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Abstract. Effective methods of the detection of multiword expressions
are important for many technologies related to Natural Language Pro-
cessing. Most contemporary methods are based on the sequence labeling
scheme, while traditional methods use statistical measures. In our ap-
proach, we want to integrate the concepts of those two approaches. In
this paper, we present a novel weakly supervised multiword expressions
extraction method which focuses on their behaviour in various contexts.
Our method uses a lexicon of Polish multiword units as the reference
knowledge base and leverages neural language modelling with deep learn-
ing architectures. In our approach, we do not need a corpus annotated
specifically for the task. The only required components are: a lexicon of
multiword units, a large corpus, and a general contextual embeddings
model. Compared to the method based on non-contextual embeddings,
we obtain gains of 15 percentage points of the macro F1-score for both
classes and 30 percentage points of the F1-score for the incorrect multi-
word expressions. The proposed method can be quite easily applied to
other languages.

Keywords: Natural Language Processing · Multiword Expressions · De-
tection of Multiword Expressions · Contextual Embeddings.

1 Introduction

Multiword expressions (henceforth MWEs) are defined in different ways in lit-
erature, e.g. see the overview in [29]. In this work, we consider MWEs from the
lexicographic point of view as lexical units that “has to be listed in a lexicon” [12]
and we focus on methods of automated extraction of MWEs from text corpora to
be included in a large semantic lexicon as multi-word lexical units. Summarising
a bit the definition of [29], MWEs are “lexical items decomposable into multiple
lexemes”, “present idiomatic behaviour at some level of linguistic analysis” and
“must be treated as a unit” and, thus, should be described in a semantic lexicon,
e.g. skrzynia biegów (‘gearbox’, lit. box of gears) , pogoda ducha (≈‘optimism’,
‘good attitude’, lit. ‘weather of spirit’). A similar definition was adopted in the
PARSEME Shared Task resource [30, 31]. As we target the construction of a
general lexicon expressing good coverage for lexical units occurring frequently
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enough in a very large corpus – and we will test our approach against such a
resource, see Sec. 3 – we need also to take into account multiword terms, i.e. [29]
“specialised lexical units composed of two or more lexemes, and whose prop-
erties cannot be directly inferred by a non-expert from its parts because they
depend on the specialised domain”. Several MWE properties are postulated that
can guide the extraction process, like arbitrariness, institutionalisation, limited
semantic variability (especially non-compositionality and non-substitutability),
domain-specificity and limited syntactic variability [29]. As we are interested in
the lexicon elements, the frequency of potential MWEs should be taken into ac-
count and MWEs are indeed in some way specific with respect to the frequency
of co-occurrence of its components. Extraction of MWEs and their description in
a semantic lexicon (at least as a reference resource) is important for many NLP
applications like semantic indexing, knowledge graph extraction, vector models,
topic modelling etc. Due to the specific properties of MWEs as whole units, their
automated description by the distributional semantics method, e.g. embeddings,
is not guaranteed, especially in the case of MWEs of lower frequency.

Traditionally, MWEs extraction is preceded by finding collocations (frequent
word combinations) by statistical or heuristic association measures and filtering
them by syntactic patterns. Recent methods follow sequence labelling scheme
and try to explore the specific behaviour of MWEs as language expressions in
text. Due to our objective, we aim at combining the best of the two worlds. We
propose a new weakly supervised method for MWE extraction from large text
corpora that explores their peculiar properties as elements of language struc-
tures across various contexts. The proposed method combines neural language
modelling with deep learning and a lexicon of MWEs as a knowledge base, i.e.
the sole source of supervision. In contrast to many methods from literature,
we neither need a corpus laboriously annotated with MWE occurrences, nor
language models specially trained for this task. We investigated and combined
non-contextual representation of MWEs as lexical units and their contextual
representation as elements of the sentence structures. For the latter purpose, we
leverage deep neural contextual embeddings to describe the peculiarities of the
semantic but also syntactic behaviour of MWEs in contrast to the behaviour of
their components. What is more, the evidence for the whole MWEs and their
components can be collected from different sentences in the corpus, not only
those including whole MWEs. Our method can be quite easily adapted to any
language, the only required elements are: a large corpus, an initial lexicon of
MWEs, and a general contextual embeddings model. The proposed method, af-
ter training, may be applied to a list of collocations extracted from a corpus by
association measures to distinguish MWEs from mere collocations.

