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Abstract This paper is devoted to increasing the computational e�-
ciency of the �nite-di�erence methods for solving the one-way Helmholtz
equation in unbounded domains. The higher-order rational approxima-
tion of the propagation operator was taken as a basis. Computation of
appropriate approximation coe�cients and grid sizes is formulated as
the problem of minimizing the discrete dispersion relation error. Keep-
ing in mind the complexity of the developed optimization problem, the
di�erential evolution method was used to tackle it. The proposed method
does not require manual selection of the arti�cial parameters of the nu-
merical scheme. The stability of the scheme is provided by an additional
constraint of the optimization problem. A comparison with the Padé
approximation method and rational interpolation is carried out. The ef-
fectiveness of the proposed approach is shown.
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1 Introduction

Despite the constant increase in the computing power, the numerical solution of
many mathematical physics equations remains a very resource-intensive opera-
tion. Fast and e�cient numerical schemes usually use complex approximations
and require quite sophisticated software implementation. Even more nontrivial
is the question of the stability of complex numerical schemes and the determina-
tion of the limits of their applicability. Despite the existence of general-purpose
numerical schemes, such as the �nite element method, the construction and de-
tailed study of a new numerical scheme is required in each speci�c case.

This study is aimed at improving the e�ciency of the computer simulation
methods for wave propagation in large integration domains without boundaries.
Such kind of problems arise in computational hydroacoustics [5,18], tropospheric
radio wave propagation [12,22,16], geophysics [21], optics and quantum mechan-
ics [6]. Despite the di�erent nature of the physical phenomena occurring in these
scienti�c domains, the underlying mathematical models are to a certain extent
universal [20].
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The existing numerical methods for solving this class of problems have two
signi�cant disadvantages, which are fully manifested when trying to implement
them as part of complex software systems. Firstly, they depend on several arti�-
cial computational parameters, which are usually selected manually by experts.
The expert does not have reliable mechanisms for verifying the adequacy of the
selected parameters, which can lead to errors. Secondly, they usually do not take
into account the speci�c parameters of the propagation environment in an opti-
mal way, which leads to signi�cant overspending of computing resources and a
decrease in the relevance of the results obtained.

To answer these questions, in this paper it is proposed to use stochastic
methods [8] to optimize numerical schemes. The use of stochastic methods for
constructing numerical schemes has been an actively developing scienti�c direc-
tion over the past few years. In particular, the physics-informed neural networks
(PINN) method is actively developing [10,13]. In the PINN method, the solution
of the equation is sought in the form of a deep neural network. The method pro-
posed in this paper assumes the preservation of the numerical scheme structure,
only its coe�cients and parameters are upgraded.

This article is a continuation of the work on improving the numerical schemes
for solving the Helmholtz equation. Previously, a method for �nding optimal
computation parameters for the Padé approximation was proposed [14]. Works
[16,15] discovered the possibility of increasing the performance of existing schemes
by using more suitable rational approximations.

The paper is organized as follows. The next section brie�y describes the prob-
lem statement and numerical scheme based on rational approximation. Section
3 provides a discrete dispersion analysis of the numerical scheme under consid-
eration. Section 4 is devoted to the optimization of coe�cients and parameters
of the scheme using the di�erential evolution method. Section 5 shows the appli-
cation of the proposed method to the wedge di�raction problem and comparison
with other rational approximation methods.

2 Rational approximation of the one-way Helmholtz

equation

We are seeking the solution to the two-dimensional scalar Helmholtz equation

∂2ψ

∂x2
+
∂2ψ

∂z2
+ k2n2 (x, z)ψ = 0, (1)

where ψ(x, z) is the wave �eld, k = 2π/λ is the wavenumber, λ is the wave
length, n(x, z) is the refractive index. It is assumed that the length in x of the
propagation medium is much larger than the height in z.

The wave �eld is generated by an initial condition of the form

ψ(0, z) = ψ0(z),

where ψ0(z) is a known function.
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Figure 1. Schematic description of the considered problem [16].

The considered problem is schematically shown in Fig. 1.
Following [16,9] and neglecting to backscatter, we obtain the so-called one-

way Helmholtz equation, written as a step-by-step solution along x-axis

un+1 = exp
(
ik∆x

(√
1 + L− 1

))
un (2)

u(x, z) = e−ikxψ(x, z),

un(z) = u(n∆x, z).

