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Abstract. Representation learning for graphs has attracted increasing
attention in recent years. In this paper, we define and study a new prob-
lem of learning attributed graph embeddings. Our setting considers how
to update existing node representations from structural graph embedding
methods when some additional node attributes are given. To this end, we
propose Graph Embedding RetroFitting (GERF), a method that deliv-
ers a compound node embedding that follows both the graph structure
and attribute space similarity. Unlike other attributed graph embedding
methods, GERF is a novel representation learning method that does
not require recalculation of the embedding from scratch but rather uses
existing ones and retrofits the embedding according to neighborhoods
defined by the graph structure and the node attributes space. Moreover,
our approach keeps the same embedding space all the time and allows
comparing the positions of embedding vectors and quantifying the impact
of attributes on the representation update. Our GERF method updates
embedding vectors by optimizing the invariance loss, graph neighbor loss,
and attribute the neighbor loss to obtain high-quality embeddings. Ex-
periments on WikiCS, Amazon-CS, Amazon-Photo, and Coauthor-CS
datasets demonstrate that our proposed algorithm receives similar results
compared to other state-of-the-art attributed graph embedding models
despite working in retrofitting manner.

Keywords: graph embedding · attributed graphs · graph embedding
retrofitting.

1 Introduction

Machine learning methods have been studied in a variety of applications and
data types, including images and video (computer vision), text (natural lan-
guage processing), audio or time-series data, among many others. Since most
downstream ML models expect a vector from a continuous space as input, rep-
resentation learning methods have been developed to create those representation
vectors (embeddings) automatically. While there are many embedding methods
traditional data types, such as word2vec [11] and FastText [4] for text, or ResNet
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[7] and EfficientNet [14] for images, this task is much more difficult for graph-
structured data. A simple concatenation of unimodal representations (graph
structure and node attributes) is often not sufficient, as it does not consider
the mutual relationships between modalities. Therefore, the main challenge for
such methods is discovering the interrelationship between multiple modalities to
create a coherent representation that will integrate the multimodal information.

Problem statement Consider a situation in which data changing over time
is analyzed on an ongoing basis. In the first case, the structure of the network
remains unchanged, but the attributes of the nodes are constantly changing – an
example may be a network of connected weather sensors. Conversely, the values
of the node attributes can be constant, but the structure of the graph changes,
e.g., in a telephone network, where the edge denotes the currently ongoing call.
In both situations, graph embedding models that consider both the network
structure and node attributes can be used, however, if one of these modalities
does not change over time, this may not be the best solution. Especially, in the
first of the above-mentioned situations, it may be more advantageous to generate
the structural graph embeddings once, and then use a method that would modify
them depending on the current values of the attributes, somehow incorporating
information from the attribute space into the structural embedding space. The
simplest solution would be to simply concatenate both vectors, but the resulting
representation would be neither consistent nor low-dimensional.

Goal The aim of this work is to develop an algorithm that will enhance (retrofit)
existing structural node embeddings by incorporating information from the at-
tribute space. That is, based on the node attributes, it will appropriately modify
the embedding vectors derived from the structural graph representation learning
methods. The new embedding vectors returned by such method should provide
better performance in downstream tasks than by using naive approaches (like
concatenation of structural embeddings with node attribute vectors).

Contributions We summarize our contributions as follows: (1) we introduce
a new problem in the area of graph representation learning, in which a struc-
tural network embedding is updated (retrofitted) according to node attributes,
(2) we propose a novel method (GERF) for unsupervised representation learn-
ing on graphs which combines information from the space of structural embed-
dings and node attributes while maintaining low dimensionality of the represen-
tation vectors, (3) we perform experiments demonstrating competitive quality
of the proposed GERF method compared to other approaches, (4) we make
our code and experimental pipeline publicly available to ensure reproducibility:
https://github.com/pbielak/gerf/.

2 Related Work

The problem of graph representation learning (GRL) has received a lot of atten-
tion in recent years in the machine learning community. The main goal is to learn
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low-dimensional continuous vector representations (embeddings), which can be
later used for specific downstream prediction tasks such as node classification
or link prediction. We can distinguish two groups of embeddings in GRL meth-
ods: (i) structural embeddings that take into account information extracted from
the network structure only, such as the neighborhood of nodes proximities, and
(ii) attributed embeddings which, apart from the relationships in the network
structure, also reflect the similarity in the node feature space.