2 Related Work

Initially, MWE recognition methods were based on statistical association mea-
sures based on co-occurrence statistics in text corpora [12] for weighting col-
locations as potential MWEs. Many association measures were examined and
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combined into complex ones, e.g. by a neural network [27]. Syntactic informa-
tion from parsing was used in counting statistics or post-filtering collocations
[36]. Morpho-syntactic tagging and lexico-syntactic constraints were also used
instead of parsing [7]. For Polish, association measures combined by a genetic
algorithm and expanded with lexico-syntactic filtering were used to extract po-
tential MWEs [28]. Several systems for MWE extraction were proposed, com-
bining different techniques, e.g. mwetoolkit by Ramisch [29] combines statistical
extraction and morpho-syntactic filtering, but also describes collocations with
feature vectors to train Machine Learning (ML) classifiers. Lexico-syntactic pat-
terns, measures, length and frequency can be a feature source in ML-based MWE
extraction [37]. Linguistic patterns were used to extract potential MWEs and
post-filter out incorrect ones after association measures [2]. MWEs were also
detected by tree substitution grammars [14] or finite state transducers [16].

Recently, attention was shifted to supervised ML and MWE extraction as a
sequence labelling problem, e.g. [9], where corpora are annotated on the level of
words, typically, BIO annotation format [32]: B – a word begins an MWE, I is
inside, O – outside. Sequence labelling approaches can also be combined with
heuristic rules [35] or supersenses of nouns or verbs [18]. Such heuristics are ap-
plied to extract linguistic features from texts for training a Bayesian network
model [8]. Convolutional graph networks and self-attention mechanisms can be
used to extract additional features [33]. There are many challenges related to
the nature of the MWEs, e.g.: discontinuity – another token occurs between the
MWE components or overlapping – another MWE occurs between the compo-
nents of the given MWEs. To counteract this, a model based on LSTM, the
long short-term memory networks and CRF is proposed [4]. The model from
[38] combines two learning tasks: MWE recognition and dependency parsing in
parallel. The approach in [21] leverages feature-independent models with stan-
dard BERT embeddings. mBERT was also tested, but with lower results. An
LSTM-CRF architecture combined with a rich set of features: word embedding,
its POS tag, dependency relation, and its head word is proposed in [39].

MWEs can be also represented as subgraphs enriched with morphological
features [6]. Graphs can be next combined with the word2vec [24] embeddings to
represent word relations in the vector space and then used to predict MWEs on
the basis of linguistic functions [3]. Morphological and syntactic information can
be also delivered to a recurrent neural network [19]. Saied et al. [34] compared
two approaches to MWE recognition within a transition system: one based on a
multilayer perceptron and the second on a linear SVM. Both utilise only lemmas
and morphosyntactic annotations from the corpus and were trained and tested
on PARSEME Shared Task 1.1 data [30].

However, such sequence labeling approaches focus on word positions and
orders in sentences, and seem to pay less attention to the semantic incompati-
bility of MWEs or semantic relations between their components. Furthermore,
sequence labeling methods do not emphasize the semantic diversity of MWE
occurrence contexts. Thus, they overlook one of the most characteristic MWE
factors: components of a potential MWE co-occur together regardless of the con-
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text. It allows us to distinguish a lexicalised MWE from a mere collocation or
even a term strictly related to one domain. To the best of our knowledge, the
concept of using deep neural contextual embeddings to describe the semantics of
the MWEs components and the semantic relations between them in a detection
task has not been sufficiently studied, yet. Moreover, due to the sparsity of the
MWEs occurrences in the corpus, the corpus annotation process is very time
consuming and can lead to many errors and low inter-annotator agreement. For
this reason, we propose a lexicon-based corpus annotation method. On the basis
of the assumption that the vast majority of MWEs are monosemous, e.g. the
set of more than 50k MWEs in plWordNet [11], we performed an automated ex-
traction of sentences containing the MWE occurrences and treated all sentences
including a given MWE as representing the same multiword lexical unit.

3 Dataset

For evaluation, we used MWEs from plWordNet [11] marked as multi-word lexical
units [23]. In addition, we utilised as negative data multiword lemmas removed
from plWordNet as non-lexicalised over the years by the linguists. There is no
information about all collocations considered for adding to plWordNet, but those
that were once erroneously included must be more tricky ones. plWordNet con-
tains 53,978 two-word MWEs and 6,369 longer than 2 words for Polish. English
WordNet includes 59,079 two-word MWEs and 10,649 longer than 2 words. In the
Polish part of the PARSEME corpus, there are also 3,427 two-word MWEs and
568 MWEs longer than 2 words (in the English part respectively, 457 two-word
MWEs and 85 ones longer). Due to this high numerical prevalence of two-word
MWEs, we concentrate on them in this paper. Two sample representations were
compared: non-contextual and contextual. In the first case – a baseline – the
representation is derived from word embeddings vectors. In the latter case of
the contextual representation, we used the KGR10 Polish corpus [20], one of the
largest Polish corpora (4,015,569,051 tokens, 18,084,712 unique ones) with a rich
variety of text types.

