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Abstract. The paper introduces a novel coevolutionary approach (Co-
EvoSG) for solving Sequential Stackelberg Security Games. CoEvoSG
maintains two competing populations of players’ strategies. In the pro-
cess inspired by biological evolution both populations are developed si-
multaneously in order to approximate Stackelberg Equilibrium. The com-
prehensive experimental study based on over 500 test instances of two
game types proved CoEvoSG’s ability to repetitively find optimal or close
to optimal solutions. The main strength of the proposed method is its
time scalability which is highly competitive to the state-of-the-art algo-
rithms and allows to calculate bigger and more complicated games than
ever before. Due to the generic and knowledge-free design of CoEvoSG,
the method can be applied to diverse real-life security scenarios.
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1 Introduction

New technologies bring new challenges. One of them is cybersecurity. In recent
years, this topic has gained more and more importance [14] since more and more
critical systems are connected to the Internet and increasingly many aspects
of people’s lives depend on reliable computer infrastructure. We are facing a
constant arms race between defenders and attackers. One of the approaches
to the issue of cybersecurity attacks is to model them as a non-cooperative
game. This approach was applied, for instance, in intrusion detection problem
in mobile ad-hoc networks [7], security-aware distributed job scheduling in cloud
computing [5], detecting vulnerabilities in interbank network [6], planning deep
packet inspections [29], and other. In particular, the Stackelberg Security Games
(SSGs) recently gained lots of popularity due to a bunch of successful practical
applications [19].

SSGs were successfully deployed not only in cybersecurity domain [20, 26]
but also in a wide range of real-world scenarios, e.g. scheduling Los Angeles
International Airport canine patrols [8], protecting US Coast Guard’s resources
in Boston harbor [18], or preventing poaching in the Queen Elizabeth National
Park in Uganda [4].
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In SSG there are two asymmetrical players: the Defender and the Attacker.
The Defender commits to their strategy first. Then, the Attacker, knowing
the Defender’s commitment, decides on their own strategy. The above order
of strategy-related decisions favors the Attacker and mimics real-world scenarios
in which the Attacker can observe the opponent’s strategy (e.g. patrol schedules)
and plan their attack accordingly.

The strategy chosen by the Defender is a mixed one, i.e. a probability dis-
tribution over all possible pure (i.e. simple deterministic) strategies [3]. The
Attacker is aware of this distribution but has no knowledge about its specific
materialization (the sequence of actions that will actually be played). The goal
of SSG is to find Stackelberg Equilibrium (SE), i.e. the pair of players’ strategies
that fulfills the following assumption: changing strategy by any player will lead
to his/her result deterioration.

In this paper, we consider sequential SSGs which means that each player’s
strategy consists of a sequence of actions to be executed (played) in consecutive
time steps. In such SSGs, finding SE is an NP-hard problem [3]. For this reason,
exact methods have limited applicability and are rarely implemented in real-
world scenarios. Instead, a number of heuristics approaches were proposed in the
literature, including the use of Evolutionary Algorithms (EAs) [12, 28, 29]. EAs
are inspired by the process of biological evolution and consists in maintaining
a population of potential solutions, which is iteratively modified by applying
evolutionary operators: mutation, crossover and selection.

In this paper, we extend the previous EA approaches and propose the coevo-
lutionary algorithm for solving SSGs (CoEvoSG). The method not only main-
tains a population of Defender’s strategies (as EA-based approaches) but also a
population of Attacker’s strategies. Both populations compete with each other
in the process of coevolution. In effect, the convergence to the near-optimal so-
lution is much faster than in the state-of-the-art methods, which allows to solve
larger and more complex games than ever before.
Contribution. The contribution of this paper is three-fold: (i) a novel coevolu-
tionary algorithm (CoEvoSG) for Sequential Stackelberg Security Games, capa-
ble of finding optimal or near-optimal solutions is proposed, (ii) a comprehensive
experimental study proves the efficacy of CoEvoSG and its ability to solve games
of sizes and complexity that are beyond the capability of state-of-the-art meth-
ods, (iii) to our knowledge, application of coevolutionary algorithms to solving
sequential SSGs, has never been considered before in the related literature.

