
1

Iterative solution for the narrow passage
problem in motion planning

Jakub Szkandera1 and Ivana Kolingerová1

Department of Computer Science and Engineering, Faculty of Applied Sciences,
University of West Bohemia, Univerzitni 8, CZ 30614 Plzen, Czech Republic.

szkander@kiv.zcu.cz, kolinger@kiv.zcu.cz

Keywords: Motion planning, Sample-based algorithms, Rapidly exploring ran-
dom tree, Narrow passage, Bottleneck, Binary search

Abstract. Finding a path in a narrow passage is a bottleneck for ran-
domised sampling-based motion planning methods. This paper intro-
duces a technique that solves this problem. The main inspiration was
the method of exit areas for cavities in protein models, but the proposed
solution can also be used in another context. For data with narrow pas-
sages, the proposed method finds passageways for which sampling-based
methods are not sufficient, or provides information that a collision-free
path does not exist. With such information, it is possible to quit the
motion planning computation if no solution exists and its further search
would be a loss of time. Otherwise, the method continues to sample the
space with sampling-based method (a RRT algorithm) until a solution is
found or the maximum number of iterations is reached. The method was
tested on real biomolecular data - dcp protein - and on artificial data (to
show the superiority of the proposed solution on better-imagined data)
with positive results.

1 Introduction

Motion planning (finding a collision-free path for a moving object between at
least two locations in an obstacle-filled environment) has always been one of
the essential research areas. Now it is coming to the forefront even more due
to the rapid development of applications, such as the control of autonomous
vehicles and sophisticated robots. Fast and reliable solutions in real or near-
real time are necessary to cope with such applications. Geometric methods such
as Voronoi diagrams for computing centerlines can be used for moving objects
(generally referred to as agents) of very simple shapes. However, these methods
are inappropriate if the object is complex or even flexible or if the environment
is complicated or even dynamically changing. In this case, more sophisticated
and general methods should be used.

Motion planning is generally interpreted using the concept of configuration
space, which is the set of all existing configurations, where each configuration
represents a unique position and rotation of the navigated object. The combina-
tion of position and rotation is called the degrees of freedom. The dimension of

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

2

the problem and its associated complexity increases with the number of degrees
of freedom. For example, the configuration of a navigated object may be up to a
6-dimensional vector describing its position and rotation (both properties have 3
vector components) in 3D space. The total number of configurations in the con-
figuration space is huge. It is impossible to process them all in a reasonable time,
so randomised sampling-based methods are used to select and process specific
configurations.

Methods based on random sampling [14] [17] randomly generate or select
configurations to be tested whether they are collision-free. If the generated con-
figuration is in collision with the environment, it is rejected, and the method
generates a new random configuration. The non-colliding configuration is added
to the path-finding structure - the so-called roadmap that approximates the
configuration space’s free regions. Graph-based path planning methods [10] [15]
can then be applied to the roadmap. Using roadmaps is an efficient way to
find a collision-free passage through the environment, usually in a reasonable
(often near-real) time. As already mentioned, the biggest pitfall of the random
sampling-based algorithms is the narrow passage problem, as, by random sam-
pling, it is difficult to hit such a place properly.

The proposed solution to the narrow passage problem is an improvement of
our previous solution [22], based on a combination of Voronoi diagrams, binary
search, randomisation, and the idea of so-called exit areas [19], an instrument
for motion planning in protein molecular models. Our previous solution still
had the pitfall caused by the randomisation, so it was impossible to decide
whether a collision-free path existed or not. The solution proposed in this paper
removes this pitfall by a divide and conquer approach. The decision has almost
100% certainty, with the only limitation being the accuracy of the computer
representation of real numbers.

The structure of the article is as follows. A description of ideas behind the
existing motion planning methods that are widely used for agent navigation in
configuration space, and their various modifications to address specific problems,
is given in Section 2. A detailed description of the idea behind the proposed
solution and the solution itself for motion planning, including a description of
the algorithm that unambiguously determines whether or not a solution exists in
the narrow passage, is in Section 3. Section 4 contains experiments and results
on artificially generated and real bio-molecular data. Section 5 concludes the
paper.