2.1 Structural representation learning methods

Early GRL methods built low-dimensional node embeddings that reflect the
structure of the network. Among them, the most frequently referenced and used
are: DeepWalk [12], Node2vec [6], LINE [15] and SDNE [16]. DeepWalk [12]
samples node sequences using random walks and passes them into the Skip-gram
model [11] (a word embedding method). Node2vec [6] extends DeepWalk by
developing a biased random walk procedure to explore diverse neighborhoods
by interpolating between a breadth-first (BFS) and depth-first (DFS) graph
search algorithms. LINE [15] is a scalable method that learns node representa-
tions by preserving the first-order (similar embeddings of neighbor nodes) and
second-order graph proximities (similar embeddings of nodes sharing the same
neighborhood). SDNE [16] also focuses on preserving the first-order and second-
order proximities. However, it uses an autoencoder approach to map the highly
non-linear underlying network structure to latent space.

2.2 Attributed graph embedding methods

The structure of the network is given by connections between objects. However,
there are many other possible sources of information. Additional node attributes
can be given in the form of a vector representation of their content, which in
the case of classic methods such as bag-of-words model or tf-idf is an additional
challenge because these vectors are usually sparse. Methods designed to learn
representations in attributed networks include TADW [17], FSCNMF [3], DANE
[5] and ANRL [18].TADW [17] (Text-AssociatedDeepWalk) shows that Deep-
Walk is equivalent to matrix factorization and proposes its text-associated ver-
sion. FSCNMF [3] is based on non-negative matrix factorization and produces
node embeddings that are consistent with the graph structure and nodes’ at-
tributes. The structure-based embedding matrix serves as a regularizer when
optimizing the attribute-based embedding matrix and vice-versa.

3 Notations and problem definition

Graph A graph G is a pair G = (V,E), where V = {v1, . . . , v|V |} is a set of
nodes and E ⊆ V ×V is the set of edges that connect node pairs, i.e., each edge
eij is a pair (vi, vj). The graph connectivity can be represented as an adjacency
matrix A ∈ {0, 1}|V |×|V | with element Aij indicating the existence of an edge
(vi, vj).
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Attributed graph Apart from the structure of connections between objects, this
kind of graph has additional information about each of the nodes, i.e., each node
has an assigned feature vector (also called the attribute vector). An attributed
graph is a 3-tuple G = (V,E,X), where V and E follow the previous definition.
X ∈ R|V |×dX is a matrix that encodes all node attributes information, and xi

describes the attributes associated with node vi.

Attribute proximity We can analyze the similarity between nodes not only
based on the network structure but also in the attribute space. Given a network
G = {V, E, X}, the attribute proximity of two nodes vi and vj is determined by
the similarity of xi and xj . Note that these are two separate spaces to analyze.
The similarity of two nodes in the graph structure does not imply their similarity
in the attribute space and vice versa. Thus, the representation learning methods
for attributed graphs should take into account dependencies in both spaces and
coherently combine them.

Node representation learning Given a networkG = (V, E) (orG = (V, E, X)
in the case of an attributed network), the goal is to represent every graph node
vi ∈ V as a low-dimensional vector zi (called node embedding) by learning a
mapping function f : vi → zi ∈ RdZ , where dZ << |V |, such that important
network properties are preserved in the embedding space (e.g. structural and
semantic graph information). Overall, the node embeddings are stored as a node
embedding matrix Z ∈ RV×dZ . If two nodes are similar in the graph structure
(they are connected or share neighbors), or have similar attribute values, their
learned embeddings should also be similar.

Attribute-based neighborhood We can easily define the neighborhood of a
node in the network as the set of other nodes that are connected to it by an edge.
However, there are no clear relationships between objects within the attribute
space itself. To combine information from the attribute space (which objects are
closer to each other in this space and which are further) with structural rela-
tionships, it is necessary to first define the so-called attribute-based neighborhood.
Based on the attribute matrix X, for each node in the network G, its k nearest
neighbors in this space were found based on the Euclidean distance metric, with
k being equal to the number of neighbors of this node in the network G. The
neighborhood of the node vi in the attribute space, defined in this way, will be
denoted by NX(vi). Therefore, ∀i |N (vi)| = |NX(vi)|.

4 Graph Embedding RetroFitting (GERF)

In this section, we describe our proposed Graph Embedding RetroFitting model
that allows to update existing structural node embeddings Z with the node
attribute information X, resulting in the retrofitted node embeddings Z∗. Figure
1 shows the overall processing pipeline of our method.
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Fig. 1. Our proposed graph embedding retrofitting (GERF) method uses information
about the structure of the graph (graph neighbors) and the node attribute space (at-
tribute neighbors) to retrofit a structural embedding Z into one that incorporates node
attribute information Z∗.