2 Problem definition

A sequential SSG is played by two players: the Defender (D) and the Attacker
(A), and is composed of m time steps (moves). In each time step both players
simultaneously choose their action to be performed. A pure strategy σP of player
P (P ∈ {D,A}) is a list of his/her actions in consecutive time steps: σP =
(a1, a2, . . . , am). If by ΣP we denote a set of all possible pure strategies of P ,
then a probability distribution πP ∈ Πp over ΣP is the mixed strategy of P , where
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Πp is set of all his/her mixed strategies. For any pair of strategies (πD, πA) the
expected payoffs for the players are defined and denoted by UD(πD, πA) and
UA(πD, πA). Stackelberg Equilibrium is a pair of strategies (πD, πA) satisfying
the following conditions:

πD = argmax
π̄D∈ΠD

UA(π̄D, BR(π̄D)), BR(πD) = argmax
πA∈ΠA

UA(πD, πA).

The first equation chooses the best Defender’s strategy πD under the assumption
that the Attacker always selects the best response strategy (BR(πD)) to the
Defender’s committed strategy.

Furthermore, if there exists more than one optimal Attacker’s response (with
the same highest Attacker’s payoff), the Attacker selects the one with the high-
est corresponding Defender’s payoff, i.e. breaks ties in favor of the Defender.
While this assumption may seem counterintuitive, the opposite way of breaking
ties may lead to situations when equilibrium doesn’t exist [24]. The above SE
extension is known as Strong Stackelberg Equilibrium [1] and is adopted in this
paper (as well as in the vast majority of SSG publications).

Both players choose their strategy at the beginning of the game (first the
Defender and then the Attacker) and they cannot change it during the gameplay,
i.e. in consecutive steps they follow actions encoded in the selected strategy
irrespective of the opponent’s moves (they are not aware of opponent’s current
and past actions). Conitzer et al. [3] proved that for each Defender’s mixed
strategy there exists at least one Attacker’s pure strategy which maximizes their
payoff. This property is commonly utilized by solutions proposed in the literature
since it narrows the Attacker’s response search space to only pure strategies.

3 Related work

The methods of solving SSGs can be divided into two main groups: exact and
approximate. Exact approaches are based on Mixed-Integer Linear Programming
(MILP), which formulates SSG as an optimization problem with a specific target
function and a set of linear integer constraints that must be fulfilled. MILP
programs are usually computed by specially optimized software engines - solvers.
C2016. One of the most popular exact method is C2016 [23], which also bases on
MILP but instead of directly computing SE, utilizes the Stackelberg Extensive-
Form Correlated Equilibrium (SEFCE). In SEFCE, the Defender can send sig-
nals to the Attacker who has to follow them in their choice of strategy. C2016
uses a linear program for computing SEFCE and then modifies it by iteratively
restricting the signals the Defender can send to the Attacker and converging to
SE. In this article C2016 was used to calculate the reference optimal solutions.
O2UCT. Thee above-mentioned MILP approaches returns exact (optimal) so-
lutions but suffer from exponential computation time and poor memory scala-
bility, which makes them inefficient for large games. Thus, some approximate
approaches have been recently proposed, e.g. O2UCT [10, 11] which utilizes an
Upper Confidence Bounds applied to Trees (UCT) algorithm [13] (a variant of
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Monte Carlo Tree search [21]). O2UCT is based on guided sampling of the At-
tacker’s strategy space and optimizes the Defender’s strategy under the assump-
tion that the sampled Attacker’s strategy is the optimal response. O2UCT scales
visibly better than exact MILP-based solutions and returns close-to-optimal so-
lutions for various types of games.
EASG. Another heuristic method, which is the most related to the approach
presented in the paper, is Evolutionary Algorithm for Stackelberg Games
(EASG) [27, 28], which optimizes the Defender’s payoff by evolving a popula-
tion of candidate strategies. EASG starts off with a population that contains
randomly selected pure Defender’s strategies. Then, until the stop condition is
not fulfilled, the population evolves in consecutive generations. In each genera-
tion, the following four operations are applied: crossover, mutation, evaluation,
and selection.

Crossover combines two individuals randomly selected from a population by
merging their pure strategies and halving their probabilities. Afterwards, the re-
sultant chromosome is shortened (simplified) by deleting some of its pure strate-
gies with a chance inversely proportional to their probabilities. The mutation
operator changes one of the pure strategies encoded in the chromosome starting
from a randomly selected time step. New actions are drawn from all feasible ac-
tions in a corresponding game state. The role of mutation is to boost exploration
of the strategy space.

