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Abstract. Convolutional neural networks used in real-world recognition
must be able to detect inputs that are Out-of-Distribution (OoD) with
respect to the known or training data. A popular, simple method is to
detect OoD inputs using confidence scores based on the Mahalanobis dis-
tance from known data. However, this procedure involves estimating the
multivariate normal (MVN) density of high dimensional data using the
insufficient number of observations (e.g., the dimensionality of features
at the last two layers in the ResNet-101 model are 2048 and 1024, with
ca. 1000-5000 examples per class for density estimation). In this work, we
analyze the instability of parametric estimates of MVN density in high
dimensionality and analyze the impact of this on the performance of Ma-
halanobis distance-based OoD detection. We show that this effect makes
Mahalanobis distance-based methods ineffective for near OoD data. We
show that the minimum distance from known data beyond which out-
liers are detectable depends on the dimensionality and number of training
samples and decreases with the growing size of the training dataset. We
also analyzed the performance of modifications of the Mahalanobis dis-
tance method used to minimize density fitting errors, such as using a
common covariance matrix for all classes or diagonal covariance matri-
ces. On OoD benchmarks (on CIFAR-10, CIFAR-100, SVHN, and Noise
datasets), using representations from the DenseNet or ResNet models,
we show that none of these methods should be considered universally
superior.

Keywords: Out-of-Distribution Detection · Mahalanobis distance · Con-
volutional Neural Networks

1 Introduction

Machine learning systems used in real-world recognition tasks need to classify in-
puts far from the known or training data as unrecognized or Out-of-Distribution
(OoD). This is important in image or text recognition, where it is infeasible to
train models for all categories encountered in open-world recognition. Recogni-
tion of OoD samples is vital in safety-critical applications or incremental-learning
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systems [13], [5], [19], [4]. However, popular models for image or text classifica-
tion, e.g., ResNet, DenseNet, EfficientNet, are still vulnerable to OoD or ad-
versarial examples that are easily recognized by humans [3], [9], [20], [14]. This
is despite high classification accuracy realized on the benchmark datasets (e.g.,
top-1 accuracy on the ImageNet is ca. 90 [15]).

Many current approaches recognize OoD inputs using confidence scores ob-
tained from class-conditional posterior distributions. A popular method, due to
its simplicity, is to use multivariate Gaussian distributions as models of class-
conditional distributions [1], [11], [18], [16]. This approach leads to estimating
the uncertainty of prediction using Mahalanobis distance.

However, these procedures rely on the estimation of probability density in
high-dimensional data. The dimensionality of the representations generated by
CNNs used for image classification is usually ca 103. E.g., the dimensionality of
features at the last layer of the ResNet-101[7] is 2048, and of the EfficientNet-B3
is 1536. Class conditional distributions are estimated from training data, typi-
cally based on an insufficient number of examples, e.g., using 5000 observations
per class in the CIFAR-10 dataset. The purpose of this work is the analysis of the
quality of such parametric density estimates in high-dimensional data and the
impact of errors in density estimation on the performance of the Mahalanobis
distance-based OoD detection.

Our contributions are the following.

– We analyzed the instability of estimated densities in high-dimensional data.
We showed, using simulated data, that the generative MVN models fitted to
the training data are far from the testing samples from the same distribu-
tion. Hence, OoD detection based on this model will tend to reject testing
samples as outliers. We analyzed this effect as a function of dimensionality
and training sample size.

– We analyzed the limitations of Mahalanobis distance-based OoD detection:
we showed that due to the model estimation error, near OoD samples are
not distinguishable from known data. The minimum distance from known
data beyond which outliers are detectable depends on the dimensionality of
the features and the training sample size and decreases for larger training
samples.

