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Abstract. In this paper, we propose a hierarchical ensemble method
for improved imbalance classification. Specifically, we perform the first-
level ensemble based on bootstrap sampling with replacement to create
an ensemble. Then, the second-level ensemble is generated based on two
different weighting strategies, where the strategy having better perfor-
mance is selected for the subsequent analysis. Next, the third-level en-
semble is obtained via the combination of two methods for obtaining
mean and covariance of multivariate Gaussian distribution, where the
oversampling is then realized via the fitted multivariate Gaussian dis-
tribution. Here, different subsets are created by (1) the cluster that the
current instance belongs to, and (2) the current instance and its k near-
est minority neighbors. Furthermore, Euclidean distance-based sample
optimization is developed for improved imbalance classification. Finally,
late fusion based on majority voting is utilized to obtain final predic-
tions. Experiment results on 15 KEEL datasets demonstrate the great
effectiveness of our proposed method.

Keywords: Imbalance learning · bootstrap sampling · Gaussian-based
oversampling · hierarchical ensembel · fraud detection.

1 Introduction

A class imbalance has been a practical problem of data mining and machine
learning. The three cases that are specifically listed here are animal sound clas-
sification [1], fraud detection [2], and software defect prediction [3]. For the
standard algorithm, the disadvantage of imbalanced problems is that the posi-
tive class (minority class) is easily misclassified. However, those positive samples
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are often more important. Take fraud detection for instance, it is prevalent across
various domains such as banking, government, and medical and public sectors.
However, the number of positive samples are difficult to be obtained. Meanwhile,
in a driving maneuver recognition system, lane change is often regarded as one
of the most common causes of accidents [4]. However, for a standard driving
dataset, there are fewer lane change events than other maneuvers. Therefore, it
is necessary to investigate imbalance learning for solving real-world problems.

Numerous methods have been developed to treat imbalanced datasets, which
can be divided into three categories: (1) data resampling [5, 6], (2) algorithm
modification [7, 8, 9], and (3) ensemble methods [10, 11, 12]. Among those cat-
egories, ensemble methods are the important area that prove to improve the
classification performance. Given a specific learning task, one single learner of-
ten cannot guarantee the result of the imbalance classification. Instead, a fu-
sion including multiple classifiers can generate different outputs. Then, selected
models are fused aiming to improve the final classification performance and
avoid the choice of those worst classifiers. To create the ensemble, previous tech-
niques such as data resampling and algorithm modification are used. Further-
more, the ensemble of data resampling achieves the state-of-the-art performance
[19, 20, 3, 21].

In this study, we propose a hierarchical ensemble oversampling for improved
imbalance classification. In particular, our contribution to this work can be sum-
marized as follows: (1) A hierarchical ensemble is proposed for the imbalance
classification, which includes bootstrap sampling for creating the first-level fu-
sion, the second-level instance weighting-based fusion. (2) Bootstrap sampling
with replacement is used to create the ensemble and avoid the worst classifiers
for improving the performance. (3) Two different weighting strategies are com-
pared and discussed. (4) k-means clustering is used to generate a select minority
class subset for oversampling based on multivariate Gaussian distribution.

2 Related work

Various methods have been proposed in recent years. [22] proposed a novel evolu-
tionary cluster-based oversampling ensemble. This framework combined a novel
cluster-based synthetic data generation method with an evolutionary algorithm
to create an ensemble. [3] used different oversampling techniques to build an en-
semble classifier that can reduce the effect of low minority samples in the defec-
tive data. [23] proposed a three-way decision model by considering the differences
in the cost of selecting key samples. Here, the ensemble was created by applying
Constructive Covering Algorithm to divide the minority samples. [24] predicted
default events by analyzing different ensemble classification methods that em-
powered the effects of the synthetic minority oversampling technique (SMOTE)
used in the preprocessing of the imbalanced microcredit dataset. [25] investigated
heterogeneous ensembles for imbalance learning. [21] applied an entropy-based
method to minority samples to create an ensemble. Then, minority samples in
various views were combined with the majority sample, where SMOTE is further
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used. [26] integrated ensemble learning with the union of a margin-based under-
sampling and diversity-enhancing oversampling. Here the ensemble was created
by applying bootstrap sampling to all samples. [27] proposed an imbalanced clas-
sification ensemble method, where a weighted bootstrap method was introduced
to generated sub-datasets containing diverse local information.