2 Related Work

The motion planning algorithms based on the randomized sampling of the envi-
ronment can be divided into two groups. The former group, Rapidly Exploring
Random Tree (RRT) [17], produces a tree structure representing the collision-
free part of the environment. The latter, Probabilistic Roadmaps (PRM) [14],
creates a graph structure representing the collision-free part of the environment.
The idea of PRM algorithms [9] is to generate a set of random samples, which are

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

3

simultaneously tested for collisions (sample in a collision is removed, a collision-
free sample is preserved). Next, if the edge does not pass through an environmen-
tal obstacle, the closest collision-free samples are connected by an edge. Finally,
we use one of the graph path planning algorithms such as A˜ [10] or the more
complex D˜ Lite [15] to find the passage through the environment. The set of
obstacles can be sufficient input for a PRM-based algorithm since the algorithm
itself does not require knowledge of the initial and final configurations. Still,
their knowledge can be used in some heuristics to refine the sampling.

A simplified version of the Probabilistic Roadmap algorithm called sPRM [14]
is used mainly for the analysis of follow-up algorithms. Its additional advantage
is that it finds the asymptotically optimal path. The sPRM is also the basis of the
PRM* [13] algorithm, which uses a heuristic function to minimise the length of
roadmaps, where potential samples to connect are selected from neighbourhoods
with radii r > 0, which can be defined, e.g., as a function of sample dispersion[17].
Other PRM-based methods attempt to relax the collision constraints [11] [2],
leading to a simplification of the overall complexity of the problem, by reducing
the agent volume, e.g., by making the agent thinner [11] or by scaling down the
size of agent [2]. The resulting found roadmap is only an approximate solution,
and, therefore, this solution is iteratively corrected [2] to achieve the original
solution. The next PRM method [11] goes one step further and also thins the
obstacles themselves, where the level of thinning is determined by a binary search
at each step of the algorithm.

The second group of random sampling algorithms was designed for use in
models with a number of complex physical constraints. In contrast to PRM,
it generates a tree structure instead of a graph, after which this group of al-
gorithms is called the rapidly exploring random tree (RRT) [17]. The input to
RRT is a set of constraints (similar to PRM) plus an initial configuration that
is the root of the initialised tree structure tmain. Creating a tree structure in-
stead of a graph has several undeniable advantages. First, the generated tree
incrementally expands towards unexplored regions of the configuration space.
Second, it simplifies the path planning part of the process since backtracking
is sufficient to find the resulting path. The idea of the whole RRT algorithm
contains three basic steps that are cyclically repeated. Randomly generating a
new sample in the configuration space is the first step. The next step is to steer
the new sample near the nearest list tree tmain. The last step is to check if the
sample is collision-free. If it is, the sample is added to the tmain tree; otherwise,
it is rejected.

There are many modifications for the RRT family of algorithms, primarily
targeted at special problems. RRT* [13] is an optimised RRT that finds the
optimal solution using a heuristic function. It can provide the shortest possible
path to the goal in the best case. The problem is that the shortest possible
path is guaranteed when the number of samples approaches infinity, which is
unrealistic in practice, but the found path is optimal. The dynamic environment
can be solved using RRTX [21] which is the the first proposed asymptotically
optimal sampling-based replanning algorithm.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

4

Both approaches share the well-known problem of finding a collision-free
passage through narrow passages. For PRM algorithms, many different modi-
fications have been introduced to address the narrow passage problem [7]. For
example, for low-dimensional configuration spaces, it is possible to exploit this
by generating a large number of random samples near obstacles or around the
medial axis of the environment [16]. On the other hand, the RRT family of al-
gorithms can work with a medial axis, towards which MARRT (Medial Axis
RRT) [6] tries to shift the newly generated samples. The resulting tree structure
then does not cover the entire collision-free configuration space, but follows the
central axis. Geometry-based methods [23] that sample along a precomputed
path can also be used. Another option to solve the narrow passage problem is
more detailed sampling around obstacles, such as NP-RRT* (Narrow passage
RRT*) [3], or combination of different abstraction levels [20].