– We analyzed simple modifications of the method used to reduce the impact
of model fitting errors: Mahalanobis distance using one covariance matrix
shared by all classes of known data, or using diagonal covariance matrices. We
illustrate the performance of these methods on OoD benchmarks, with the
CIFAR-10 as in-distribution and the CIFAR-100, the SVHN, and the Noise
datasets as OoD, and with features generated by different CNN models. We
showed that none of these Mahalanobis distance-based methods should be
declared universally best, as the performance depends on the characteristics
of benchmark datasets. On some benchmarks, Mahalanobis distance-based
OoD detectors are outperformed by simple methods, which use the Euclidean
or standardized Euclidean distance.
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2 OoD Detection with Mahalanobis Distance - Simulation
Study

2.1 Method - Using Mahalanobis Distance for OoD Detection

Using Mahalanobis distance as the score for OoD detection relies on the estima-
tion of multivariate Gaussian (MVN) distribution as a model of class-conditional
posterior distribution. Here we briefly summarize the method. Given the known
(in-distribution) dataset Xc ⊂ Rd for the class c ∈ C = {1, 2, . . . ,m}, with
Nc examples, we estimate the model N (µc, Σc) with the mean vector µc =
1
Nc

∑
x∈Xc

x and the covariance matrix Σc =
1
Nc

∑
x∈Xc

(x− µc)(x− µc)
⊤.

Given a test sample u, Mahalanobis distance to the MVN model of class c is
computed as

dMah,c(u) =

√
(u− µc)⊤Σ

−1
c (u− µc). (1)

The confidence score used to label the sample u as in-distribution or OoD is
calculated as s(u) = −minc∈C dMah,c(u).

To minimize errors due to unreliable estimation of Σc in high dimensional
data, some works (e.g., [11], [16]) assume that all m classes share the common
covariance matrix, estimated from the larger sample of size N =

∑
c Nc as

Σ = 1
N

∑
c∈C

∑
x∈Xc

(x− µc)(x− µc)
⊤.

The Mahalanobis distance of a test sample u to class c is then computed as

dMahUF,c(u) =
√
(u− µc)⊤Σ−1(u− µc). (2)

Other modifications / simplifications of this procedure assume that the co-
variance matrix Σc = Vc is the diagonal matrix with diagonal components cal-
culated as variances of features computed over samples in Xc. Then the distance
of a test sample u to the MVN model of class c is calculated as the standardized
Euclidean distance:

dSEuc,c(u) =

√
(u− µc)⊤V

−1
c (u− µc). (3)

Finally, the distance of a sample u to the model of class c can be computed as
the Euclidean distance dEuc,c(u) = |u− µc|2, (which implies that all variances
in Vc in Equation 3 are equal 1).

2.2 Non-robust Estimation of MVN Model in High Dimensional
Data

We performed a simulation study in which we analyzed the instability of the
MVN model of in-distribution data as a function of dimensionality and sample
size. We generated n training and n testing observations from the MVN distri-
bution in d dimensions, with the mean at [0]d and with uncorrelated variables
with variance 1. We estimated the MVN model from the training sample and
compared the distances of the training and testing samples from the model.
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Fig. 1: Mean Mahalanobis distances of train and test samples to the MVN model fitted
to the train samples. Train and test samples drawn from the same MVN. Number of
samples n = 5000. Note: distance shown here is the squared Mahalanobis distance
divided by d.

Results as a function of dimensionality d, for fixed sample size n = 5000 are
shown in Figure 1. We used the scikit learn library MLE estimator of covariance
(referred to as empirical), and the Minimum Covariance Determinant estimator
(MCD) [17], referred to as robust due to its resistance to outliers. We observe
that when the dimensionality of data grows, the test data tend to lie significantly
further off the model than the train data. Since this effect is more prominent with
the robust estimator, we conclude that the robust estimator is not appropriate
for high-dimensional data. Note that this observation holds even if n > 5d, a
condition deemed to guarantee a low error of the MCD estimator.

In Figure 2 and 3 we analyze the effect of the growing sample size. This
analysis can be used to determine, for a given dimensionality of features d, the
required size of training data to guarantee a robust model of known data.

Fig. 2: Mean Mahalanobis distances of train and test samples to the MVN model fitted
to the train samples, as a function of the size of samples n and dimensionality of data
d. Note: distance is the squared Mahalanobis distance divided by d.
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For instance, considering the case d = 2000, n = 5000 (Figure 3, left panel),
which corresponds to the dimensionality of the representations from the ResNet-
101 model, and the size of the CIFAR-10 train data, we conclude, that Mahalanobis-
based OoD detection with per-class covariance matrices (Equation 1) will fail
to recognize OoD samples as different from known data unless sufficiently far
from the in-distribution data (dMah,c > 62). Increasing the sample size (Figure
3, right panel) allows to recognize nearer OoD samples (with dMah,c > 50). We
further analyze this effect in Sections 2.3 and 3.4.

