1
2

))
, (5)

and similar work has to be done for the other boundaries. All together, the above
discretization leads to a nonlinear system reformulated as a fixed point problem
for the temperature T as

T = F(T ). (6)

The Newton’s method applied to (6) results in the following iteration

T (k+1) = T (k) −H′
(
T (k)

)−1H(T (k)
)
, (7)

where H′L is the system Jacobian approximated by a difference quotient of the
form

H′
(
T (k)

)
w ≈

H
(
T (k) + δw

)
−H

(
T (k)

)
δ

. (8)

If a GMRES method [18] is used to compute the Newton’s direction then, at
each time step Algorithm 1 is carried out to update the solution Tn+1. Here
‖ · ‖L2 denotes the discrete L2-norm. The Newton step ξ, the tolerance τ (k) to
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Table 1. Convergence results for the accuracy example using different time steps ∆t
at time t = 1.

∆t L∞-error Rate L1-error Rate L2-error Rate

0.2 1.1140E-01 — 1.0460E-01 — 7.0500E-02 —
0.1 3.1200E-02 1.8361 2.9300E-02 1.8359 1.9700E-02 1.8394
0.05 8.1000E-03 1.9456 7.6000E-03 1.9468 5.1000E-03 1.9496
0.025 2.0000E-03 2.0179 1.9000E-03 2.0000 1.3000E-03 1.9720

Table 2. Convergence results for the accuracy example using different space steps
h = ∆x = ∆y at time t = 1.

h L∞-error Rate L1-error Rate L2-error Rate

0.2 6.2000E-03 — 6.3000E-03 — 6.4000E-03 —
0.1 8.9546E-04 2.7916 9.8414E-04 2.6553 1.2000E-03 2.4150
0.05 2.1259E-04 2.0746 2.3479E-04 2.0675 2.8667E-04 2.0656
0.025 5.3530E-05 1.9897 5.9890E-05 1.9710 1.8668E-05 2.0162

stop the inner iterations in GMRES, and the difference increment δ in (8) are
selected according to backtracking linesearch, Eisenstat-Walker and Hardwired
techniques. We refer to [19] for detailed discussions on these techniques. Three
to five Newton’s iterations were necessary to achieve convergence with a residual
norm less than 10−6. The choice of above mentioned time discretization is based
on our previous experience [20], where this scheme provided better numerical
solutions for other type of interface problems. It should be noted that when
using unifrom structured meshes, the above spatial discterization is equivalent
to the well-established central finite difference which provides good numerical
results.

4 Results and discussions

In this section, we present numerical results for the proposed Rosseland-phase-
change simplified model to examine the effect of radiation in materials under
phase change. Two test problems are considered to demonstrate the performance
of the proposed method. We first start with a manufactured solution to study
the convergence of our algorithm. Then, the effect of radiation on the temper-
ature distributions is examined in two solidification examples in the process of
continuous casting of steel.

4.1 Accuracy example

As a first test example, we consider a two-dimensional analytical solution to
discuss the order of convergence in space and time of the proposed method. Since
the analytical solution does not represent a specific physical meaning, we take
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Table 3. Thermophysical parameters used for the steel solidification.

Kc 34 W/mK
c 691 J/KgK
ρ 7400 Kg/m3

L 272000 J/Kg
Tf 1809 K
T0 2000 K
Tb 300 K
hc 1648.5 J/(KgK)
κ 10 m−1

α 0.0001

only numerical values without considering any units. The problem is solved in a
squared domain Ω = [0, 1]× [0, 1] subject to boundary and the initial conditions
explicitly calculated such that the analytical solution of (1) is given by

Tex(t, x, y) = e−t
2−x2−y2 .

The nonlinear diffusion coefficient is given by

Kc(φ) = T 2.

We consider the following relative L∞−, L1- and L2-error norms

‖ e ‖L∞=
‖T − Tex‖L∞
‖Tex‖L∞

, ‖ e ‖L1=
‖T − Tex‖L1

‖Tex‖L1

, ‖ e ‖L2=
‖T − Tex‖L2

‖Tex‖L2

,

where T is the numerical solution and Tex is the analytical solution computed
at the final time t = 1. First, to test the convergence of the time discretization
scheme, we consider four time steps of different sizes using a fine uniform mesh
with ∆x = ∆y = 0.002. The obtained results are listed in Table 1 along with
their corresponding convergence rates. Similarly, to examine the convergence of
the spatial discretization we consider four space steps of different sizes using a
fine time step ∆t = 0.0001. The obtained results are listed in Table 2. As it can
be seen the proposed method preserves the second-order accuracy for both space
and time for this test problem.