3 The proposed method

Our proposed hierarchical ensemble-based imbalance classification system con-
sists of four main steps: (1) bootstrap sampling with replacement, (2) minority
instance selection and weighting, (3) oversampling based on multivariate Gaus-
sian distribution, and (4) Euclidean distance-based sample selection
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Fig. 1: Flowchart of our proposed work using hierarchical-ensemble based imbal-
ance classification

3.1 Bootstrap sampling

Bootstrap sampling is a sampling method that uses random sampling with re-
placement. Previous studies have demonstrated that bootstrap sampling with
data resampling is an excellent strategy in dealing with class imbalance issues
[20, 26]. Specifically, bootstrap sampling with replacement ensures the inde-
pendent training of each base classifier. Furthermore, bootstrap sampling can
change the specific imbalance characters, which can thus reduce the variance of
the loss functions of the base classifier. In this study, bootstrap sampling with
replacement is used to create the ensemble (first-level fusion).

3.2 Instance selection and weighting strategy

For the oversampling, the selection of minority instances is important for the
classification results. Previous studies used various features to select instance for
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oversampling including classification error [28] and k-disagree neighbors (kDN)
[29]. The kDN denotes the number of disagree class within k neighbors of a spe-
cific instance. For classification error, each instance of the train set is classified
by Decision Tree (DT). The DT is run five times using 10-fold cross-validation
to obtain the final classification error. Naturally, the sample carrying more in-
formation will be oversampled more times. However, the definition of more in-
formation is confusing based on the analysis of previous studies. [5] oversampled
those borderline minority samples. In contrast, [29] selected those safe samples
for oversampling. Both methods prove to be effective in oversampling. Here, we
believe that datasets with different characters work well using different sample
selection and weighting strategies.

After obtaining kDN and error of sample Xi, they are first normalized to [0,
1]. Then two different weighting strategies are used to calculate sample hardness
(Eq.1 and Eq.2). The first weighting strategy (Eq.1) assumes that those difficult
minority samples carry more information, while the second weighting strategy
(Eq.2) assumes that those safe minority samples carry more information. The
selection of the weighting strategy is based on the average performance of each
ensemble. The value of calculated hardness is between 0 and 1.

I1(Xi) = (
kDN(Xi)

max(kDN(Xi))
+

error(Xi)

max(error(Xi))
) ∗ 0.5 (1)

I2(Xi) = 1− I1(Xi) (2)

Finally, the number of instances, which will be over-sampled for each minority
instance is calculated as follows:

E(Xi) =
eI(Xi)∑|Nmin
i

|
i=1 eI(Xi)

(|Nmaj
i | − |Nmin

i |) (3)

where |Nmaj
i | and |Nmin

i | denote the number of minority and majority class
instances in K neighbor instances, respectively, I(Xi) is I1(Xi) or I2(Xi).

When the number of majority instances of K neighbors for a minority in-
stance is K, the minority instance will be regarded as noise. However, if all
minority instances are regarded as noise, the number of instances, which will be
over-sampled for each minority instance, is calculated as follows:

E(Xi) =
1

|Nmin
i |

(|Nmaj
i | − |Nmin

i |) (4)

In addition to minority class instance selection and weighting, we use the
kDN value of the majority class instance for noisy instance removal. Here, those
majority class instances with a kDN value of K will be removed for the subse-
quent analysis. The value of K is set to 5. To control the quality of generated
instances, we first generate λ∗E(Xi) new instances, then select E(Xi) instances
whose Euclidean distances are the smallest. Here, the value of λ is set to 50.
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3.3 Multivariate Gaussian distribution based oversampling

After obtaining the hardness of minority samples, we use multivariate Gaus-
sian distribution [30] for new instance generation since most real data follows
Gaussian distribution. In this study, multivariate Gaussian distribution fits the
minority class subset for instance oversampling.

Specifically, multivariate Gaussian distribution N(µi, Σi) first fits the se-
lected subset of the current instance using two strategies, which are described as
follows: In the first strategy, we combine both current and its closest instance for
calculating µi and Σi. In the second strategy, we first apply k-means clustering
to minority clusters. Then, µi and Σi are obtained from the cluster, which the
current instance belongs to. After obtaining µi and Σi, the synthetic instances
are generated using the following equation:

fX(x1, ..., xk) =
exp(− 1

2 (X − µ)TΣ−1(X − µ))√
(2π)k|Σ|

(5)

For both strategies, the number of synthetic samples of each minority class
instance is split as follows:

E(Xi) = θ ∗ E1(Xi) + (1− θ) ∗ E2(Xi) (6)
where θ is used to balance the number of synthetic samples by the combination
of current and closest samples (1 − θ) ∗ E1(Xi) , and the clusters θ ∗ E2(Xi).
E1 and E2 denote the number of synthetic samples for neighbor- and cluster-
based Gaussian oversampling, respectively. When θ is set to 1, it represents
cluster-based Gaussian oversampling. In contrast, it stands for neighbor-based
Gaussian oversampling when θ is set to 0. The setting of θ will be investigated
in Experiment section.