Fig. 3: Distribution of Mahalanobis distance of train and test samples to the MVN
model fitted to the train data, dimensionality d = 2000, sample size n = 5000 (left),
n = 20000 (right)

.

2.3 Non-robust MVN Model Used for OoD Detection

In the second experiment, we compare the Mahalanobis distance of in-distribution
test data and OoD data to the MVN model fitted to the train data. We model
known data as in Section 2.2, and OoD data as MVN with mean µ shifted from
[0]d by r, ie. |µ− [0]d| = r, and with uncorrelated variables with variance 1. We
realized three schemes of OoD data, denoted ood1 : shift by r along only one
axis; ood3 : µ = [ r√

d
]d, ie. shift along all the axes; ood2 : shift along d

2 axes. (As
we later show, the scheme effect is visible if known and OoD data differ in terms
of correlation structure).

Results as a function of the sample size n and OoD shift r are summarized
in Figures 4 and 5. In the left panel of Figure 4 (with n and d corresponding the
CIFAR-10 training data and the ResNet-101 features), we observe that Maha-
lanobis distance is unable to distinguish in-distribution test and OoD data. To
quantify the dissimilarity between groups shown in Figure 4, we use the measure

∆(group1, group2) =
X̄1 − X̄2√
s21 + s22

, (4)
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where X̄i and si are the mean and its standard error in group i. Note that
this measure is used as the test statistic in Welch’s t-test. We observe that with
growing n, ∆(test, train) decreases, and ∆(ood, test) increases. Hence, with in-
creasing sample size, the model stabilizes and leads to better separation between
in- and OoD data.

In Figure 5 we analyze the effect of shift r on the separability of in- and OoD
data. We observe that for sufficiently far OoD data (e.g., r = 32), the inaccuracy
in MVN model estimation no longer matters: OoD samples are significantly more
distant from the model than the test in-distribution samples. We argue that this
effect accounts for the success or failure of the Mahalanobis distance-based OoD
detection in CNN benchmarks, as further analyzed in Section 3.4.

Fig. 4: Distribution of Mahalanobis distance of train, test and OoD samples to the MVN
model fitted to the train data, dimensionality d = 2000, OoD shift r = 8, sample size
n = 5000 (left), n = 50000 (right). Dissimilarity between distances: ∆(test, train)= 708
(left), 204 (right); ∆(ood1, test)= 39 (left), 154 (right). Large training samples lead to
more robust models of in-distribution data (difference between train and test data
decreases), and better separability of in- and OoD data (difference between test and
ood increases).

Finally, in Figure 6, we signal the effect of feature correlation on OoD per-
formance. We assume correlated in-distribution and uncorrelated OoD data. We
observe that if the correlation schemes of in-distribution and OoD data differ,
the Mahalanobis distance-based separability of OoD and known data improves,
and distances to the model of ood1, 2, 3 schemes become significantly different,
hence in this case, the distance from the model depends on the direction of OoD
shift.

2.4 Mahalanobis Distance-based vs. Nonparametric Outlierness
Factor-based OoD in High Dimensional Data

Since the estimation of density in high-dimensional data is generally considered
unattractive [6], we want to empirically show that the confidence scores obtained
from density estimates lead to the limited performance of OoD detection. On the
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Fig. 5: Comparing Mahalanobis distances of train, test and OoD samples, as a function
of sample size n, OoD shift r, for dimensionality d = 2000. Note: distance is the squared
Mahalanobis distance divided by d.