4.2 Steel solidification: Case 1

In all applications that involve high temperature, radiation is expected to greatly
influence the thermal features and it cannot be neglected. In this example, we
will examine the effect of radiation on the temperature profile in a solidification
example during the process of continuous casting of steel. The mathematical
model (1) is used to simulate the solidification examples without radiation while,
the presence of radiation is simulated using the proposed simplified Rosseland-
phase-change model (2). In this first case, we consider a square 0.3 m × 0.3 m
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Fig. 2. Temperature without radiation (first row) and with radiation (second row)
obtained for Case 1 at time t = 0.2 s (first column), t = 10 s (second column) and
t = 20 s (third column).

Fig. 3. Cross-sections of the temperature with and without radiation along the hori-
zontal centerline for Case 1 at time t = 0.2 s, t = 10 s and t = 20 s.

material and the thermophysical properties are assumed to be the same in both
the solid and liquid phases. The initial temperature of molten steel is 2000 K,
which is higher than the melting temperature of 1809 K. We consider Dirichlet
boundary condition (T = 300 K) in the left side while homogeneous Neumann
boundary condition is considered for all others sides of the computational do-
main. The thermophysical properties employed for the numerical simulations
are summarized Table 3. A uniform mesh with 100 × 100 cells is used in our
computations and the time step ∆t = 0.005 s is considered in this section.

Figure 2 presents the time evolution of temperature for both cases without
and with radiation at three different instants t = 0.2 s, 10 s and 20 s. As it can be
seen, the presence of radiation has affected the temperature profile as well as the
position of the liquid-solid interface. This can be clearly seen in Figure 3 where
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Fig. 4. Temperature contours with and without radiation along for Case 1.

a cross-section of the temperature along the horizontal centerline is displayed
for the considered times. Furthermore, to clearly illustrate the effect of radiation
on the temperature, Figure 4 shows the isolines corresponding to T = 1900 K,
T = 1930 K and T = 1960 K for both cases, with and without radiation.
As expected, accounting for radiative effects in the solidification process would
results in a more accurate results than the radiationless simulations for both the
temperature distribution and the interface of the phase change.

4.3 Steel solidification: Case 2

This example is similar to the previous solidification problem during the process
of continuous casting of steel. We consider a square 0.2 m× 0.2 m material us-
ing similar thermophysical properties. However, the boundary conditions in this
case are different, where we consider Robbin boundary in all the computational
domain boundaries as given by equation (2). The time evolution of tempera-
ture for both simulations, with and without radiation is presented in Figure 5
at three different instants t = 0.2 s, 10 s and 20 s. As in the previous exam-
ple, the presence of radiation has affected both, the temperature profile and the
position of the liquid-solid interface. This is clearly depicted in Figure 6 where
a cross-section of the temperature along the horizontal center-line is plotted.
We also present in Figure 7 the isolines corresponding to temperature values of
T = 1000 K, T = 1300 K and T = 1500 K. This figure clearly shows that the
presence of radiation affects the temperature distribution and therefore it should
not be neglected in phase-change applications that involve high temperature.

5 Conclusions

In this study, we have presented a class of computational techniques for en-
hancing steel solidification by a nonlinear transient thermal model. The govern-
ing equations consist of a nonlinear heat transfer equations with a phase-field
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Fig. 5. Temperature without radiation (first row) and with radiation (second row)
obtained for Case 2 at time t = 0.2 s (first column), t = 10 s (second column) and
t = 20 s (third column).

Fig. 6. Cross-sections of the temperature with and without radiation along the hori-
zontal centerline for Case 1 at time t = 0.2 s, t = 10 s and t = 20 s.

function to account for phase change in the model. The thermal radiation ef-
fects are included in the model by using the Rosseland approach for which the
phase-change properties appear in the optical parameters of the material. A
fully implicit time integration scheme along with a Newton-type algorithm is
implemented for the numerical solution of the proposed model to deal with the
nonlinear terms. In our numerical simulations, we have used structured meshes
for the space discretization. However, the method can also be extended to the
use of unstructured meshes based on a similar formulation. Numerical results
have been presented for a test example with known exact solution. The method
has also been applied for solving two test examples in steel solidification using
different diffusion values. The presented results support our expectations for an
accurate and stable behaviour for all radiative regimes considered. Future work
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Fig. 7. Temperature contours with and without radiation along for Case 2.

will concentrate on the extension of this method to radiative transfer problems
in phase-change domains using full radiative model on unstructured meshes and
using high-order spatial discretizations.
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