Next, each individual is assigned a fitness value which is the expected De-
fender’s payoff. This step requires finding the optimal Attacker’s response to
the mixed Defender’s strategy encoded in the chromosome. To this end, EASG
iterates over all possible Attacker’s pure strategies and selects the one with the
highest Attacker’s payoff. Due to the potentially large space of Attacker’s pure
strategies, the evaluation phase is the most time-consuming step of EASG.

Finally, in the selection phase, individuals with higher Defender’s payoff are
more likely to be selected to the next generation. The above evolutionary ap-
proach was successfully applied to various types of SSGs including games with
moving targets [12] or games assuming Attacker’s bounded rationality [29].

4 Coevolutionary approach

Motivation. As we mentioned in the previous section, EASG evaluation process
requires iterating over all possible Attacker’s pure strategies in order to find the
best one and calculate the expected Defender’s payoff. This evaluation procedure
is performed thousands of times (for each individual in each generation) which
is infeasible (too time-consuming), except for small games.

Furthermore, in many SSG instances there exists a relatively small subset
of Attacker’s strategies that need actually to be considered when looking for
the optimal response. Many of the Attacker’s strategies can either be trivially
qualified as weak (e.g. an attack at a well-protected target with low reward or
a sequence of actions which does not lead to a target), or there are subsets
of similar strategies and only one representative from each of them needs to
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be examined in order to find the best Attacker’s response. However, for more
complex games it is not possible to determine - within a reasonable time - which
of the Attacker’s strategies could be omitted, nor to define a representative
subset of these strategies, due to the high dependence of this selection on the
game topology (structure) and payoff distribution.

In order to address the issue of time-consuming evaluation process in EASG,
we propose a novel coevolutionary approach which maintains two populations:
one composed of the Defender’s mixed strategies (as in EASG) and the other
consisting of the Attacker’s pure strategies. Strategies from the Attacker’s pop-
ulation are used to evaluate the Defender’s strategies. Instead of calculating
the Defender’s payoff against all possible Attacker’s pure strategies, it is now
calculated only versus a subset of the Attacker’s strategies represented in the
population. Both populations compete with each other, i.e. the Attacker’s pop-
ulation attempts to find the best possible response to the strategies from the
Defender’s population and vice versa - the Defender’s population tries to evolve
the most effective strategies with respect to the response strategies encoded in
the Attacker’s population.
System overview. A general overview of the CoEvoSG algorithm is presented
in Figure 1. Both populations are initialized with random pure strategies and
then developed alternately. First, the Attacker’s population is modified by evo-
lutionary operators (crossover, mutation, and selection) through gp generations.
Then, the Defender’s population is evolved through the same number of gp gen-
erations. The above loop is repeated until the stop condition is not satisfied.

Mutacja

Crossover

Attacker's 
population evaluation

SelectionAtacker's 
population

Is internal 
generations limit 

reached?

Mutation

Crossover

Defender's 
population evaluation

Selection
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stop 
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Fig. 1: A high-level overview of the CoEvoSG algorithm.
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All evolutionary operators applied to the Defender’s population are imple-
mented in the same way as in EASG and briefly described in Section 3. Addi-
tional details can be found in [28]. The novel operators applied to the Attacker’s
population are described below.
Initialization. The Attacker’s population contains NA individuals. Each indi-
vidual k represents a randomly selected pure Attacker’s strategy, encoded as a
list of actions in consecutive time steps: σk

A = (ak1 , a
k
2 , . . . , a

k
m). In each time step

t ∈ {1, . . . ,m} akt is drawn uniformly from all feasible actions in a given state.
Crossover. Each individual from the Attacker’s population is selected for a
crossover with probability pc. Selected individuals are paired randomly and for
each pair, one-point crossover is performed, i.e. for strategies σr