Fig. 6: Effect of correlated features: distribution of Mahalanobis distance of train, test
and OoD samples to the MVN model, for dimensionality d = 2000, OoD shift r = 8,
sample size n = 20000, uncorrelated features (left); 1000 features correlated with coeffi-
cient 0.5. (right). Dissimilarity between distances: ∆(test, train)= 330 (left and right);
∆(ood1, test)= 95 (left), 1278 (right). If in- and OoD data differ in correlation struc-
ture, separability of OoD and in-distribution data improves. Note that with correlated
data, distance of different outlier groups ood1, 2, 3 to the model is significantly different,
e.g., ∆(ood1, ood2)= 122 (right), whereas in previous examples (left panel and Figure
5) differences between ood schemes were not significant.

other hand, outlier or out-of-distribution detection in high-dimensional data can
be performed reasonably well using scores obtained from the Local Outlierness
Factor (LOF) method [2] (see Section 3.3 for technical details of LOF).

We performed a simple simulation study in which we compared the per-
formance of OoD detection (see Section 2.5 for technical details of the used
metrics) based on confidence scores obtained using the Mahalanobis distance vs
confidence scores obtained with the LOF algorithm. As in-distribution (known)
data, we generated two clusters from the MVN distribution in d dimensions,
with the mean at [0]d and [−1]d and uncorrelated variables with variance 1. As
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OoD, we used a cluster with mean at [ r√
d
]d, uncorrelated, with variance 1. Con-

fidence scores were calculated as the MahUF distance (see Equation 2) between
a test sample and the closest class conditional Gaussian distribution, which can
be interpreted as the log of the probability density of the test sample. In the
alternative approach, confidence scores were obtained as local outlierness factors
(LOF) calculated for test samples with respect to the closest cluster of known
data.
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Fig. 7: Comparison of the averaged TNR at TPR 95 % and the AUROC for MahUF
and LOF on simulation data. The inlier set consists of two classes, simulated by MVN
with variance 1 and distance 1. The outlier is also simulated by MVN moved from the
closest inlier class by a given distance (r=8). The number of training (inlier) examples
was set to 2k (solid) and 20k (dashed line), with 2k for test inliers and outliers. The
results for 2k and 20k for LOF are undistinguished. By increasing the complexity of
the problem, expanding the input data dimension, the LOF method is much more
stable and achieves better results. The dimension above 2000 is common in the last
layers of CNNs. Moreover, LOF is less prone to the changes of the training set size.

We observe that for d = 2000 with 1000 training points per class (there are
two classes), the Mahalanobis procedure no longer detects outliers (AUROC ≈
50%), while LOF is more reliable (AUROC > 80%). Where for 10k training
points per class, the Mahalanobis procedure gives results closer to the LOF
ones. It shows how the number of examples is important for the Mahalanobis
approach.

2.5 Evaluation Metrics

In the evaluation of OoD performance, we follow the approach used in [8] where
the outlier detection is considered a binary classification. The outliers are defined
as the positive class and the closed set examples (test set) as the negative class.
The confidence score allows the binary classification. In the result presentation,
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we used the standard metrics: TNR at TPR 95%, AUROC, DTACC, and AUPR
– the higher the values of all metrics, the better the OoD detection is. The True
Negative Rate at 95% True Positive Rate (TNR at TPR 95%) can be interpreted
as the probability of correctly classifying the Out-of-Distribution examples when
the In-Distribution (test) samples are classified as high as 95%. The Area Under
Receiver Operating Characteristic curve (AUROC) defines the OoD method’s
ability to discriminate between cases (test examples) and non-cases (OoD exam-
ples). It can be calculated by the area under the false positive rate against the
true positive rate curve. The detection accuracy (DTACC) defines the ratio of
correct classification of the test and OoD examples to all examples. The AUPR is
calculated by the Area Under the Precision and Recall curve, where test (AUPR
In) or OoD (AUPR Out) images are specified as positive. We denote AUPR as
the mean of both due to equal numbers of examples in both sets.

3 Using Mahalanobis Distance for OoD Detection in
CNNs

In this section, we illustrate the efficiency of the Mahalanobis-based method
for OoD in CNN models and show the characteristics of the representations
generated by CNNs which make it feasible to use the Mahalanobis method.