4.1 Objective function

Our model is based on the optimization of the Z∗ ∈ RV×d matrix. The objective
function of our proposed GERF model takes the following form:

L(Z∗) = (1− λG − λX)

n∑
i=1

∥z∗i − zi∥2

+ λG

n∑
i=1

∑
j: vj∈N (vi)

∥z∗i − z∗j∥2

|N (vi)|
+ λX

n∑
i=1

∑
j: vj∈NX(vi)

∥z∗i − z∗j∥2

|NX(vi)|
,

(1)

where Z = (z1, . . . , zn) are the pre-trained structural embeddings for each node,
Z∗ = (z∗1, . . . , z

∗
n) are the new embeddings combining multimodal information

(from both spaces), and λG > 0 and λX > 0 are non-negative method hyperpa-
rameters that control the importance of the structural and attribute similarity,
respectively.

With the purpose of the work in mind, one can easily explain the intuition
behind each component in the objective function and why it should be included
there. Since the method is intended to enhance the space of structural embed-
dings by incorporating information from the attribute space, it is necessary to
include an a component in the objective function that will ”keep the embeddings
in place”. That is, make sure that the new embeddings do not deviate signifi-
cantly from their original values because this would lead to a complete loss of
information from this space. Hence, what is needed is a component which is later
referred to as invariance loss:

LI(Z
∗) =

n∑
i=1

∥z∗i − zi∥2. (2)

Further, in order to combine information from the network structure and
node attributes, for each node its neighborhood in both of these spaces is con-
sidered, as defined earlier. In order for the representation of each node to be
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similar to the representation of objects close to it in both spaces, it is necessary
to define the loss related to the distance between the embeddings in the network,
called graph neighbor loss:

LG(Z
∗) =

n∑
i=1

∑
j: vj∈N (vi)

1

|N (vi)|
∥z∗i − z∗j∥2, (3)

as well as an analogous component that controls the distances between node
embeddings based on their attributes, called attribute neighbor loss:

LX(Z∗) =

n∑
i=1

∑
j: vj∈NX(vi)

1

|N (vi)|
∥z∗i − z∗j∥2. (4)

By combining equations 2-4, it is possible to write the formula in Equation 1
in a different, simpler form:

L(Z∗) = (1− λG − λX)LI(Z
∗) + λG LG(Z

∗) + λX LX(Z∗). (5)

4.2 Optimization

The Adam optimizer [8] was used to minimize the objective function from Equa-
tion 1. One can easily derive the formula for the first derivative of the function
L with respect to one vector z∗i as follows:

∂L
∂z∗i

= 2 (1− λG − λX) (z∗i − zi)

+ 2λG

∑
j: vj∈N (vi)

z∗i − z∗j
|N (vi)|

− 2λG

∑
j: vi∈N (vj)

z∗j − z∗i
|N (vj)|

+ 2λX

∑
j: vj∈NX(vi)

z∗i − z∗j
|NX(vi)|

− 2λX

∑
j: vi∈NX(vj)

z∗j − z∗i
|NX(vj)|

.

The matrix Z∗ is initialized with the values of Z. Currently, the values of λG

and λX hyperparameters are determined based on grid search and simultaneous
analysis of the model results in downstream tasks. However, more advanced
techniques could be proposed for this purpose, e.g. based on the properties of
the network structure and attribute space, which is planned for future work.

4.3 Summary

The proposed method allows the creation of a coherent representation for nodes
in the network based on their attribute values and pre-trained structural embed-
dings. It assumes that there are dependencies between objects in the attribute
space. Objects are considered adjacent if the distance between their attribute
vectors is sufficiently small compared to others. The main advantages of this
method are intuitive assumptions and simplicity of operation, as it allows for
easy integration of multimodal information from the network structure and node
attributes in the form of a low-dimensional representation vector.
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5 Experimental setup

We perform an analysis of selected graph representation learning methods in
the node classification downstream task. We compare attributed graph embed-
ding models (TADW, FSCNMF, DGI), structural embeddings (node2vec, LINE,
SDNE), and the ones modified by the proposed GERF method and a few other
baselines with each other. Additionally, a simple approach is tested that com-
pletely ignores the network structure and uses only node attributes for the pre-
diction. Four real-world benchmark datasets are employed.

5.1 Datasets

We employ four real-wold benchmark datasets from the PyTorch-Geometric [2]
library. The statistics are provided in Table 1.