Most motion planning methods are primarily developed for the navigation of
mechanical objects (robots, autonomous vehicles, etc.), but these methods have
applications in other important research areas. For example, the problem of lig-
and navigation in protein is motion planning in molecular simulations, which
inspired our proposed solution. It is possible to use Probabilistic Roadmaps,
which help to speed up molecular dynamics simulations, to sample the config-
uration space of protein [1]. The atomic boundaries of a ligand often lead to
sampling in a high-dimensional configuration space, which is an inappropriate
problem for the group of PRM algorithms.

A more suitable choice of a planner is an RRT-based algorithm that can
even handle motion planning for a flexible ligand [5]. The performance of RRT
is greatly affected by the ability to generate new configurations for the high-
dimensional space problem, which can be very time-consuming, but ML-RRT
(Manhattan-like RRT) copes with this problem [8]. This method has also been
modified for flexible ligands [5]. A solution to this problem can also be achieved
by projecting the high-dimensional space of the roadmap back into 3D space [4].
Another challenge is to find a passage through a dynamic protein [24] in which
individual paths cannot only change their shape but also arise and disappear.

The Voronoi diagram is used not only for better motion planning [23] but also
for calculating cavities and their exit areas in protein models [19]. The Voronoi
vertex and edge graph capture all possible trajectories of spherical probes avoid-
ing collisions between spherical obstacles (the atoms of the protein model). A
probe located in the cavity of a protein model cannot reach the outer space
without collision unless the probe radius is reduced to allow the probe to escape
from the cavity. By analysing a graph of Voronoi vertices and edges, the exact
location where the probe will be located (the primary exit location), and the
exact value of the probe radius to which the probe must shrink to escape the
cavity can be calculated. The edge of the Voronoi diagram along which the probe
could escape from the cavity is then removed, and the shrinking of the probe
continues until all remaining exits from the cavity are discovered. The groups
constructed from the intersecting probes at the cavity exit locations are referred
to as exit areas.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

5

3 Proposed Solution

The proposed solution combines three different approaches - exit areas [18],
RRT [17] and the idea of binary search - into one sophisticated motion planning
method. Our previous proposed solution [22] combined only exit areas and the
RRT method, which was very helpful for detecting narrow passages so that they
can be processed in more detail. The biggest problem of the previous solution is
that it was not possible to unambiguously decide whether a collision-free agent
location exists. Detecting the collision-free location of an agent in a narrow
passage was still guided by random pattern generation, so it could happen that
an existing collision-free solution was not found. The newly proposed solution
removes this pitfall and essentially determines whether an agent’s collision-free
placement in a narrow passage is possible.

A few modifications to the RRT algorithm are required in the proposed solu-
tion. Before the main RRT cycle starts, we need to calculate the exit areas that
tell us the exact location of the most problematic places (narrow passage) in
the data. By incorporating and modifying the binary search, we can now unam-
biguously determine if a collision-free path exists through the narrow passage. If
this is not possible, we can temporarily close the narrow passage, e.g., by using
temporary barriers to avoid the RRT sampling the narrow passage unnecessar-
ily. Otherwise, we have essentially found a collision-free path through one of the
worst possible places in the data. Once the narrow passages are located and
processed, the main RRT cycle can be run to find a collision-free path through
the data.

Let us illustrate in 2D the main idea of the proposed solution to unambigu-
ously determine whether there is a collision-free position in the narrow passage
or not. First, we define the principal direction - the orientation of the agent
(Fig. 1a). The principal direction can be defined in the same way, which must
be uniform for each flexible agent configuration. In our case, the agent A is a
ligand consisting of several spheres, which are stored in a list of spheres. Its
principal direction # »va can be defined, for example, as the principal direction
vector between the center of the central sphere sc taken as the origin of the
local coordinate system of the agent and the center of the first defined sphere
s1 inside the structure representing the agent, if the first sphere is not also the
central sphere. In case s1=sc, another sphere from the structure needs to be
used (e.g., the second or the last one). In the next step, we place the agent in
the center of the narrow passage whose exact location is known by computing
the exit areas vi