For the Gaussian oversampling, we use the subsets obtained by GMM to
calculate µi and Σi. After generating λ ∗E(Xi) new instances, we further select
E(Xi) instances whose Euclidean distances are the smallest.

3.4 Hierarchical ensemble

In the first level, we create an ensemble (DM
m=1) by applying bootstrap sampling

with replacement to all samples. Then, we compare the averaged performance
of two different weighting strategies, and the one with better performance in the
second level is selected as follows.

D̄ =

{
avg(D

M/2
m=1) > avg(DM

m=M/2+1)

avg(D
M/2
m=1) <= avg(DM

m=M/2+1)
(7)

where avg(·) denotes the averaged performance of selected ensembles, and D̄ is
the selected ensembles for the subsequent analysis. Next, multivariate Gaussian
distribution based oversampling is used to obtain synthetic instances, where the
subsets are obtained by Gaussian Mixture Models. Finally, performance-based
majority voting is used to make a final prediction for each test sample.
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4 Datasets and Experiment setting

In total, we selected 15 datasets from the KEEL data repository [32] for eval-
uating our proposed method. Here, those 15 datasets exhibited a considerable
variety in sample number, feature number, and IR. Table 1 shows the detailed
properties of the 15 selected KEEL datasets including the number of samples for
both majority and minority classes, feature dimension, and imbalance ratio (IR).
For all datasets, each method is evaluated with a 5-fold cross-validation proce-
dure. For fairness and uniformity, we use an ensemble size of 40 and a Decision
Tree (DT) as the base learning model in all experiments. All experiments are
implemented using the Python library scikit-learn [33] with default parameters
unless stated otherwise.

Table 1: Summary of datasets for evaluating and comparing the proposed
method. Here, the data is sorted by the name, IR denotes imbalance ratio.

No. Dataset Samples Majority samples Minority samples Features IR
1 car-good 1728 1659 69 6 24.04
2 dermatology-6 358 338 20 34 16.90
3 ecoli-0-3-4_vs_5 200 180 20 7 9.00
4 glass0 214 144 70 9 2.06
5 haberman 306 225 81 3 2.78
6 iris0 150 100 50 4 2.00
7 kddcup-buffer_overflow_vs_back 2233 2203 30 41 73.43
8 kr-vs-k-zero-one_vs_draw 2901 2796 105 6 26.63
9 page-blocks-1-3_vs_4 472 444 28 10 15.86
10 pima 768 500 268 8 1.87
11 segment0 2308 1979 329 19 6.02
12 shuttle-2_vs_5 3316 3267 49 9 66.67
13 vehicle3 846 634 212 18 2.99
14 vowel0 988 898 90 13 9.98
15 yeast-0-2-5-7-9_vs_3-6-8 1004 905 99 8 9.14

To demonstrate the effectiveness of our proposed method, several ensemble-
based techniques are included for the comparison: (1) undersampling-based en-
semble: EasyEnsemble, RUSBoost, BalancedBagging, SelfPacedEnsemble. (2)
oversampling-based ensemble: OverBoost, SMOTEBoost, OverBagging, and SMOTE-
Bagging.

4.1 Evaluation metrics

For imbalance classification, accuracy often does not well reflect the overall per-
formance of a proposed classification method. Usually, other metrics are adopted
for better comparing different classification methods. In our study, G-mean and
Area Under the Curve (AUC) are selected as the performance measures, since
they are trade-off metrics between the correctly classified positive and negative
instances. The definition of G-mean is

G−mean =
√
Sens · Spec (8)

where Sens = TP
TP+FN and Spec = TN

TN+FP . TP (true positive) is the number
of correctly classified positive instances. FN (false negative) is the number of
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the positive instances that were misclassified as negative. FP (false positive) is
the number of negative instances that were misclassified as positive. TN (true
negative) is the number of correctly classified negative instances.

For AUC, it can be calculated as follows:

AUC =
Sens+ Spec

2
(9)

5 Experiments

In this section, we first investigate the effect of hyperparameters of our pro-
posed method. Then, we will compare our proposed method with two types
of ensemble-based methods: undersampling-based ensembles and oversampling-
based ensembles.