3.1 Datasets and CNN Models

We used popular benchmark datasets successfully used in OoD detection in
computer vision: the CIFAR-10, the CIFAR-100, the SVHN, and the Noise. The
CIFAR-101 dataset contains 60, 000 32x32 color images divided into 10 classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. There are
5, 000 images per class in the training set and 1, 000 in the test set. CIFAR-100
is similar – there are 100 classes (disjoint from the CIFAR-10 classes) with 500
and 100 images per class, respectively, train and test subsets. SVHN contains
real-world images of Street View House Numbers from Google Street View -
they are easily distinguishable for humans compared to CIFARs ones. The Noise
dataset consists of randomly generated images - a theoretically straightforward
recognition task. To evaluate OoD methods, we used the testing partitions of
the in-distribution datasets and the given Out-of-Distribution dataset, with a
1:1 proportion of known and unknown samples.

We trained two models, ResNet-101 [7] trained on CIFAR-10 (achieving 94.75
% accuracy) and DenseNet-169 [10] trained on CIFAR-100 (achieving 74.04 %
accuracy). These model architectures were chosen due to their high popularity
in commercial applications and OoD detection problems. We used the classic
method of feature extraction from deep models, which uses vectors after applying
the Global Average Pooling [12] on the last convolutional layer. Dimensionality
of feature vectors is 2, 048 (for ResNet-101), and 1, 664 (for DenseNet-169). The

1 https://www.cs.toronto.edu/~kriz/cifar.html
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procedure in our experiments is as follows: (1) train the model using training
subset, (2) extract features from the model for images in the training subset, (3)
fit the in-distribution model for OoD detection, (4) evaluate confidence scores
(or distances) for in- and OoD test data.

3.2 Analysis of Mahalonobis Distances for the CIFAR-10

First, we analyze the characteristics of features generated by ResNet-101 for the
CIFAR-10 train and test data and OoD data. We estimated the distribution of
distances from the class centers (calculated on the train data sets) to different
groups of data. Results for one of the CIFAR-10 classes are shown in Figure
8. We can notice the large difference between train and test data in the case
of Mah distance. It is the same phenomenon as discussed in Section 2.5, i.e.,
insufficient number of data. Moreover, one can see the relative shift of the noise
set (black curves) position with respect to the SVHN and the CIFAR-100 (green
and red) for distances with the full covariance matrix (Mah and MahUF ) and
with limited (SEuc) or non-existing (Euc) one. This suggests that the type
of distance (still from the same family) may have a big influence on the OoD
detection.
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Fig. 8: Log distance distribution for different distance metrics (Euc, SEuc, MahUF ,
and Mah). Distances are from the center of one of the CIFAR-10 labels to train and
test data for the same label, and also to outlier data sets (Noise, SVHN, and CIFAR-
100). Plots represent the probability density function of log distances obtained by the
Gaussian kernel-density estimator with Scott’s bandwidths.
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Table 1: Difference between train and test data distances to the model of one the
CIFAR-10 class, and the difference averaged over all the CIFAR-10 classes. Differences
between train and test distances are measured using Welch’s t-test statistic - Eq. 4.

CIFAR-10 CIFAR-100
(ResNet-101) (DenseNet-169)

distance class 1 avg over all classes class 1 avg over all classes

Euc 5.11 8.86 6.02 5.66
SEuc 4.95 8.72 5.77 5.17
MahUF 6.63 8.81 6.41 4.5
Mah 39.36 40.12. 14.41 15.03

Table 1 shows the Welch’s t-test statistic comparing the distances of the train
and test data for a selected CIFAR-10 class (the same class as used in Figure
8), and averaged over all classes for each of the analyzed Mahalanobis distances.
It can be seen that Mah gives the largest values of statistic t suggesting that
the train and test population means are the most distant (the same conclusion
as from Figure 8). The train and test populations are closest for SEucl but the
differences to Euc and SEuc are small.

3.3 LOF-based OoD

The Local Outlier Factor [2] (LOF) is based on an analysis of the local den-
sity of points. It works by calculating the so-called local reachability density
LRDk(x,X) of input x with regard to the known dataset X. LRD is defined
as an inverse of an average reachability distance between a given point, its k-
neighbors, and their neighbors (for details refer to [2]). K-neighbors (Nk(x,X))
includes a set of points that lie in the circle of radius k-distance, where k-distance
is the distance between the point, and it’s the farthest kth nearest neighbor
(||Nk(x,X)|| >= k). The local outlier factor (LOF) is formally defined as the
ratio of the average LRD of the k-neighbors of the point x to the LRD of the
point.

dLOF (u) =

∑
x∈Nk(u,X) LRDk(x,X)

||Nk(u,X)||LRDk(u,X)
(5)

Intuitively, if the point is an inlier, the ratio of the average LRD of neighbors
is similar to the LRD of the point. Therefore, the LOF is around 1. For outliers,
it should be above 1 since the density of an outlier is smaller than its neighbor
density.