exit, i = 1, ..., n, whose center is the center of the narrow pas-
sage. The agent is in its initial position (without rotation), and now we need
to find the correct collision-free rotation of the agent. We divide the imaginary
space of rotations into m sectors, e.g., m = 4, where the boundary between the
sectors corresponds to the initial angular rotation of the agent. By rotating the
agent we get 4 rotated agents a0,a90,a180 and a270 whose principal direction
is rotated by 0°, 90°, 180° and 270° in the narrow passage (Fig. 1b). For each of
these rotated agents, we compute a collision function w, which can be arbitrar-
ily defined (e.g. number of collision spheres, size of volume in collision, sum of

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

6

(a) (b) (c)

Fig. 1: The main idea of proposed solution where transparent grey represents
protein and white collision free tunnel. (a) Example of agent illustrated as set
of orange spheres in the narrow passage of protein, (b) Initial agent rotation to
calculate collision-free rotation where each initial agent rotation has a different
color for better predictability, (c) First iteration in 2D where the initial agent
rotations are illustrated with transparent colors.

collision distances, etc.), and then we sum every two adjacent collision functions
(w(a0)+w(a90), w(a90)+w(a180), etc.). We rank the summed collision func-
tions from the smallest to the largest and process the sector with the smallest
summed collision function value, e.g., agents a0 and a90. We calculate the new
rotation of the agent w(a45) that is in the middle of the processed sector, i.e.
45°, (Fig. 1c) and calculate the collision function w(a45). We select the half
of the sector that has the smaller value of the sum of the collision functions
(w(a0)+w(a45) or w(a45)+w(a90)). We repeat this halving until we obtain
a collision-free result or reach the chosen maximum number of iterations. If a
collision-free result is not found, we process the second initial sector in the same
way. In case the result is not found in the second sector, continue with the third,
etc.

The proposed solution can also be generalised for 3D. The whole idea be-
hind the algorithm is exactly the same. The only difference is that in 2D only
one angular variable is needed to rotate the agent and create sectors, which
is insufficient information in 3D. To achieve similar sectors in 3D, it is con-
venient to use parametric equations of a sphere to achieve sectors which look
like plates, see Fig. 2a. The corners of the plate are the principal direction of
the initial agent rotation for the sector (Fig. 2b). Dividing the plate gives 4
sub-plates (Fig. 2c) for which 5 new agent rotations (# »vp12 ,

»vp13 ,
»vpc ,

»vp24 and
»vp34) need to be computed in order to compute the summed collision functions
(w(p1)+w(p12)+w(p13)+w(pc), w(p12)+w(p2)+w(pc)+w(p24), etc.).
The sub-plate with the smallest value of the summed collision functions is fur-
ther divided into smaller parts. For each selected sub-plate, it is then necessary
to compute next 5 new angular rotations and agent collision functions, which
can be computationally intensive especially when using poor data structures.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

7

(a)
(b) (c)

Fig. 2: (a) Space of rotation in 3D, (b) Initial spherical plate, (c) First iteration
in 3D

Experimentally, we have found that it is sufficient to compute only the agent
rotations to the center of the pc plate, since the sum of the two collision func-
tions (i.e., w(p1) +w(pc), w(p2) +w(pc), etc.) is sufficient to determine the
appropriate sub-plate for further processing. and each weighting function is then
just the sum of the collision function at one corner of the plate and at its center.

We incorporated this solution into our previously proposed solution [22] to
find and sample narrow passages in more detail. The structure of the whole
algorithm and the proposed solution for unambiguous narrow passages resolution
is then as follows. First, we find all exit areas in the data representing narrow
passages. We try to place an agent in each found exit area so that it does not
collide with the environment (Alg. 1). To do this, we divide the imaginary sphere
of possible agent rotations into plates. We compute the collision function w(p)
for each plate p (Alg. 1, lines 2-3) and sort the plates according to the value of
the collision function w(p) from smallest to largest (Alg. 1, line 4), and then
process all plates. Cycling through all the plates (Alg. 1, lines 5-8) is only used if,
in some artificial case, the same value of the collision function existed in almost
all angular rotations.