3.1 plWordNet-based Non-Contextual Dataset

Context-free representation was built for both correct MWEs and incorrect
‘MWEs’ using the fastText skipgram model [5] (trained on the KGR10 corpus).
It concatenates embeddings of the MWE components with vectors of differences
between them. Fig. 1 and Eq. 1 show the generation of non-contextual MWE
representation embNC from the vectors w1 and w2 of the component words.
Such representation, including the difference of vectors, has been inspired by the
sample representation used in the NLI domain and also in semantic relations
extraction [13]. Moreover, the concatenation of the difference vector along with
the word embeddings was also used to represent word relations in [22].

embNC(w1, w2) =
−→w1 ⊕−→w2 ⊕ (−→w1 −−→w2) (1)
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Lexical unit (MWE)

Input sample
Lexicon

Non-Contextual Embeddings

1st component
embedding 

2nd component
embedding{ , }difference

vector,

Fig. 1. Non-Contextual MWE representation generation

3.2 KGR10-based Contextual Dataset

For the contextual MWE representation, 687,900 sentences were extracted from
the KGR10 corpus. Components of the correct MWEs were detected in 648,481
sentences and the incorrect in 39,419. We started by detecting the MWE com-
ponent among the lemmas occurring in sentences. If lemmas of multiple MWEs
were detected in a sentence, then it was associated with each of them as separate
training samples, see Alg. 1. In order to test the performance of our method in
detecting sentences containing MWE components, we prepared 4 randomly se-
lected samples of 100 found sentences each. They were verified by linguists who
found that 99% of all sentences contained correct MWE components.

Algorithm 1 Procedure of obtaining sentences (s) from the corpus (C), if they
include MWEs or their components by comparing sentence word lemmas (li ∈
[l0, l1, . . . , ln]) to the list (M) of lemmatised MWEs (mj ∈ [m0,m1, . . . ,mk])

1: sentence list← [ ]
2: for s ∈ C do
3: for li ∈ s do
4: for mj ∈M do
5: if li ∈ mj then
6: sentence list.insert(s)
7: end if
8: end for
9: end for

10: end for
11: return sentence list

Eq. 2 describes the generation of contextual embeddings for MWEs as sample
representations: an MWE embedding (Smsent

) in the sentence context (−−−→msent) is
an average of the WordPiece subtoken vectors (−→νs) related to the MWE compo-
nents. Next, we subsequently replaced the MWE occurrences in sentences with
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each of their components and obtained their contextual embeddings (−−→csent) by
averaging the corresponding subtoken vectors representations (−→νs) related to
the substituted components (Scsent), see Eq. 3. The final contextual embedding
(embC) of a training sample related to a sentence (sent) containing MWE (m)
and one of its components (c) is described in Eq. 4. For each MWE occurrence,
we generated the contextual embeddings corresponding to each of its components
separately.

−−−→msent =

∑
s∈Smsent

−→νs
|Smsent

|
(2)

−−→csent =

∑
s∈Scsent

−→νs
|Scsent

|
(3)

embC(c,m, sent) = −−→csent ⊕−−−→msent ⊕ (−−−→msent −−−→csent) (4)

We aim at observing the difference between the contextual embedding of a
whole MWE and each of its components across sentences. Thus, we calculated
the difference vector between the representation of the complete expression and
its component in the context of a sentence as is illustrated in Fig. 2.

Sentence containing MWE

Document

Contextual Embeddings

Input sample

component
embedding 

MWE
embedding{ , }difference

vector,

Fig. 2. MWE contextual representation generation.

4 Methods for Multiword Expression Detection

We assume that the context plays a significant role in the MWE detection. The
first dataset from Sec. 3.1 contains training samples of non-contextual MWE
representations (MWE vector, component vectors, and the difference vector). In
this task, classifiers should focus on the semantic differences between the vector
representations of the MWE components and the entire MWE. This is focused on
non-compositional character of genuine MWEs. An incorrect ‘MWE’ example of
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a materia l opatrunkowy (en. ‘bandage cloth’) is in fact compositional in contrast
to a correct, genuine MWE: g los serca (en. lit. ‘heart’s voice’), whose semantics
cannot be inferred from its component meanings.