5.1 The effect of hyperparameters

Tables 2 show the averaged AUC and G-mean over 15 datasets. Comparing clas-
sification results in terms of cluster size and θ, although the difference between
different combinations of k (k-means clustering) and θ is not significant, the
performance using a cluster size of 2 and θ of 0.8 is the best which will be se-
lected for the subsequent analysis. Furthermore, we plot the performance for all
datasets (Figure 2). We can observe that similar performance is obtained for all
datasets over all combinations of k and θ.

(a) AUC (b) Gmean

Fig. 2: Classification AUC and G-mean of different cluster sizes and θ for 15
datasets. Here, x-axis denotes dataset index.

5.2 Our method VS. Undersampling-based ensembles

Tables 3 and 4 show the classification AUC and G-mean between our method and
undersampling-based ensembles. The result highlighted in bold indicates better

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_14

https://dx.doi.org/10.1007/978-3-031-08751-6_14


8 Jie Xie et al.

Table 2: Averaged AUC and Gmean of different cluster sizes and θ.
θ

cluster size 0 0.2 0.5 0.8 1

AUC

2 0.8933 0.8972 0.8945 0.8992 0.8964
20 0.8933 0.8968 0.8950 0.8955 0.8978
50 0.8933 0.8965 0.8951 0.8958 0.8985
100 0.8933 0.8965 0.8951 0.8958 0.8984

Gmean

2 0.8850 0.8907 0.8871 0.8922 0.8895
20 0.8850 0.8896 0.8882 0.8884 0.8910
50 0.8850 0.8893 0.8883 0.8888 0.8917
100 0.8850 0.8893 0.8883 0.8888 0.8915

AUC | G-mean of our method against all other undersampling-based ensemble
methods in 9 | 9 datasets out of 15, followed by SelfPacedEnsemble with only 6
| 6 wins.

For BalancedBagging, the ensemble is created based on the undersampling
technique using a negative binomial distribution. EasyEnsemble is to create an
ensemble set by iteratively applying random under-sampling. Although the com-
plexity of those methods is low, the performance of those methods is worse due to
the information loss in the undersampling step. Furthermore, oversampling has
been demonstrated to be better than undersampling in terms of the ROC curve
[34]. Therefore, our proposed multivariate Gaussian distribution-based ensemble
oversampling can obtain better performance.

Table 3: Comparison of AUC between Our method vs. Undersampling-based
ensembles.

No. BalancedBagging EasyEnsemble RUSBoost SelfPacedEnsemble Ours
1 0.8219 0.8264 0.7142 0.6974 0.6937
2 0.9985 0.9735 0.9706 0.9985 0.9985
3 0.9306 0.9083 0.8639 0.9000 0.9611
4 0.8273 0.8203 0.7692 0.8128 0.8094
5 0.6078 0.6128 0.5271 0.5867 0.6629
6 1.0000 1.0000 1.0000 1.0000 1.0000
7 0.9964 0.9995 0.9982 1.0000 1.0000
8 0.9859 0.9843 0.9846 0.9735 0.9823
9 0.9876 0.9899 0.9721 0.9978 0.9955
10 0.7237 0.7213 0.6654 0.7239 0.7130
11 0.9901 0.9896 0.9911 0.9939 0.9942
12 1.0000 0.9989 1.0000 1.0000 1.0000
13 0.7511 0.7865 0.6358 0.7558 0.7612
14 0.9605 0.9666 0.9805 0.9683 0.9883
15 0.9154 0.9052 0.8785 0.8987 0.9276

Rank 5 3 2 6 9

5.3 Our method VS. Oversampling-based ensembles

Tables 5 and 6 show the classification AUC and G-mean between our method and
oversampling-based ensembles. The results highlighted in bold indicate better

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_14

https://dx.doi.org/10.1007/978-3-031-08751-6_14


Hierarchical Ensemble based Imbalance Classification 9

Table 4: Comparison of G-mean between Our method vs. Undersampling-based
ensembles.