If the method does not find a collision-free rotation of the agent, then there
is no collision-free path for the agent through this narrow passage and we can
fill the narrow passage with a temporary obstacle. If it is possible to place the
agent in the narrow passage without collision with the environment, we run a
tiny RRT algorithm to map just the neighborhood of the narrow passage. We
try to fix each collision pattern with our proposed solution. We do this for each
exit area found, yielding a set of tree structures whose root is at the center of
the narrow passage. The main RRT algorithm is then run, which searches for
a path through the protein from the protein’s active site (initial position). In
case the main tree is close to some other tree that has been formed around the
narrow passage, we merge these two tree structures into one, which solves the
narrow passage problem very easily and quickly. The algorithm terminates when
we have found a way out of the protein or after a specified maximum number of
iterations.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

8

Algorithm 1: The proposed solution for finding collision-free position

Data: The flexible agent A, List of initial plates P
Result: The collision-free rotation of agent A

1 Algorithm ProposedSolution

2 foreach Plate p in P do
3 Compute summed collision function w(p) of plate p
4 Sort P by w(p)
5 foreach Plate p in sorted P do
6 A← ProcessSection(A, 1,p)
7 if A is collision-free then
8 return A

9 return ∅
10 Procedure ProcessPlate(The flexible agent A, Current iteration i, Plate p)
11 if i = maxiteration then
12 return A
13 Ac ← Rotate A so its orientation is pointing to the middle of p
14 if Ac is collision-free then
15 return A
16 Sum up w(Ac) with each corner value separately
17 Select the sub-plate s of p with minimum summed collision function w(s)
18 A← ProcessSection(A, i+ 1, s)
19 return A

4 Experiments and Results

Both real data and artificial data were used to test the proposed method. Within
the real data, we used protein data, which are also freely available in the data
bank, and flexible ligands as agents whose meaningfulness was consulted by bio-
molecular experts. To present the results, we used the dcp protein to represent
the real data. The artificial data were used to illustrate the strengths and weak-
nesses of the method. All experiments were performed on a computer with the
CPU Intel® Core™ i7-7700K (4.2GHz) and 64GB 2400MHz RAM, the proposed
method was implemented in C#. Also the images in this section were created
using CAVER Analyst 2.0 [12] unless otherwise noted.

The results of the proposed method for real data are difficult to compare
with existing methods since they specialize in different problems, so we compare
them with our previous solution (pRRT) to show a significant improvement for
finding a collision-free path through the narrow passage.

The experiment is on real protein data, specifically the protein dcp (each
atom has different color - hydrogen light grey, carbon dark grey, oxygen red,
etc.), which can be seen in Fig. 3a. Fig. 3b shows the cut through protein dcp
with few highlighted narrow passages (green points) which are visible in this
particular cut. The example of one configuration of the flexible agent is shown
in Fig. 3c. The result of the experiment is a comparison of the collision-free path
through narrow passages found using the previous solution and the current solu-

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

9

(a) (b) (c)

Fig. 3: (a) Tested data of protein dcp, (b) dcp protein cut with highlighted narrow
passages, (c) The example of one configuration of flexible agent A.