In contrast to the first (baseline) non-contextual representation, the dataset
from Sec. 3.2 includes samples of contextual MWE representations (contextual
vectors of MWE components and the entire MWE, plus the difference vector). In
this case, the task of classifiers is to decide on the correctness of an expression on
the basis of knowledge extracted from the contexts of the expression occurrences
and the interaction between the contexts and the semantic representation of
the whole MWEs and their components. An example of an incorrect ‘MWE’
is barwnik naturalny (en. ‘a natural pigment’), which is compositional in any
context and an example of correct MWE is ojciec chrzestny (en. ‘a godfather’),
which is non-compositional and when occurs in different contexts, its components
should receive significantly different contextual vectors from the MWE vector.

We prepared three different model architectures to measure the influence of
context knowledge on the classification of collocations as MWEs:

– Logistic Regression (LR) – a statistical model, which utilizes the logistic
function to model the probability of a discrete binary dependent variable,

– Random Forest (RF) – an ensemble learning method, aggregating multi-
ple decision trees by calculating the mode of their predictions,

– Convolutional Neural Network (CNN) – a deep learning architecture,
using convolution kernels, which move along the vector of the input data
and provide translation outputs called feature maps.

Due to the nature of the MWE representation scheme shared between both
representation types, we decided to use classifiers that work well with samples
represented by concatenations of feature vectors. Contrary to the sequence la-
belling approaches, we decided to use logistic regression (LR), random forest
(RF), and convolutional neural network (CNN). The RF model using an ensem-
ble of decision trees focuses on the salient features of the vector representations.
On the other hand, convolution operations allow the CNN model to derive ad-
ditional knowledge from the data. We also used the LR model as a baseline to
verify the quality of the RF and CNN classifiers knowledge extraction.

In the contextual representation, Sec 3.2, a single collocation or its component
may occur in multiple sentences, so the same collocation may occur in several
samples. As the vast majority of MWEs are monosemous, e.g. plWordNet [11],
we leveraged this fact by preparing several voting strategies that aggregate the
decisions of a selected model related to the same collocation:

– Occurrence Classification (OC) – each collocation occurrence is classified
on its own, i.e. a separate decision, independent of the other occurrences, is
made solely on the text of the given context,

– Majority Voting (MV) – predictions for all occurrences of a given collo-
cation are collected and the final decision is made by majority voting,

– Weighted Voting (WV) – as the previous one, but the overall decision is
made by weighted voting with confidence levels of a classifier as weights.
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5 Experiments

The task selected for all conducted experiments is a single-task binary classifica-
tion, where each classifier had to predict the correct label out of the 2 available
for the given expression as a potential MWE. We used the HerBERT model
[25] to generate contextual embeddings as it is considered as one of the best
transformer models trained and evaluated on texts in Polish. Implementations
of the LR and RF classifiers come from the scikit-learn library [26], and CNN
from the TensorFlow library [1]. The CNN architecture consists of three con-
volutional layers each followed by the pooling layer and the dropout layer, and
is shown in Fig 3. To counter the impact of class imbalance in both datasets
of samples (53,978 to 5,598 for the non-contextual one and 648,481 to 39,419
for the contextual one), we used the F1-macro measure to estimate the per-
formance quality of classifiers. Moreover, we used the weighted loss function,
depending on the number of instances of a given class in the training set. In
addition, we applied 4 different variants of the SMOTE method (SMOTE [10],
SVM-SMOTE [10], Borderline SMOTE [15], and ADASYN [17]) to generate ad-
ditional synthetic training samples on the basis of the real sample embeddings.
To avoid data leakage, we utilized the lexical split to counteract the risk of the
same MWE appearing in both the training and test sets. We applied the 10-
fold cross-validation in every experiment and used statistical tests to measure
the significance of the differences between the models. We used the independent
samples t-test with the Bonferroni correction if its assumptions were fulfilled.
Otherwise the non-parametric Mann-Whitney U test was applied.

InputLayer Conv1D

MaxPooling1D

Dropout

Conv1D

MaxPooling1D

Dropout

Conv1D

GlobalMaxPooling1D

Flatten

Dense

Fig. 3. Convolutional neural network classifier structure.