– WikiCS [10] is a network of Computer Science-related Wikipedia articles
with edges denoting references between those articles. Each article belongs
to one of 10 subfields (classes) and has features computed as averaged GloVe
embeddings of the article content. We use the first provided train/val/test
data splits without any modifications (we recompute the embeddings 10
times).

– Amazon Computers (Amazon-CS), Amazon Photos [9] are two net-
works extracted from Amazon’s co-purchase data. Nodes are products and
edges denote that these products were often bought together. Based on the
reviews, each product is described using a Bag-of-Words representation (node
features). There are 10 and 8 product categories (node classes), respectively.
There are no data splits available for those datasets, so we generate a random
train/val/test split (10%/10%/80%) for each one.

– Coauthor-CS is a network extracted from the Microsoft Academic Graph
[13]. Nodes are authors, and edges denote a collaboration of two authors.
Each author is described by the keywords used in their articles (Bag-of-
Words representation; node features). There are 15 author research fields
(node classes). Similar to the Amazon datasets, there is no data split pro-
vided, so we generate a random train/val/test split (10%/10%/80%).

Table 1. Datasets statistics.

Name Nodes Edges Features Classes

WikiCS 11,701 216,123 300 10
Amazon Computers 13,752 245,861 767 10
Amazon Photos 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15
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5.2 Embedding methods

To be able to make a qualitative comparison of embedding methods and their
ability to compress highly non-linear dependencies in a low-dimensional space,
it was concluded that the same size of embedding would be assumed for each
of the methods. Thus, each of the algorithms produces 128-dimensional repre-
sentation vectors. The exact settings for the structural embedding methods are
listed below:

– node2vec – the same default parameters were adopted for each of the
datasets because the quality of the representation vectors obtained in this
way was satisfactory (note that the priority of the work is not to achieve
the highest possible results of the compared algorithms, but to show that
the method proposed in Section 4 is able to improve them, therefore little
importance was given to the search for the best set of hyperparameters).
We use the following settings: batch size – 128, learning rate – 0.01, walk
length – 20, number of walks per node – 10, context size – 10, and number of
negative samples – 1. Besides, the algorithm parameters p and q have been
set to 1, which means that it is effectively DeepWalk.

– LINE – the number of epochs was set to 10 for all datasets, and the mini-
batch size was set to 128 (WikiCS, Coauthor-CS), 4096 (Amazon-CS), 256
(Amazon-Photos). Such settings were required as otherwise, the training
resulted in collapsed embeddings or NaN values in the embedding vectors.
The number of samples in the negative sampling procedure was set to 1 for
all datasets.

– SDNE – these embeddings showed the worst quality in the downstream
task, therefore a hyperparameter grid search was performed, searching for
the optimal values of the α, β, ν parameters, as well as the number of
epochs and the size of the autoencoder hidden layer. Based on preliminary
experiments, the number of epochs was set to 50 and the hidden layer size
to 256 for all datasets. The values of method parameters α was chosen to be
10−4, β was left at default 5 and ν1, ν2 were set to 10−5, 10−4, respectively.

As the proposed GERF method combines information from the network
structure and the attribute space, it can be compared with attributed repre-
sentation learning methods for graphs. We choose the following:

– TADW – the learning rate was set to 0.01 and the number of epochs to
20, the other parameters were taken as defaults from the Karate Club im-
plementation [1].

– FSCNMF – the number of epochs was set to 500, other settings are also
default from the Karate Club implementation.

– DGI – we use a single layer Graph Convolutional (GCN) encoder network
with PReLU activation and train it using the Adam optimizer with a learning
rate of 0.001.

In addition to the above-mentioned representation learning methods, an ap-
proach in which the graph structure is completely ignored and only node at-
tributes are used for prediction is additionally tested. Such a representation of
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nodes is high-dimensional and extremely sparse, and in experiments, it will be
referred to as features.

5.3 Baselines

To check the quality of the proposed method, which allows for modifying the
existing structural embeddings based on node attributes, it is compared with
several baseline methods:

– Concat – concatenation of the structural embedding and the attribute vec-
tor for each node (note the large dimension size of such a representation),

– ConcatPCA – in this method, the dimensionality of the concatenated struc-
tural embedding and the feature vector is reduced to the size of the embed-
ding only, using Principal Component Analysis,

– MLP – a simple autoencoder architecture, with an encoder consisting of
three linear layers: the first one with the size of dX + dZ neurons with the
ReLU activation function, another with the size of (dX + dZ)//2 also with
the ReLU activation function, and the last one with the size of dZ with the
Tanh activation. The decoder is a single linear layer that takes a vector from
a hidden space with dimension dZ and returns a vector of size dX + dZ ,
which should be the best reconstruction of the input vector to the encoder.
The autoencoder was trained for 20 epochs with the mini-batch size of 128,
and Adam with learning rate of 0.001 was used as the optimizer.