A = (ar1, a
r
2, . . . , a

r
m)

and σs
A = (as1, a

s
2, . . . , a

s
m) the following two child individuals are created: σ′r

A =
(ar1, . . . a

r
i , a

s
i+1, . . . , a

s
m) and σ′s

A = (as1, . . . a
s
i , a

r
i+1, . . . , a

r
m), where ari = asi is the

first common action (in the same time step) in the parent strategies. If such an
action does not exist, the crossover has no effect. For example, if an action is to
choose a vertex in a game graph the player moves to, then ari = asi would be the
first common vertex on the paths defined by the parent strategies.
Mutation. Each individual is mutated with probability pm. Mutation oper-
ator, starting from a randomly selected step, modifies all subsequent actions
encoded in the chromosome. Each subsequent action is chosen randomly from
all available actions in the current state. The result of mutation of strategy
σr
A = (ar1, a

r
2, . . . a

r
m) is σ′r

A = (ar1, a
r
2, . . . , a

r
i−1, a

r′

i , ar
′

i+1, . . . , a
r′

m), where i is the
chosen time step. The role of mutation is to boost exploration of new areas in
the search space by means of an introduction of random perturbations.
Evaluation. The evaluation procedure is the most important component of
the proposed solution. Individuals from the Defender’s population are evaluated
against all strategies from the Attacker’s population. For each Defender’s strat-
egy (πD) the outcome (players’ payoffs) of the gameplays against all strategies
from the Attacker’s population are computed. Then, the best Attacker’s response
is chosen: σbest

A = argmaxσA
UA(πD, σA). Finally, the expected Defender’s payoff

against this Attacker’s response (UD(πD, σbest
A ) is assigned as the fitness value

of the evaluated Defender’s strategy πD. There is a chance that the above fit-
ness value is not the true expected Defender’s payoff because of the lack of the
(overall) optimal Attacker’s response in the Attacker’s population. However, the
expected algorithm’s behavior is to evolve such a strategy (optimal response) in
the coevolution process in subsequent generations.

The evaluation procedure of the individuals from the Attacker’s population
is more complicated. Usually, there is no single optimal Attacker’s response for
all Defender’s strategies. Depending on the particular Defender’s commitment
(Defender’s mixed strategy), the best Attacker’s response may change.

It is generally desired that the Attacker’s population is composed of optimal
responses for all possible Defender’s strategies. Assigning the average Attacker’s
payoff against all strategies from the Defender’s population (or part of it) as
fitness value may be a weak approach because a given Attacker’s strategy is usu-
ally strong (optimal) only against specific Defender’s strategies. Such Attacker’s
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strategy needs to be preserved but averaging the payoffs will decrease the fitness
of such a strategy posing a risk of omitting it in the selection process.

Hence, a better idea is to use the maximum metric. However, in Defender’s
population (in order to preserve its diversity) there exist also some weaker strate-
gies. For those strategies most of the Attacker’s strategies will lead to high
Attacker’s payoff and such an approach wouldn’t allow distinguishing good At-
tacker’s strategies from the bad ones (because all of them will get high fitness as
a maximum payoff against one of the weak Defender’s strategies). This observa-
tion discredits calculating maximum payoff against all Defender’s strategies. On
the other extreme, the Attacker’s fitness value could be computed only against
the best strategy from the Defender’s population, but this would lead to de-
generation (premature convergence) of the Attacker’s population. All Attacker’s
strategies would tend to be an optimal response for a particular Defender’s strat-
egy, becoming vulnerable to other strategies from the Defender’s population.

Consequently, an intermediate option was implemented, i.e. the Attacker’s
strategy fitness is the maximum of Attacker’s payoffs against the Ntop highest
fitted individuals from the Defender’s population (Ntop is CoEvoSG parameter).
Selection. The selection process decides which individuals from the current pop-
ulation will be promoted to the next generation. At the beginning, e individuals
with the highest fitness value are unconditionally transferred to the next genera-
tion. They are called elite and preserve the best-fitted solutions. Then, a binary
tournament is repeatedly executed until the next generation population is filled
with NA individuals. For each tournament, two individuals are sampled (with
replacement) from the current population (including those affected by crossover
and/or mutation). The higher fitted chromosome wins (and is promoted to the
next generation) with probability ps (so-called selection pressure parameter).
Otherwise, the lower-fitted one is promoted.
Stop condition. The algorithm ends when at least one of the following condi-
tions is satisfied: (a) CoEvoSG attained the maximum number of lg generations,
(b) no improvement of the best-found solution (Defender’s payoff) was observed
in consecutive lc generations. Only generations referring to the Defender’s pop-
ulation are considered when verifying the above conditions.