6 Results

Tab. 1 shows results averaged over ten folds for methods based on non-contextual
and contextual representations. The expanded contextual knowledge resulted in
significant improvements in the prediction quality of each classifier. The increase
in the macro F1-score measure caused by the use of the contextual embeddings
in comparison to non-contextual ones is presented in Fig. 4. The highest gain
of 15% can be observed for the CNN model, as it was able to extract the most
knowledge from the HerBERT embeddings due to its highest complexity.

Fig. 5 shows the performance improvement in the case of incorrect MWEs. In
the case of the RF classifier, the use of contextual embeddings resulted in more
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than sixfold and, in the case of CNN – over thirtyfold improvement in detection
of incorrect expressions.

Model Embedding Inc F1 Cor F1 F1

LR N-C 0.31 0.82 0.56
C 0.32 0.95 0.64

RF N-C 0.05 0.92 0.49
C 0.30 0.94 0.62

CNN N-C 0.01 0.96 0.48
C 0.31 0.96 0.63

Table 1. F1-score values for incorrect MWEs (Inc F1), correct MWEs (Cor F1) and
macro F1-score (F1) for non-contextual (N-C) and contextual (C) embeddings; models:
LR, RF and CNN; values in bold are statistically significantly better in a given pair.

The performance of all voting strategies combined with each classifier is
shown in Tab. 2. The use of weighted voting improved the value of the macro
F1-score for the RF and CNN models by 2 and 4 percentage points, respectively,
in relation to the results for occurrence classification. Moreover, the F1-score
measure for incorrect MWEs increased by 6 percentage points for the CNN clas-
sifier. The improvement in evaluation performance may reflect the effect of using
weighted voting to counteract the overfitting of more complex models, as this
strategy benefits the most from the assumed monosemous nature of MWEs.

Model Voting Inc F1 Cor F1 F1

LR OC 0.32 0.95 0.64
MV 0.33 0.95 0.64
WV 0.33 0.95 0.64

RF OC 0.30 0.94 0.62
MV 0.33 0.95 0.64
WV 0.33 0.95 0.64

CNN OC 0.31 0.96 0.63
MV 0.36 0.96 0.66
WV 0.37 0.97 0.67

Table 2. F1-score for the Contextual Dataset and incorrect MWEs (Inc F1), correct
MWEs (Cor F1) and macro F1-score (F1) for LR, RF and CNN using three different
voting strategies: occurrence classification (OC), majority voting (MV), and weighted
voting (WV). Dataset. Bold values are statistically significantly better than others.

The evaluation results of different SMOTE methods used to counteract the
class imbalance in the contextual representation samples, Sec. 3.2, are in Tab. 3.
The use of SVM-SMOTE and Borderline SMOTE methods improved F1-score
of the CNN model for incorrect MWEs by 14%. It also improved the overall
F1-score by 5%. The CNN model was able to extract the most knowledge from
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the synthetic samples generated by the SMOTE methods due to the fact that it
has the most complex architecture among all used classifiers.

SMOTE Method
LR RF CNN

Inc F1 Cor F1 F1 Inc F1 Cor F1 F1 Inc F1 Cor F1 F1

None 0.30 0.94 0.62 0.30 0.94 0.62 0.17 0.98 0.58

SMOTE 0.31 0.95 0.63 0.30 0.94 0.62 0.27 0.93 0.60
SVM-SMOTE 0.32 0.95 0.64 0.30 0.95 0.62 0.31 0.95 0.63
Borderline SMOTE 0.31 0.95 0.63 0.30 0.94 0.62 0.31 0.96 0.63
ADASYN 0.31 0.95 0.63 0.30 0.94 0.62 0.30 0.94 0.62

Table 3. F1-score values for incorrect MWEs (Inc F1), correct MWEs (Cor F1),
and macro F1-score (F1) LR, RF and CNN models trained on contextual embeddings
based on the KGR10-based dataset with the use of four different SMOTE techniques:
SMOTE, SVM-SMOTE, Borderline SMOTE, and ADASYN and no SMOTE (None).
Values in bold are statistically significantly better than others.
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Fig. 4. F1-score improvement for the contextual vs non-contextual representations.