As suggested in [4], we apply a rational approximation of order [n/m] the
propagation operator (2)

exp
(
ik∆x

(√
1 + L− 1

))
≈
∏n
l=1 1 + alL∏m
l=1 1 + blL

=

p∏
l=1

1 + alL

1 + blL
, (3)

Lu =
1

k2
∂2u

∂z2
+
(
n2(x, z)− 1

)
u,

meaning of coe�cients a1 . . . ap, b1 . . . bp will be clari�ed in the following sections.
Rational approximation (3) makes it possible to represent the action of the

propagation operator (2) as a sequence of one-dimensional di�erential equations
(1 + b1L) v

n
1 = (1 + a1L)u

n−1

(1 + blL) v
n
l = (1 + alL) v

n
l−1 l = 2, . . . , p− 1,

. . .

(1 + bpL)u
n = (1 + apL) v

n
p−1.
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where v1 . . . vp−1 are some auxiliary functions.
Operator L can be approximated by the following 2nd order �nite-di�erence

schema

Lu ≈ 1

k2∆z2
[uj−1 − 2uj + uj+1] +

(
n2j − 1

)
uj ,

where

uj = u(j∆z).

Thus, we obtain a �nite-di�erence step-by-step numerical scheme for solving
the Helmholtz equation in elongated domain.

3 Dispersion relation

The accuracy and stability of the numerical scheme under consideration will
be analyzed using discrete dispersion relations [3]. To do this, it is enough to
consider how a plane wave passes through the numerical scheme. Substitute a
two-dimensional plane wave of the form

E (x, z) = exp
(
ik̃xx+ ikzz

)
,

where kz = k sin θ is the vertical wavenumber, θ is the angle between the di-
rection of the wave and x-axis. For simplicity, we further consider the case of a
homogeneous medium (n(x, z) ≡ 1). Then, the discrete horizontal wavenumber
k̃x takes the form [14]

k̃x (kz, ∆x,∆z, a1 . . . ap, b1 . . . bp) = k +
ln
∏p
l=1 tl

i∆x
, (4)

tl =
1− 4al

(k∆z)2
sin2

(
kz∆z

2

)
1− 4bl

(k∆z)2
sin2

(
kz∆z

2

) .
Latter expression is also known as the discrete dispersion relation.

Horizontal wavenumber for the original Helmholtz equation (1) is expressed
as follows

kx (kz) =

{√
k2 − k2z , |kz| ≤ k,

i
√
k2z − k2, |kz| > k.

(5)

4 Optimization of the numerical scheme

It is common to use the Padé approximation method [2] to obtain coe�cients
a1 . . . ap, b1 . . . bp of rational approximation (3). The Padé approximation is local
one and works well in the vicinity of zero propagation angle. As the propagation
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angle increases, its accuracy drops rapidly. To tackle this issue, it was previously
proposed to use a class of rational approximation methods on an interval [16].
These methods make it possible to achieve uniform accuracy on the desired
interval of propagation angles.

In this paper, the coe�cients of the numerical scheme are de�ned by minimiz-
ing the di�erence between the real and discrete dispersion relation. The resulting
optimization problems have a very complex structure and are hardly solvable by
known deterministic optimization methods. In this connection, it is reasonable
to apply evolutionary algorithms to solve them. Due to their stochastic nature,
they are able to solve very complex optimization problems.

Our perspective of optimization of a numerical scheme is an increasing the
speed of calculations without increasing the computational resources or reducing
the applicability limits of the scheme.

4.1 Di�erential evolution method

In this work, we will use the di�erential evolution method [19] as one of the most
well-known representatives of evolutionary algorithms. Let's brie�y describe its
main features.

Consider the following minimization problem

f (x)→ min, x ∈ D ⊂ Rn.

Fitness function f is a black box for the di�erential evolution method, no re-
strictions are imposed on it. The only thing required is to be able to compute
its value in any point on its domain.

At each iteration, the algorithm generates a new generation of vectors by
randomly combining vectors from the previous generation. For each vector xi
three di�erent vectors v1, v2 and v3 are randomly selected among the vectors
from the old generation and a new mutant vector is produced

v = v1 + F · (v2 − v3) , (6)

where F ∈ [0, 2] is a parameter called mutation. The mutation can be set by
a constant or selected randomly at each iteration. Note that the formula for
calculating the mutant vector (6) may di�er depending on the strategy. Number
of vectors in population (population size) is also a parameter of the method.

Then the crossover operation is applied: some coordinates are randomly re-
placed by the corresponding coordinates from the mutant vector v. If the new
vector turns out to be better, then it passes to the next generation, otherwise
the old one remains.

The unconditional optimization problem was considered above, but the dif-
ferential evolution method can be generalized to take into account arbitrary
nonlinear constraints [11] of the form

a ≤ g (x) ≤ b.
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We further use the implementation of the di�erential evolution method from
the SciPy library [1].