3.4 OoD Experiments

In Table 2, we demonstrate the performance of the Mahalanobis based OoD
detection using popular CNN architectures: ResNet-101 (trained on CIFAR-10)
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Table 2: The comparison of analysed OoD methods for CIFAR-10 and CIFAR-100.
Note that there is no best or worst method.

In-dist
(Model) OOD Method TNR at

TPR 95% AUROC DTACC AUPR

CIFAR-10
(ResNet-101)

Noise

Euc 97.12 98.81 96.21 98.56
SEuc 45.92 94.57 94.71 91.24
MahUF 100.00 100.00 100.00 100.00
Mah 100.00 100.00 100.00 100.00
LOF 100.00 99.90 99.30 99.89

SVHN

Euc 55.03 93.00 86.75 92.52
SEuc 13.55 86.59 82.57 83.85
MahUF 53.84 91.13 83.26 90.96
Mah 41.34 89.33 82.25 88.77
LOF 57.80 93.00 86.43 92.73

CIFAR-100

Euc 41.64 87.38 80.69 86.49
SEuc 35.75 86.30 80.19 84.84
MahUF 24.07 78.18 71.38 77.40
Mah 37.59 85.91 78.55 85.16
LOF 47.84 87.22 79.49 86.74

CIFAR-100
(DenseNet-169)

Noise

Euc 99.98 98.99 98.02 98.32
SEuc 100.00 100.00 100.00 100.00
MahUF 100.00 100.00 100.00 100.00
Mah 100.00 100.00 100.00 100.00
LOF 81.05 95.91 95.81 92.99

SVHN

Euc 12.24 75.21 70.65 73.95
SEuc 37.30 85.85 78.41 85.07
MahUF 29.11 81.82 74.30 80.93
Mah 19.37 81.31 75.73 79.74
LOF 24.48 83.46 76.86 81.96

CIFAR-10

Euc 15.48 73.29 68.39 71.19
SEuc 9.30 69.77 66.40 68.07
MahUF 8.05 65.65 62.22 63.97
Mah 10.08 69.42 65.98 68.33
LOF 13.51 73.36 68.28 71.71

and DenseNet-169 (trained on the CIFAR-100). We used three outlier data sets:
Noise, SVHN, and CIFAR-100 (for ResNet-101) or CIFAR-10 (for DenseNet-
169). We evalauetd of the four versions of Mahalonobis distances (Euc,SEuc,
MahUF , Mah) presented in Section 2.1. LOF is shown as an alternative, non-
parametric approach.

The Noise dataset is very well detected as OoD. However, there are some
problems (TNR worse then 50%) in case of SEuc for ResNet-101. The SVHN
and CIFARs datasets are harder to be detected as OoD for DenseNet-169 than
in the case of ResNet-101.
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Comparison of OoD methods gives no straightforward conclusions. There is
no best or worst method. We can find a failure scenario (when a method is
much worse than the best one) for each of the analyzed methods and a situa-
tion when a given method significantly outperforms others. For example, Euc
fails for DenseNet-169 and SVHN, and outperforms others for the CIFAR-10
and the same model, SEuc fails for ResNet-101 and Noise, and outperforms for
SVHN and DenseNet-169, MahUF fails in CIFAR-10/DenseNet-169, and Mah
in SVHN/DenseNet-169. Our results suggest that we should carefully state that
the given method is the best since the results (OoD metric) strongly depend on
data (CNN features), so not only on image data sets but also network architec-
ture and the process of model training.

4 Conclusion

In this paper, we analyzed the performance of the Mahalanobis distance-based
OoD detection method in high-dimensional data. This method is popular due to
its simplicity, but it relies on parametric density estimates in high-dimensional
data. We analyzed the instability of MVN estimates of density and showed that
this issue leads to the intrinsic limitation of this method: near OoD samples are
not distinguishable from known data. For fixed dimensionality of features and the
size of training data, we can estimate the minimum distance from known data
beyond which outliers are detectable. We showed that this distance decreases
with the growing number of training samples.