tion (Fig. 4 which is created by our own computation system). In both images,
the dcp protein is invisible so that all narrow passages and the starting point of
the main cycle of the RRT algorithm can be seen. The results do not show the
finding of the entire tree structure and the resulting passes through the protein,
but only the completed processing of the narrow passages and the processing of
their closest surroundings. The starting point of the motion planning is the ver-
tex colored in green. The narrow passages are the vertices colored red and blue. If
the vertex is blue, the algorithm has found a collision-free agent location in that
narrow passage. If no collision-free location was found, the vertex is red. White
vertices represent the found collision-free samples by the RRT algorithm in the
surroundings of the narrow passage. The individual vertices are then connected
to each other by an orange edge that uniquely identifies where the agent can
move from its current location. Fig. 4a shows the processed narrow passages of
dcp protein with the previous solution (pRRT). The result of the same problem
by the currently proposed method (cRRT) is shown in Fig. 4b. As can be seen,
the cRRT method succeeded in the collision-free placement of the flexible agent
even in the narrow passages where the pRRT method failed. One narrow pas-
sage remained without finding a collision-free location, which, unlike the results
of the pRRT method, does not mean that we cannot climb the path but that
there is no collision-free passage for the agent under test through this narrow
passage. It is the most significant advantage of the proposed solution.

Table 1 contains a comparison of three algorithms - standard RRT, pRRT,
and cRRT. Testing was performed 1000 times on the real biomolecular data
mentioned above; each algorithm was timed to two minutes. Each iteration had
a different random generator seed to guarantee a different result. At the same
time, the same seed was used for all algorithms (the first run with seed x for all
algorithms, the second run with seed y, etc.). Table 1 shows how many times
a given algorithm was better than the other two algorithms in the evaluated
property, where the properties being assessed were a higher number of paths
found and shorter pathfinding time. The current proposed cRRT solution always
found more paths, namely five, than the other two algorithms. The reason is that

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

10

(a) (b)

Fig. 4: (a) Result narrow passage trees of previous RRT solution, (c) Result
narrow passage trees of current RRT solution.

Table 1: Comparison of the RRT algorithm, our previous (pRRT) and current
(cRRT) modified versions - tested on the real bio-molecular data

Algorithm Number of paths
Time of the found path

First Second Third Fourth Fifth

RRT 0 127 78 1 0 0

pRRT 0 243 217 273 48 0

cRRT 1000 630 705 726 952 1000

RRT finds only the first two paths that are wide enough for this algorithm, and
pRRT finds a different third path and, in most cases, a fourth path but fails on
the fifth path. It is also interesting to note that the RRT algorithm was once
able to find the third path while being faster than the other algorithms, a purely
random result. The time results of pathfinding between the pRRT and cRRT
methods usually differed by units of milliseconds.

The following experiment was to determine the narrow passage threshold
for each method. That is, to find how much wider the narrow passage must be
for the method to have no problem finding a path through the narrow passage.
For this experiment, we made artificial data (Fig. 5a) in the shape of a cube;
each wall has a passage with different radius (e.g. first wall has passage with
r = 1, second passage with r = 1.4, etc.). The radius of the smallest possible
passage corresponds to the radius of one sphere of the agent (Fig. 5b). The
initial position is in the middle of the cube (Fig. 5c); the ideal number of paths
found is the same as the number of walls of the cube, i.e., six. The result is in
Table 2, which indicates how many times one of the RRT algorithms was able
to find a path through the narrow passages in the wall. For each algorithm,

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

11

(a) (b) (c)

Fig. 5: (a) The artificial testing data with different radii of narrow passages, (b)
The example of flexible agent A, (c) Data cut with starting position of the agent
A

Table 2: Collision-free paths through narrow passages with different radii sizes

Algorithm
Narrow passage number (radius)

First (1) Second (1.3) Third (1.6) Fourth (1.9) Fifth (2.2) Sixth (2.5)

RRT 0 0 0 0 476 1000

pRRT 0 0 671 1000 1000 1000

cRRT 1000 1000 1000 1000 1000 1000

we repeated the measurements 1000 times with a agent whose sphere radius is
r = 1. In all cases, the standard RRT algorithm finds only the largest narrow
passage (r = 2.5), which is the expected result since the method does not use
any auxiliary information or structures. With a sufficiently long sampling (up to
2 minutes) of the configuration space, it also finds a path through the second-
largest narrow passage (r = 2.2) in almost half of the cases. The previous solution
pRRT performs much better, always finding a path through the narrow passage
in half of the cases. The best solution is the proposed solution, which finds a
collision-free path through every narrow passage, even the smallest possible.