4.2 Unconditional optimization

Let's start with the simplest optimization problem. Consider that values of the
computational grid sizes ∆x and ∆z are �xed. Assume also that we know maxi-
mum propagation angle θmax. The numerical scheme should minimize the di�er-
ence between the real (5) and discrete (4) dispersion relation for all propagation
angles from interval [0, θmax]. Formally , this can be written as follows

argmina1...ap,b1...bp[
max

kz∈[0,kmax
z ]

1

k
|k̃x (kz, ∆x,∆z, a1 . . . ap, b1 . . . bp)− kx (kz) |

]
, (7)

where kmaxz = k sin θmax.
Consider an example of solving optimization problem (7) with the following

parameters: ∆x = 50λ, ∆z = 0.25λ, rational approximation order is equal to
[6/7], θmax = 22◦. Fig. 2 demonstrates the dependence of the discrete dispersion
relation error on the propagation angle for various rational approximations. It is
clearly observable that the proposed method gives a much more accurate solution
than the Padé approximation and the rational interpolation method [16]. Note
that since the computational grid and the order of approximation are the same
in all three cases, the complexity of propagation computations is equivalent.

Table 1 compares various strategies of the di�erential evolution method for
the given example. The randtobest1bin strategy proved to be the best in this
example. A high crossover probability leads to faster convergence. Reducing the
range of mutation selection increases the rate of convergence, but sometimes it
leads to a less optimal solution.

Strategy mutation Crossover probability error Number of iterations

currenttobest1exp [0, 2] 1.0 1e-5.77 8089

currenttobest1exp [0.5, 1] 1.0 1e-5.77 4541

currenttobest1exp [0.5, 1] 0.7 1e-2.86 >10000

best1bin [0.5, 1] 1.0 1e-4.68 >10000

best2exp [0.5, 1] 1.0 1e-1.90 >10000

rand2exp [0.5, 1] 1.0 1e-1.83 >10000

best1exp [0.5, 1] 1.0 1e-5.77 5856

rand1exp [0.5, 1] 1.0 1e-1.9 >10000

randtobest1bin [0.5, 1] 1.0 1e-5.77 3808

currenttobest1bin [0.5, 1] 1.0 1e-5.77 6074
Table 1. Comparison of various optimization strategies. ∆x = 50λ, ∆z = 0.25λ,
approximation order is equal to [6/7], θmax = 22◦. Population size is equal to 20.
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Figure 2. Dependence of the discrete dispersion relation error on the propagation
angle for the Padé approximation, rational interpolation and the proposed method. In
all cases ∆x = 50λ, ∆z = 0.25λ, approximation order is equal to [6/7], θmax = 22◦.

4.3 Optimization for a given accuracy

In the previous example, we optimized a numerical scheme based on the known
parameters of the computational grid. Usually, these parameters are unknown
in advance and need to be determined. We will assume that we know acceptable
error ε at distance xmax from the start propagation point. In this case, we
need to �nd such parameters of the numerical scheme that would maximize the
values of the grid steps (and accordingly minimize the computational time) while
providing the speci�ed accuracy. Bearing in mind that the error accumulates at
each iteration of the step-by-step method, we come to the following conditional
optimization problem

argmax∆x,∆z,a1...ap,b1...bp [∆x∆z] ,

on condition

max
kz∈[0,kmax

z ]

1

k∆x
|k̃x (kz, ∆x,∆z, a1 . . . ap, b1 . . . bp)− k (kz) | <

ε

xmax
.

Table 2 demonstrates the optimal values of the grid steps for the proposed
method and the Padé approximation method with the required accuracy ε =
3e − 4 at distance xmax = 3e3λ. Fig. 3 depicts the dependence of the discrete
dispersion relation error on the propagation angle at distance xmax = 3e3λ.
It can be seen that in order to achieve the same accuracy, Padé approxima-
tion method requires a much thicker computational grid, and, accordingly, more
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calculation time is required. The computational grid parameters optimization
within the Padé approximation was previously suggested in [14].

∆x ∆z

Padé 10.8λ 0.005λ

Di�.evol. 46.9λ 0.67λ
Table 2. Optimal values of the grid steps ∆x è ∆z for the Padé approximation and
the proposed approach. ε = 3e− 4, xmax = 3e3λ, θmax = 22◦.
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Figure 3. Dependence of the discrete dispersion relation error on the propagation angle
at distance xmax = 3e3 for the Padé approximation (∆x = 10.8λ, ∆z = 0.005λ) and
the proposed approach (∆x = 46.9λ, ∆z = 0.67λ). In all cases approximation order is
equal to [6/7], θmax = 22◦.