5.4 GERF hyperparameters

The hyperparameter values (λG, λX) of the proposed GERF method were deter-
mined by performing a grid search (see Table 2). For each of the hyperparame-
ters, we checked the following values: 0, 0.1, . . . , 1.0, while preserving the overall
hyperparameter constraints (λG + λX ≤ 1). Moreover, the learning rate was set
to 10−1, while the number of epochs was set to 100.

Table 2. Best found GERF hyperparameter values (λG, λX) for all datasets.

Dataset node2vec LINE SDNE
(λG, λX) (λG, λX) (λG, λX)

WikiCS (0.1, 0.4) (0.4, 0.4) (0.3, 0.4)
Amazon-CS (0.2, 0.3) (0.3, 0.2) (0.8, 0.0)
Amazon-Photo (0.2, 0.4) (0.3, 0.3) (0.5, 0.2)
Coauthor-CS (0.2, 0.5) (0.6, 0.3) (0.9, 0.0)

While performing the grid search, we collected the node classification per-
formance for each hyperparameter setting (not only the best one). We present
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the influence of each hyperparameter on the overall node classification perfor-
mance in Figure 2 (for the WikiCS dataset). We notice that the results for both
hyperparameters form a convex function with a single value that maximizes the
downstream task performance. We also note that the proposed GERF method
is robust in terms of hyperparameters. However, it is worth optimizing them as
we observed up to 5 pp dispersion in the hyperparameter combinations impact
on AUC (depending on the structural embeddings – LINE, node2vec, SDNE).

Fig. 2. Evaluation of different hyperparameter (λG, λX) values of the proposed GERF
method in the node classification task on the WikiCS dataset. We present the mean and
standard deviation of AUC (validation split) for each of the hyperparameter values.
Note that while keeping one parameter fixed, we compute the AUC statistics over all
possible values of the other hyperparameter.

6 Node classification

Setup The embeddings returned by the attributed representation learning meth-
ods, structural embeddings (themselves and enhanced by the proposed GERF
method and baselines), as well as node attribute vectors, were compared in the
node classification task. We compute the embeddings of both datasets 10 times
to mitigate the random nature of the methods and their optimization procedure
for both the structural and attributed graph representation learning methods.
Each of those 10 embeddings is processed by the baselines and the proposed
GERF model. We use a L2 regularized logistic regression (from the scikit-learn
package) trained on the embedding vectors (input) and the class information
(output). The maximum number of iterations was set to 250, other parameters
were left with their default values.

The classification results in terms of the AUC metric are shown in Table 3
For each of the three structural node embedding methods – node2vec, LINE and
SDNE – as well as the embeddings updated by the baselines and our proposed
GERF method – the best result is marked in bold. We report both the mean
and standard deviation over 10 embedding recalculations.
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Table 3. Node classification results in terms of the mean and standard deviation of
the AUC metric over 10 recomputations of embeddings. For each structural embedding
method (node2vec, LINE and SDNE) and their updated versions (by baselines and our
proposed GERF method) we mark the best result in bold.

Method WikiCS Amazon-CS Amazon-Photo Coauthor-CS

features 94.79 ± 0.00 90.10 ± 0.00 94.58 ± 0.00 98.16 ± 0.00

node2vec 93.97 ± 0.15 98.22 ± 0.04 98.64 ± 0.04 98.33 ± 0.04
Concat (node2vec) 96.25 ± 0.10 98.23 ± 0.04 98.65 ± 0.04 98.38 ± 0.04
ConcatPCA (node2vec) 96.01 ± 0.11 98.22 ± 0.04 98.64 ± 0.04 98.34 ± 0.04
MLP (node2vec) 96.03 ± 0.08 98.29 ± 0.04 98.66 ± 0.04 98.41 ± 0.04
GERF (node2vec) 96.28± 0.09 98.65± 0.04 99.18± 0.03 99.23± 0.02