We also analyzed common modifications of the method used to mitigate the
density estimation errors: Mahalanobis distance with single covariance matrix
shared by all classes in known data, or standardized Euclidean distance with
diagonal covariance matrices. We compared the performance of these methods
using OoD benchmarks with CIFAR-10 as in-distribution vs. CIFAR-100, SVHN,
Noise as OoD, and CIFAR-100 vs. CIFAR-10, SVHN, and Noise datasets. We
showed that none of these methods should be seen as universally superior, as
the performance of OoD detectors depends on the benchmark dataset and the
CNN model used to generate representations.

References

1. Bendale, A., Boult, T.: Towards open world recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 1893–1902 (2015)

2. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: Identifying density-based
local outliers. SIGMOD Rec. 29(2), 93–104 (May 2000). https://doi.org/10.
1145/335191.335388

3. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: A
survey on adversarial attacks and defences. CAAI Transactions on Intelligence
Technology 6(1), 25–45 (2021), https://doi.org/10.1049/cit2.12028

4. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash,
A., Kohno, T., Song, D.: Robust physical-world attacks on deep learning visual

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_19

https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1049/cit2.12028
https://dx.doi.org/10.1007/978-3-031-08751-6_19


14 Maciejewski et al.

classification. In: 2018 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. pp. 1625–1634.
IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00175

5. Feng, D., Rosenbaum, L., Dietmayer, K.: Towards safe autonomous driving: Cap-
ture uncertainty in the deep neural network for lidar 3d vehicle detection. In: 2018
21st International Conference on Intelligent Transportation Systems (ITSC). pp.
3266–3273. IEEE (2018)

6. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data
mining, inference, and prediction. Springer Science & Business Media (2009)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

8. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier
exposure. Proceedings of the International Conference on Learning Representations
(2019)

9. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial
examples. arXiv preprint arXiv:1907.07174 (2019)

10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4700–4708 (2017)

11. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. In: Proceedings of the 32nd In-
ternational Conference on Neural Information Processing Systems. p. 7167–7177.
NIPS’18, Curran Associates Inc., Red Hook, NY, USA (2018)

12. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

13. McAllister, R., Gal, Y., Kendall, A., Van Der Wilk, M., Shah, A., Cipolla,
R., Weller, A.: Concrete problems for autonomous vehicle safety: Advantages of
bayesian deep learning. In: Proceedings of the 26th International Joint Conference
on Artificial Intelligence. p. 4745–4753. IJCAI’17, AAAI Press (2017)

14. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. pp. 427–436 (2015)

15. Pham, H., Dai, Z., Xie, Q., Luong, M.T., Le, Q.V.: Meta pseudo labels. In: IEEE
Conference on Computer Vision and Pattern Recognition (2021), https://arxiv.
org/abs/2003.10580

16. Ren, J., Fort, S., Liu, J., Roy, A.G., Padhy, S., Lakshminarayanan, B.: A sim-
ple fix to mahalanobis distance for improving near-ood detection. arXiv preprint
arXiv:2106.09022 (2021)

17. Rousseeuw, P.J.: Least median of squares regression. Journal of the American
statistical association 79(388), 871–880 (1984)

18. Sehwag, V., Chiang, M., Mittal, P.: Ssd: A unified framework for self-supervised
outlier detection. In: International Conference on Learning Representations (2021),
https://openreview.net/forum?id=v5gjXpmR8J

19. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: Real
and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the
2016 acm sigsac conference on computer and communications security. pp. 1528–
1540 (2016)

20. Zhou, Z., Firestone, C.: Humans can decipher adversarial images. Nature commu-
nications 10(1), 1–9 (2019)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_19

https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/CVPR.2018.00175
https://arxiv.org/abs/2003.10580
https://arxiv.org/abs/2003.10580
https://openreview.net/forum?id=v5gjXpmR8J
https://dx.doi.org/10.1007/978-3-031-08751-6_19