5 Experimental setup

5.1 Benchmark games

CoEvoSG was tested on two popular SSG benchmarks: FlipIt and Warehouse
Games, previously used for testing state-of-the-art methods, e.g. in [11, 17, 23].
FlipIt Games. FlipIt Games (FIGs) [22] reflect certain cybersecurity scenarios.
The Attacker attempts to gain control over some elements of network infrastruc-
ture (e.g. computers, routers, mobile devices) and the Defender can take actions
to regain control of the infected units.

FIGs are played on directed graphs with n vertices, for a fixed number of m
time steps. In each time step, players simultaneously select one vertex which they
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want to take control of (to flip the node). At the beginning, only some subset
of vertices (entry nodes) is available for the Attacker. This mimics the scenario
in which some part of the network infrastructure is publicly accessible from the
outside (e.g. Internet). The Attacker starts penetrating the network from one of
those entry nodes. Taking control over the vertex (flip action) is successful only
if the two following conditions are fulfilled: (1) the player controls at least one
of predecessor vertices (unless it is an entry node), (2) the current owner of this
vertex does not take the flip action on it in the same time step.

At the beginning of the game, all vertices are controlled by the Defender.
Each node has assigned two values: a reward (> 0) for controlling it, and a cost
(< 0) of taking a flip attempt. The final player’s payoff is calculated by summing
the rewards in all nodes controlled by that player after each time step and the
costs of all flip attempts (either successful or not). Figure 2 presents a sample
FIG scenario.

Fig. 2: Example FIG scenario with two entry nodes (routers) on the left. Numbers
below each component denote a reward for controlling the node (left) and the
cost of a flip attempt (right).

In the experiments, 280 FIG instances were generated randomly with the fol-
lowing parameters: m ∈ {3, 4, 5, 6, 8, 10, 15, 20}, n ∈ {5, 10, 15, 20, 25, 30, 40}. For
each pair (m,n) 5 games were created with random payoffs (rewards drawn from
(0, 1), costs from (−1, 0)) and random graph structures (generated according to
Watts–Strogatz model [25] with an average vertex degree davg = 3).

The experiments were performed in No-Info variant [2] which means that the
players were not aware of whether their flip action succeeded or failed.
Warehouse Games. Warehouse Games (WHGs) [9] are inspired by real estate
(warehouses or residential buildings) protection scenarios. The games are played
on undirected graphs with n vertices, for m time steps. A subset of special
vertices are called targets (T ). Graph edges represent corridors and vertices
symbolize rooms. At the beginning, the Defender and the Attacker are placed
in the predetermined starting vertices. In each time step, each player’s action
consists in moving to one of the neighbor vertices (connected with an edge) or
staying in the current vertex.
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The game ends in one of the following circumstances: (a) both players are
located in the same vertex v in the same time step - then, the Attacker is
“caught” and the players are given payoffs associated with that vertex: Uv

D+ > 0
(Defender) and Uv

A− < 0 (Attacker); (b) the Attacker reaches one of the targets
t ∈ T and is not caught (there is no Defender in this target) - in this case,
the attack is successful and the players receive payoffs U t

D− < 0 (Defender) and
U t
A+ > 0 (Attacker); (c) none of above conditions is satisfied - both players

receive a payoff of 0. Figure 3 presents a sample WHG scenario.

Fig. 3: An example WHG scenario: warehouse layout (left) and the corresponding
graph (right) with payoffs of the players in the respective game outcomes. Green
rectangular vertices are targets, a red triangle vertex and a blue circle vertex are
the Attacker’s and the Defender’s starting points, respectively

For CoEvoSG evaluation 240 WHG instances were generated with m ∈
{3, 4, 5, 6, 8, 10, 15, 20} and n ∈ {15, 20, 25, 30, 40, 50} (5 games per each (m,n)
pair). Players’ payoffs were drawn from [−1; 1]. The number of targets depended
on a graph size: |T | =

⌈
n
5

⌉
. Graphs were generated according to Watts–Strogatz

random graphs model [25] with an average vertex degree davg = 3.

5.2 Parameterization

All common EASG and CoEvoSG parameters were set according to the rec-
ommendations proposed for EASG [28]. Namely, the Defender’s population size
ND = 200, crossover probability pc = 0.8, mutation probability pm = 0.5, selec-
tion pressure ps = 0.9, elite size e = 2, maximal number of generations lg = 1000,
maximal number of generations with no improvement lc = 20. The parameters
of evolutionary operators (mutation, crossover, selection) for the Attacker’s pop-
ulation were assigned the same values as for the Defender’s population, however,
CoEvoSG requires several new parameters which need to be tuned. In order to
find their recommended values, a set of parameter tuning experiments with 50
random games, different from the test WHG instances, were performed. FIGs
have similar game structure and do not require separate parametrization.