7 Discussion

One of the most important advantages of our method based on contextual repre-
sentations is its ability to transform any text collection into a dataset, even if it
has no annotations. We can leverage a MWE annotated corpus, but also any text
collection, e.g. from web scraping. A seed MWE lexicon for a given language is
enough. Time-consuming and expensive corpus annotation is avoided. Moreover,
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Fig. 5. F1-score increase for the incorrect MWEs class between the evaluation results
for models trained contextual MWEs embeddings and the non-contextual ones.

it is easier to maintain high quality in a collection such as a lexicon, which can
be annotated by several linguists, and metrics such as inter-annotator agreement
can be easily calculated. Such a transformation of lexicon-based knowledge into a
dataset enables the use of deep neural network models requiring a large number
of training samples. Several linguistic resources can be also merged – both anno-
tated texts, as well as lexicons. Our approach may be applied to texts in different
languages, both to obtain multilingual collections and to apply transfer learning
to facilitate the knowledge about MWEs in one language to MWE recognition
in another language. This may be relevant for low-resource languages. Another
advantage of contextual representation is faster training and prediction com-
pared to sequence labeling methods. In our case, the model gets the full sample
representation only once before prediction. This shortens the inference time.

Non-contextual representations based only on word embeddings result in a
smaller dataset with less noise and significantly reduce the training time. This
approach also emphasizes the non-compositional nature of the MWEs, as the
model focuses on the semantic differences between an MWE and its components.

Providing a full representation of a training sample to the model in one
step enabled the use of SMOTE methods. Generating synthetic samples carries
the risk of too much deviation from the actual data. This phenomenon has the
greatest impact on sequence labeling methods that are vulnerable to outliers.

Our CNN method, pre-trained on contextual embeddings with weighted vot-
ing, applied to MWE recognition in the Polish part of the PARSEME corpus
(mostly verbal) achieved significantly better results than the best results re-
ported during Edition 1.2 of the PARSEME Shared Task [31] – our RF classifier
using weighted voting scored 0.5244 on the macro F1-score measure, while the
best result for PARSEME Edition 1.2 is 0.4344 macro F1-score, which indicates
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a promising potential of our method. It is worth to emphasise that there is no
overlap between the training set of our method and the PARSEME set of MWEs.

8 Conclusions and Future Work

Context plays a crucial role in MWE detection. Our three classifiers achieved
significantly better results, with the CNN one on the top, with contextual em-
beddings than with the non-contextual ones. The context provided additional
information on the MWE semantics, which improved the quality of the predic-
tions. This is related to the non-compositional nature of the MWEs, the mean-
ing of which cannot be inferred from the meanings of their components. The
non-contextual representation forced the models to focus only on the nonstruc-
tural aspect meanings of the component meanings, but significantly reduced the
training time. It may be more applicable in practice, when the training time and
inference time are more important than the quality of prediction. This method
is also faster to prepare as it requires no corpus data. On the other hand, the
method based on contextual embeddings allows transforming any set of texts
with the use of dictionary knowledge into an annotated corpus containing oc-
currences of the MWEs and their components. The model, by examining the
semantic differences between the component and the entire expression, takes
into account the variability of the context, which should allow for the extraction
of the MWE meaning following the assumption of its monosemous character.

The use of SMOTE methods was possible, because, in our setup, the model
receives full data about the training sample in one step. The use of sequential
methods with synthetic data generated by the SMOTE methods would carry
too high a risk of overfitting the model due to the noise caused by synthetic
fragments of the training sequences, potentially very different from the original
data. In our approach, the generated synthetic data significantly improved the
effectiveness of recognition of incorrect cases. In future work, we want to apply
our methods in the multilingual MWEs detection, and to explore the transfer
learning mechanism in a language-independent MWE detection.

Acknowledgements

This work was financed by the National Science Centre, Poland, project no.
2019/33/B/HS2/02814.

References

1. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: Large-scale machine learn-
ing on heterogeneous systems (2015), https://www.tensorflow.org/

2. Agrawal, S., Sanyal, R., Sanyal, S.: Hybrid method for automatic extraction of
multiword expressions. Int. Journal of Engineering & Technology 7, 33 (2018)

3. Anke, L.E., Schockaert, S., Wanner, L.: Collocation classification with unsupervised
relation vectors. In: Proc. of the 57th Annual Meeting of the ACL (2019)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_18

https://dx.doi.org/10.1007/978-3-031-08751-6_18


Is Context All You Need? Non-Contextual vs Contextual MWE Detection 13
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37. Spasić, I., Owen, D., Knight, D., et al.: Unsupervised multi-word term recognition
in Welsh. In: Proc. of the Celtic Language Technology Workshop. pp. 1–6 (2019)

38. Taslimipoor, S., Bahaadini, S., Kochmar, E.: MTLB-STRUCT @Parseme 2020:
Capturing unseen multiword expressions using multi-task learning and pre-trained
masked language models. In: Proc. of the Joint Workshop on Multiword Expres-
sions and Electronic Lexicons. pp. 142–148. ACL (2020)
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