The previous results have shown that the proposed method finds a passage
through even the tightest possible narrow passage. Therefore, now we focus on
the method itself to see what operations and how many iterations are needed
to find one collision-free position. For this experiment, we have created artificial
data in the form of a tunnel (Fig. 6a) into which we are trying to place a
rod-shaped agent (Fig. 6b). Before each algorithm run, the data and the agent
itself were randomly rotated (each with a different rotation). The experiment
was repeated 500 times; the method searched for collision-free rotations of the
agent (Fig. 6c). The results of this experiment are shown in Table 3. We tried
this experiment for different numbers of initial spherical plates, which must be
sorted further by the collision function and processed. As we can see, as the
number of plates increases, the computation time and finding the correct solution

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

12

(a) (b) (c)

Fig. 6: (a) The artificial testing data of tunnel, (b) The example of agent A, (c)
Data cut with starting position of agent A.

Table 3: Result of different initial conditions of the proposed solution cRRT

Number of Plate order Plate iteration
Time [ms]

plates First Second Higher First Second Higher

2 500 0 0 251 68 181 27.871

6 413 56 31 370 43 87 34.158

15 387 93 20 401 67 32 65.966

28 341 107 52 384 71 45 139.466

45 326 108 66 398 58 44 204.932

also increase. It makes sense because more initial agent rotations and collision
functions must be calculated.

In most cases, the solution was found in the first spherical plate and even in
the first possible iteration. However, it is surprising that the method works very
well and very fast also for a minimal number of plates, namely two. All solutions
were found in the first plate, which makes sense since the data is symmetric.
However, the method needs to be adjusted appropriately, as the larger the initial
plate, the greater the chance that the method iterates into the wrong part of
the plate. In this case, we need to add a stack or priority queue and process the
rejected part of the plate as well.

We conclude the section with three essential observations from testing the
proposed method. The first is that the method is severely limited by the accuracy
of the computer representation of decimal numbers. It is vital when calculating
the rotation of an agent from one position to another, so one needs to have a
perfect understanding of working with decimals on the computer or use a suitable
library (e.g., Unity can handle this). The next observation is that the most
appropriate collision function for biomolecular data composed of spheres turned
out to be the total volume of the agent that is in collision with its surroundings.
The last is that the unambiguous result of whether or not a collision-free path

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

13

exists is closely related to the maximum number of iterations. Experiments have
shown that for protein data it is longest in the fourth iteration.

5 Conclusion

A modified version of the RRT algorithm, cRRT, based on our previous method,
whose improvement for collision-free pathfinding consists mainly in finding
collision-free paths through narrow passages, is presented in this paper. In addi-
tion to finding the path itself, the method also provides the exact location of the
narrow passages, which it can investigate in detail. This information is crucial,
and our modified RRT algorithm can decide whether the narrow passage path
exists. Since the proposed solution must additionally compute the position of
the exit areas and sample their neighborhoods, it is not suitable for data with-
out narrow passages - it will find the correct path, but probably more slowly
than the original RRT. Once the data contains narrow passages, the proposed
solution excels and provides better results than our original solution and many
times better results than the original RRT algorithm. Moreover, the method can
find collision-free narrow passages even for data that are only touching (agent
with protein).

Acknowledgement

This work was supported by the Ministry of Education, Youth and Sports of the
Czech Republic, the project SGS-2022-015 New Methods for Medical, Spatial
and Communication Data.

References

1. N. M. Amato, K. A. Dill, and G. Song. Using motion planning to map protein
folding landscapes and analyze folding kinetics of known native structures. Journal
of Computational Biology, 10(3-4):239–255, 2003.

2. O. B. Bayazit, D. Xie, and N. M. Amato. Iterative relaxation of constraints: A
framework for improving automated motion planning. In 2005 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 3433–3440. IEEE,
2005.

3. A. Belaid, B. Mendil, and A. Djenadi. Narrow passage rrt*: a new variant of rrt.
International Journal of Computational Vision and Robotics, 12(1):85–100, 2022.