The first tested parameter was the Attacker’s population size (NA). The fol-
lowing values were considered: {10, 20, 100, 200, 500, 1000, 2000, 5000}. The re-
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sults (average Defender’s payoff and computation time) are presented in Fig-
ure 4a. Clearly, the bigger the Attacker’s population size the better the results as
the Defender’s payoff is calculated more accurately. If the Attacker’s population
contained all possible Attacker’s pure strategies, then the Defender’s individuals
evaluation would be an exact value (not an approximation) since the optimal
Attacker’s response would always be present in the Attacker’s population. How-
ever, as stated previously one of the motivations for introducing coevolution is
to speed up the Defender’s strategies evaluation by checking them only against
a representative subset of all Attacker’s strategies. Thus, based on the presented
results, NA = ND = 200 was set.

Another tested parameter was the number of consecutive generations for each
player - gp. Please recall that in CoEvoSG Defender’s and Attacker’s populations
are evolved alternately in the batches of gp generations. The results of tuning this
parameter are presented in Figure 4b. Small values (gp ≤ 5 - frequent switching
between populations), as well as big ones (gp ≥ 50) result in performance dete-
rioration. Infrequent switching makes one population dominant - the other one
stagnates over a long time with no chances to response to the evolved individuals
from the other population. At the same time, for all tested values computation
time is similar. Hence, gp = 20 was adopted as a recommended value.

The last tuned parameter was Ntop, i.e. the number of the best individuals
from the Defender’s population involved in the Attacker’s strategies evaluation.
The result for Ntop ∈ {1, 3, 5, 10, 20, 50, 100, 200} presented in Figure 4c con-
firm our previous conjecture formulated in in Section 4 about the harmfulness
of using the whole Defender’s population (Ntop = 200). Also, small values of
this parameter (Ntop < 5) lead to weaker results due to the presence of some
oscillations within the population. In the extreme case of Ntop = 1 (evaluation
of a given Attacker’s strategy is based on the best Defender’s strategy only),
we observed that the Attacker’s population quickly losses diversity/degenerates.
Individuals in the population become similar to one another because they are
optimized with respect to only one Defender’s strategy. As a result the Attacker’s
population returns a good response only to this one specific Defender’s strategy,
and in the next coevolution phase the Defender’s population is able to find with
ease another strategy for which there is no good response in the Attacker’s pop-
ulation. Afterwards, the whole Attacker’s population again adapts to the new
best Defender’s strategy and “forgets” the previous ones. Ntop = 10 appeared to
be the best compromise between these two extremes (Figure 4c).

6 Results and discussion

Payoffs. Tables 1 and 2 present average Defender’s payoffs with respect to the
number of graph nodes and time steps, resp., for the methods described in Sec-
tion 3. Dashes mean that a particular algorithm was not able to compute some
of the test instances within the limit of 100h per game. The results are averaged
over 20 independent runs per game.
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(c) Individuals to evaluate
Attacker’s strategy (Ntop).

Fig. 4: Comparison of the average Defender’s payoffs and computation times for
CoEvoSG specific parameters: NA, gp, Ntop.

Table 1: Average Defender’s payoffs with respect to the number of graph nodes.
FIG

n C2016 O2UCT EASG CoEvoSG
5 0.890 0.887 0.886 0.886
10 0.854 0.851 0.847 0.845
15 0.811 0.807 0.802 0.798
20 - 0.784 0.780 0.772
25 - - 0.754 0.746
30 - - - 0.730
40 - - - 0.722

WHG
n C2016 O2UCT EASG CoEvoSG
15 0.052 0.051 0.051 0.050
20 0.054 0.053 0.052 0.050
25 0.048 0.046 0.045 0.043
30 - 0.044 0.042 0.039
40 - - 0.040 0.036
50 - - - 0.029

Presented outcomes show only minor differences between the evolutionary
approach (EASG) and proposed coevolutionary algorithm (CoEvoSG). The av-
erage differences equal 0.0032 and 0.0020 for FIG and WHG instances, resp.
Please note that EASG is a natural reference point for CoEvoSG since Co-
EvoSG approximates the Defender’s payoff (in the evaluation procedure) while
EASG computes it thoroughly. A relatively small difference in Defender’s pay-
offs between the methods is a consequence of frequent existence (in over 84%
of the cases) of the optimal Attacker’s response in their population. The fitness
function in such cases returns the same evaluation in both methods.