No. BalancedBagging EasyEnsemble RUSBoost SelfPacedEnsemble Ours
1 0.8041 0.8080 0.6247 0.4791 0.6022
2 0.9985 0.9717 0.9690 0.9985 0.9985
3 0.9282 0.9050 0.8374 0.8907 0.9595
4 0.8260 0.8194 0.7539 0.8115 0.8060
5 0.5941 0.6061 0.4495 0.5732 0.6587
6 1.0000 1.0000 1.0000 1.0000 1.0000
7 0.9963 0.9995 0.9982 1.0000 1.0000
8 0.9858 0.9841 0.9845 0.9731 0.9822
9 0.9875 0.9898 0.9712 0.9977 0.9955
10 0.7200 0.7178 0.6406 0.7224 0.7120
11 0.9901 0.9896 0.9911 0.9939 0.9942
12 1.0000 0.9989 1.0000 1.0000 1.0000
13 0.7478 0.7837 0.5681 0.7527 0.7596
14 0.9592 0.9659 0.9802 0.9661 0.9882
15 0.9135 0.9035 0.8702 0.8948 0.9266

Rank 5 3 2 6 9

AUC | G-mean of our method against all other regular ensemble methods in 11
| 11 datasets out of 15. For SMOTEBagging, it has 7 | 8 wins in terms of both
AUC and G-mean. For OverBagging, it has 6 | 5 wins in terms of both AUC
and G-mean.

Fig. 3 plots the comparison between our method VS. oversampling-based
ensembles in terms of average performance and winning time. Our proposed
method achieves the best performance. In terms of those datasets having higher
IR than 20, our method hits 3 of 4 highest AUC and G-mean values respectively.
For 9 datasets whose IR are less than 10, our method hits the 7 highest AUC
and G-mean values. This result indicates that our proposed method can work
well for both high and low IR.

Table 5: Comparison of AUC between Our method VS. Oversampling-based
ensembles.

No. OverBoost OverBagging SMOTEBoost SMOTEBagging Ours
1 0.6355 0.6064 0.5760 0.6203 0.6937
2 0.9985 0.9985 0.9985 0.9985 0.9985
3 0.9139 0.8417 0.9056 0.8639 0.9611
4 0.7842 0.8195 0.7701 0.8195 0.8094
5 0.5820 0.5151 0.5593 0.5414 0.6629
6 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000 1.0000
8 0.9647 0.9691 0.9474 0.9827 0.9823
9 0.9811 0.9978 0.9811 0.9978 0.9955
10 0.6243 0.7024 0.6673 0.7341 0.7130
11 0.9889 0.9896 0.9924 0.9899 0.9942
12 1.0000 1.0000 1.0000 1.0000 1.0000
13 0.6695 0.6415 0.6761 0.7122 0.7612
14 0.9289 0.9405 0.9567 0.9511 0.9883
15 0.8685 0.8782 0.8768 0.8965 0.9276

Rank 4 6 4 7 11
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Table 6: Comparison of Gmean between Our method VS. Oversampling-based
ensembles.

No. OverBoost OverBagging SMOTEBoost SMOTEBagging Ours
1 0.4008 0.3643 0.3148 0.4272 0.6022
2 0.9985 0.9985 0.9985 0.9985 0.9985
3 0.9042 0.8216 0.8960 0.8365 0.9595
4 0.7777 0.8147 0.7586 0.8165 0.8060
5 0.5357 0.4199 0.5270 0.4760 0.6587
6 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000 1.0000
8 0.9635 0.9680 0.9458 0.9825 0.9822
9 0.9803 0.9977 0.9803 0.9977 0.9955
10 0.6080 0.6826 0.6619 0.7257 0.7120
11 0.9888 0.9896 0.9924 0.9898 0.9942
12 1.0000 1.0000 1.0000 1.0000 1.0000
13 0.6427 0.5812 0.6596 0.6927 0.7596
14 0.9257 0.9377 0.9544 0.9487 0.9882
15 0.8600 0.8706 0.8705 0.8908 0.9266

Rank 4 5 4 8 11

(a) Average performance (b) Winning time

Fig. 3: Classification AUC and G-mean of different ensemble methods in terms
of averaged result and winning time.

6 Conclusion and Future work

In this study, we propose an ensemble oversampling framework, which shows sig-
nificant improvement over state-of-the-art algorithms using a total of 15 imbal-
ance datasets. The framework consists of a novel hierarchical ensemble utilizing
bootstrap sampling, instance selection and weighting, and multivariate Gaussian
distribution-based oversampling. For multivariate Gaussian distribution-based
oversampling, the parameters, µ, and Σ are calculated using (1) clusters, (2)
current, and its k nearest minority neighbors. The final predict label is obtained
by combining selected ensemble members to deliver relatively superior results.
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In future work, we are considering including an evolutionary algorithm for
adaptively selecting ensemble members. In addition, we will extend the proposed
approach to cover multi-class imbalanced datasets.
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