LINE 91.74 ± 0.20 97.63 ± 0.06 98.44 ± 0.08 93.13 ± 0.28
Concat (LINE) 95.02 ± 0.15 97.65 ± 0.06 98.45 ± 0.08 93.69 ± 0.26
ConcatPCA (LINE) 94.68 ± 0.14 97.64 ± 0.06 98.44 ± 0.08 93.16 ± 0.28
MLP (LINE) 94.90 ± 0.12 97.55 ± 0.07 98.45 ± 0.06 93.39 ± 0.24
GERF (LINE) 96.18± 0.05 98.28± 0.05 99.06± 0.03 98.39± 0.05

SDNE 74.94 ± 0.71 88.24 ± 0.41 90.89 ± 0.34 67.05 ± 1.05
Concat (SDNE) 94.14± 0.27 88.81 ± 0.41 91.34 ± 0.33 93.86± 0.68
ConcatPCA (SDNE) 93.63 ± 0.31 88.46 ± 0.43 91.16 ± 0.33 92.44 ± 0.73
MLP (SDNE) 93.75 ± 0.27 87.84 ± 0.42 90.55 ± 0.30 68.13 ± 0.86
GERF (SDNE) 92.97 ± 0.74 97.49± 0.07 98.43± 0.08 87.37 ± 2.86

TADW 90.65 ± 0.00 58.71 ± 0.00 55.91 ± 0.00 81.33 ± 0.00
FSCNMF 84.24 ± 0.00 49.93 ± 0.00 49.56 ± 0.00 50.14 ± 0.00
DGI 93.54 ± 0.17 78.20 ± 0.55 90.02 ± 0.54 98.48 ± 0.06

Discussion The first thing to note is the high score of the model that only
uses node attributes to predict the class label and completely ignores informa-
tion from the network structure despite the extremely large dimensionality of
such a representation. In all cases, using only node attributes (features) for their
classification gave better or similar results than the attributed representation
learning methods. However, it should be noted that due to the long time of op-
eration of these algorithms, the hyperparameter grid search was not performed,
and their default values were adopted, which could have an impact on the results
obtained.

Structural embedding vectors for WikiCS performed even worse than the
attributed ones, particularly those learned using SDNE. However, the quality
of the predictions increased significantly (in the case of SDNE, one could even
say drastically) as they were processed by the baselines or the proposed GERF
method, which can be seen in the increase of the AUC measure even by almost
18 percentage points (comparing SDNE and GERF (SDNE) embeddings for
WikiCS)!

In general, in each case, the proposed GERF method allowed the incorpo-
ration of information from the attribute space into the structural embedding
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space, improving the quality of prediction in this downstream task. Surprisingly
good results were achieved with the use of this method on the node2vec and
LINE embeddings, where it turned out to be not only better than the dedicated
attributed methods, but also than all the proposed baselines, and in a significant
way.

In the case of the SDNE embeddings group and the WikiCS and Coauthor-CS
datasets, the baselines (Concat, ConcatPCA andMLP) methods turned out to be
better than the proposed GERF method, but it is worth noting that both have
some disadvantages. The concatenation of the attribute vector and structural
embedding, which has proven to be best is highly dimensional and inconsistent
with the structural embedding part. On the other hand, the MLP refiner, based
on a simple autoencoder architecture, can exhibit problems when reconstruct-
ing sparse attribute vectors. All things considered, the results obtained by the
proposed GERF method are satisfactory. While maintaining a low-dimensional
representation, which allows saving memory, it achieves results similar or better
to other methods, which depends on the quality of the underlying structural
embeddings.

7 Conclusions

In this paper, we introduced a new graph representation learning problem set-
ting, where given already precomputed structural node embeddings, we want to
update them accordingly to node attributes, in such a way that the resulting em-
bedding will preserve the information from both the structure and attributes. We
proposed a novel graph embedding retrofitting model (GERF), which solves this
problem by optimizing a compound loss function, which includes an invariance
loss (keeping the new embedding close to the structural one), a graph neigh-
borhood loss (which pushes embedding of neighboring nodes closer together)
and a attribute neighborhood loss (which decreases the distance of embeddings
of nodes with similar attributes). We evaluate this method on four real-world
benchmark datasets (WikiCS, Amazon-CS, Amazon-Photo and Coauthor-CS),
comparing it to attributed graph representation learning methods and other
baselines and find that our method allows to enhance structural embeddings
and results in better downstream node classification performance. In all cases,
our method achieves the best results compared to other attribute aware em-
bedding methods as well as for all datasets. In future, we want to find a way to
automatically determine the hyperparameters (λG and λX) of our method based
on the available graph data.
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