4.4 Stability condition

One of the most sophisticated issues in the development of numerical schemes is
the determination of their stability conditions. Note that the discrete dispersion
relation analysis is equivalent to the Von Neumann stability analysis. Thus, the
stability condition is written as follows

∀kz Im
(
k̃x (kz)

)
> 0.

It is equivalent to the following condition
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|
p∏
l=1

(k∆z)
2 − 4alx

(k∆z)
2 − 4blx

| < 1, x ∈ [0; 1]. (8)

Note that in this case, it is no longer su�cient to ful�ll the condition only
for the propagation angles of interest. Failure to comply with this condition con-
tributes to the exponential growth of evanescent waves arising during di�raction
[12].

This condition can also be taken into account within the di�erential evolu-
tion method. Fig. 4 and 5 demonstrate the dependence of the horizontal wave
number k̃x on vertical wavenumber kz without stability condition (8) and with
its accounting. Parameters from the previous subsection were used. The e�ect
of the stability condition on the resulting solution will be demonstrated in the
next section.

Figure 4. Dependence of the horizontal wave number k̃x on vertical wavenumber kz
without stability condition.

5 Numerical results

We will demonstrate the application of the proposed method to the classical
wedge di�raction problem. The harmonic wave source is located at an altitude
of 200 m and emits a signal at a frequency of 1 GHz. A wedge with a height of 200
m is located at a distance of 1500 m from the source. A transparent boundary
condition is imposed on the upper boundary of the computational domain [17,7].
The wedge is approximated by a staircase function [12].
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Figure 5. Dependence of the horizontal wave number k̃x on vertical wavenumber kz
with stability condition.

Fig. 6 and 7 depicts the two-dimensional distribution of the �eld amplitude,
computed by the proposed method and the Padé approximation method. It is
clear that both methods yield indistinguishable results, while the computation
using the proposed method is faster due to a sparser computational grid. Namely,
the proposed method allows to use a 4 times more sparse grid on x coordinate
and a 130 times more sparse grid on z coordinate which gives a performance
increase of more than 500 times in this particular case.

Fig. 8 shows the �eld distribution obtained by the Padé method on a sparse
grid. It is clearly seen that in this case, the Padé method gives an incorrect
solution in the di�raction zone behind the obstacle. Finally, Fig. 9 shows the �eld
distribution calculated by the proposed method without taking into account the
stability condition (8). One can see that the solution actually diverged due to
the exponentially growing �eld components with high propagation angles.

6 Conclusion

The main disadvantage of the proposed method is the computational cost for
solving the optimization problem, which is several times higher than the compu-
tation by the numerical scheme itself. Generally speaking, this problem can be
tackled by preprocessing and tabulating the coe�cients for various values of the
maximum propagation angle and the required accuracy of calculations. Never-
theless, increasing the convergence rate of the proposed optimization problems
is an urgent task.

Since the topology of the numerical scheme does not change in the proposed
approach, it automatically obtains many useful properties. In particular, the
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Figure 6. Wedge di�raction. Spatial distribution of the �led amplitude (20 log |ψ|),
obtained by the proposed method. ∆x = 46.9λ, ∆z = 0.67λ, approximation order is
equal to [6/7].
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Figure 7. Wedge di�raction. Spatial distribution of the �led amplitude (20 log |ψ|),
obtained by the Padé method. ∆x = 10.8λ, ∆z = 0.005λ, approximation order is equal
to [6/7].
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Figure 8. Wedge di�raction. Spatial distribution of the �led amplitude (20 log |ψ|),
obtained by the Padé method. ∆x = 46.9λ, ∆z = 0.67λ, approximation order is equal
to [6/7].
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Figure 9. Wedge di�raction. Spatial distribution of the �led amplitude (20 log |ψ|),
obtained by the proposed method without stability condition.∆x = 46.9λ,∆z = 0.67λ,
approximation order is equal to [6/7].
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methods of constructing the non-local boundary conditions are fully applicable
to the proposed method. In addition, no signi�cant changes are required to the
existing software implementations.

Note that the proposed approach goes far beyond solving the Helmholtz
equation. Similarly, it is possible to optimize almost any higher-order numerical
scheme with a number of coe�cients and computational parameters. With the
classical approach, a numerical scheme is �rst developed, and then its accuracy
and stability are analyzed. In the proposed approach, the required properties of
the numerical scheme can be speci�ed a priori.

Other con�gurations of the numerical scheme should be investigated, as well
as other optimization methods should be applied in future studies.
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