O2UCT slightly outperforms EASG and CoEvoSG but the differences are
not statistically significant - p-values are 0.34 and 0.12, respectively (according
to one-tailed t-test). For 23% of games, CoEvoSG returned better result than
O2UCT whereas O2UCT was superior in 39% cases (for the remaining 38% of
games the outcomes of both methods were the same).

The exact MILP method (C2016) was able to solve 45 FIG and 60 WHG
test instances within the allotted time. For these games, CoEvoSG returned the
optimal strategy (a difference in Defender’s payoff less than ε = 0.0001) in 29/45
(64%) and 38/60 (68%) cases, resp. The average differences between optimal
results and CoEvoSG outcomes equaled 0.0137 (FIGs) and 0.0023 (WHGs).

Overall, CoEvoSG was able to solve much bigger games than any of the
competitive methods, while returning only slightly weaker Defender’s payoffs
(whenever comparable).
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Table 2: Average Defender’s payoffs with respect to the number of time steps.
FIG

m C2016 O2UCT EASG CoEvoSG
3 0.823 0.821 0.820 0.817
4 0.817 0.812 0.808 0.805
5 0.810 0.801 0.798 0.791
6 - 0.794 0.792 0.791
8 - 0.789 0.784 0.781
10 - - 0.780 0.778
15 - - - 0.774
20 - - - 0.761

WHG
m C2016 O2UCT EASG CoEvoSG
3 0.043 0.043 0.043 0.043
4 0.052 0.050 0.050 0.049
5 0.055 0.054 0.053 0.052
6 0.058 0.056 0.054 0.051
8 - 0.053 0.051 0.048
10 - - 0.048 0.044
15 - - - 0.040
20 - - - 0.038

Computation scalability. Figure 5 illustrates computation time of tested
methods with respect to the number of graph nodes and time steps. In all cases,
the advantage of CoEvoSG is clear. The method preserves near-constant compu-
tation time irrespective of game size, while other methods scale approximately
linearly (O2UCT and EASG) or exponentially (C2016). Computational com-
plexity of CoEvoSG is approximately constant with respect to the graph size
or the number of steps because the algorithm maintains the Defender’s and the
Attacker’s populations of fixed size, independently of other game parameters.

Fig. 5: Comparison of computation time (logarithmic scale) with respect to num-
ber of graph nodes and time steps for FIG (left) and WHG (right) games.

In summary, presented results demonstrate that despite slightly worse aver-
age Defender’s payoffs the proposed coevolutionary approach, thanks to excellent
time scalability, offers a viable alternative to both exact and approximate state-
of-the-art methods, especially in the case of larger games which are beyond the
capacity of the existing algorithms.

7 Conclusions

The paper proposes a novel coevolutionary algorithm for solving sequential
Stackelberg Security Games. The method develops two competing populations
of players’ strategies by specially designed evolutionary operators.

Experimental evaluation performed on two well-established game types with
more than 500 test instances have proven the efficacy of the proposed method -
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in the majority of test cases optimal solutions were found. The results are is on
par with other approximate methods - O2UCT and EASG. However, the true
strength of CoEvoSG lies in its time efficiency. It scales visibly better than all
state-of-the-art methods and stands out with near-constant computation time
irrespective of the game size. Thanks to this property CoEvoSG can be employed
to solve arbitrarily large games which are beyond the capacity of the methods
proposed hitherto. Moreover, the method is generic and can be easily adapted to
other genres of Security Games. What’s more, CoEvoSG is an anytime algorithm,
i.e. is capable of returning a valid solution at any time of the execution process.

CoEvoSG can be directly applied to various real-life cybersecurity problems
modelled by FlipIt Games, such as password reset policies, cloud auditing, or
supervisory control and data acquisition in industrial internet of things [15].

Our future plans concentrate on extending CoEvoSG to games with multiple
Defenders and/or Attackers [16] with the corresponding increase of the number
of populations.
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