4. J. Cortés, S. Barbe, M. Erard, and T. Siméon. Encoding molecular motions in voxel
maps. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), 8(2):557–563, 2011.

5. J. Cortés, D. T. Le, R. Iehl, and T. Siméon. Simulating ligand-induced confor-
mational changes in proteins using a mechanical disassembly method. Physical
Chemistry Chemical Physics, 12(29):8268–8276, 2010.

6. J. Denny, E. Greco, S. Thomas, and N. M. Amato. Marrt: Medial axis bi-
ased rapidly-exploring random trees. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 90–97. IEEE, 2014.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

14

7. M. Elbanhawi and M. Simic. Sampling-based robot motion planning: A review.
Ieee access, 2:56–77, 2014.

8. E. Ferré and J.-P. Laumond. An iterative diffusion algorithm for part disassem-
bly. In Proceedings of the 2004 IEEE International Conference on Robotics and
Automation, volume 3, pages 3149–3154. IEEE, 2004.

9. R. Geraerts and M. H. Overmars. A comparative study of probabilistic roadmap
planners. In Algorithmic Foundations of Robotics V, pages 43–57. Springer, 2004.

10. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

11. D. Hsu, G. Sánchez-Ante, H.-l. Cheng, and J.-C. Latombe. Multi-level free-space
dilation for sampling narrow passages in prm planning. In Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA 2006., pages
1255–1260. IEEE, 2006.

12. A. Jurcik, D. Bednar, J. Byska, S. M. Marques, K. Furmanova, L. Daniel, P. Kokko-
nen, J. Brezovsky, O. Strnad, J. Stourac, et al. Caver analyst 2.0: analysis and
visualization of channels and tunnels in protein structures and molecular dynamics
trajectories. Bioinformatics, 34(20):3586–3588, 2018.

13. S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The international journal of robotics research, 30(7):846–894, 2011.

14. L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe. Analysis of probabilistic
roadmaps for path planning. IEEE Transactions on Robotics and Automation,
14(1):166–171, 1998.

15. S. Koenig and M. Likhachev. D* lite. In AAAI/IAAI, pages 476–483, 2002.
16. H. Kurniawati and D. Hsu. Workspace-based connectivity oracle: An adaptive

sampling strategy for PRM planning. In Algorithmic Foundation of Robotics VII,
pages 35–51. Springer, 2008.

17. S. M. LaValle. Planning algorithms. Cambridge university press, 2006.
18. M. Manak. Voronoi-based detection of pockets in proteins defined by large and

small probes. Journal of Computational Chemistry, 40(19):1758–1771, 2019.
19. M. Manak, A. Anikeenko, and I. Kolingerova. Exit regions of cavities in proteins. In

2019 IEEE 19th International Conference on Bioinformatics and Bioengineering,
BIBE, pages 1–6. IEEE Computer Society, 2019.

20. A. Orthey and M. Toussaint. Section patterns: Efficiently solving narrow pas-
sage problems in multilevel motion planning. IEEE Transactions on Robotics,
37(6):1891–1905, 2021.

21. M. Otte and E. Frazzoli. RRTX: Asymptotically optimal single-query sampling-
based motion planning with quick replanning. The International Journal of
Robotics Research, 35(7):797–822, 2016.

22. J. Szkandera, I. Kolingerová, and M. Maňák. Narrow passage problem solution for
motion planning. In International Conference on Computational Science, pages
459–470. Springer, 2020.

23. V. Vonásek, J. Faigl, T. Krajńık, and L. Přeučil. A sampling schema for rapidly
exploring random trees using a guiding path. In Proceedings of the 5th European
Conference on Mobile Robots, volume 1, pages 201–206, 2011.

24. V. Vonásek, A. Jurč́ık, K. Furmanová, and B. Kozĺıková. Sampling-based motion
planning for tracking evolution of dynamic tunnels in molecular dynamics simula-
tions. Journal of Intelligent & Robotic Systems, 93(3):763–785, 2019.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_16

https://dx.doi.org/10.1007/978-3-031-08751-6_16

