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Abstract. Simulations of the microvasculature can elucidate the effects
of various blood flow parameters on micro-scale cellular and fluid phe-
nomena. At this scale, the non-Newtonian behavior of blood requires
the use of explicit cell models, which are necessary for capturing the
full dynamics of cell motion and interactions. Over the last few decades,
fluid-structure interaction models have emerged as a method to accu-
rately capture the behavior of deformable cells in the blood. However, as
computational power increases and systems with millions of red blood
cells can be simulated, it is important to note that varying spatial distri-
butions of cells may affect simulation outcomes. Since a single simulation
may not represent the ensemble behavior, many different configurations
may need to be sampled to adequately assess the entire collection of
potential cell arrangements. In order to determine both the number of
distributions needed and which ones to run, we must first establish meth-
ods to identify well-generated, randomly-placed cell distributions and to
quantify distinct cell configurations. In this work, we utilize metrics to
assess 1) the presence of any underlying structure to the initial cell dis-
tribution and 2) similarity between cell configurations. We propose the
use of the radial distribution function to identify long-range structure in
a cell configuration and apply it to a randomly-distributed and struc-
tured set of red blood cells. To quantify spatial similarity between two
configurations, we make use of the Jaccard index, and characterize sets
of red blood cell and sphere initializations.
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1 Introduction

Computational blood flow models are a powerful tool for answering biomedical
questions. For microvessel simulations, where individual cell diameters are on
the same order of magnitude as vessel size, the presence of cells plays a signifi-
cant role in the non-Newtonian behavior of blood. In this regime, velocity profile
blunting has been observed due to the motion of cells towards the vessel center-
line[1] and blood viscosity has been shown to be dependent on vessel diameter
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and hematocrit (volume percentage of cells in the blood)[2]. Additionally, cell-to-
cell[3] and cell-to-vessel interactions[4] have been shown to affect the underlying
blood flow profile. Therefore in small vessel simulations, blood must be modeled
as a suspension of cells rather than a continuum fluid. Fluid-structure interaction
(FSI) models, such as the immersed boundary method[5] or dissipative particle
dynamics[6], which fully couple deformable particles with a background fluid,
have been shown to accurately model cells in microfluidic[7] and microcircula-
tory systems[8]. Blood flow simulations using FSI models provide a wealth of
information, as both microscopic and macroscopic quantities, such as individual
cell position and deformation, and fluid pressure and velocity profiles, can be
precisely tracked and studied over time[9, 10]. More importantly, these models
allow for the isolation and controlled variation of specific parameters such as cell
size or stiffness, enabling researchers to probe the effects of individual parame-
ters on the quantity of interest. Much of the in silico work in microvessels with
cell FSI models has been focused on red blood cells (RBCs), including studies
on the effects of cell deformability and shape[11–13], partitioning at junctions
in the vasculature[14, 15], aggregation mechanics[16], and development of a cell-
depleted layer[17, 18]. Simulation has also been used to study the motion of other
particles in the presence of RBCs such as platelets[19, 20], leukocytes[21, 22], and
circulating tumor cells[23–25, 10, 26].

While FSI models of cells in complex geometries are not new, advances in
computational efficiency and capability[27–30] have only recently made this ap-
proach practical for comprehensive studies of realistic systems. The inclusion
of explicit particles in particular introduces several new obstacles. The main
challenge is simply one of statistics: the motion of particles diffusing through
a vessel is an inherently stochastic process, thus trajectories must be sampled
a sufficient number of times to capture average behavior. For example, when
tracking cancer cells in silico, the distance to a vessel wall directly influences
the cell’s likelihood of adhesion[31] and subsequent escape into nearby tissue.
We previously demonstrated the effects of varying cell positions while studying
combinations of hemodynamic parameters and the motion of a tumor cell[23].
Even when all bulk fluid parameters were held constant, the trajectory of the
tumor cell was found to vary significantly based on the relative configurations
of neighboring cells.

In addition to increasing the overall computational cost, the need for a rep-
resentative ensemble of starting configurations introduces new potential sources
of error that must be managed. This challenge is particularly acute for systems
with higher hematocrit values, where random coordinate generation must be
done carefully to avoid artificial structure that would bias the observed dynam-
ics. Similar to the well-known equilibration problem in molecular dynamics[32],
flow simulations through tortuous vascular geometries have the added compli-
cation that one can not easily gather equilibrated statistics simply by running
a closed system longer in time. Instead, one must generate a number of distinct
sets of equilibrated starting points to be run independently[33]. To this end, we
propose a method to generate many cell configurations and the use of the radial
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distribution function to characterize the structure in a particular configuration.
The final challenge is to define quantitative metrics to rigorously compare indi-
vidual cell configurations and to characterize the complete set as a whole. For
this purpose, we propose the use of the Jaccard index to quantify spatial simi-
larity between individual configurations as an appropriate metric for describing
and comparing sets of cell configurations.

2 Methods and Metrics

Fig. 1. Workflow for determining the best set of cell configurations to describe the
ensemble. (1) The radial distribution function g(r) is used to assess randomness in
a distribution of cells. (2) The Jaccard index J is used to quantify spatial similarity
between two configurations. (3) A set of pairwise J values are used to numerically
describe a large set of cell configurations and presented as a distribution.

Our proposed workflow and associated metrics are shown in Figure 1. In this
section, we will describe both the methods we use to generate cell configurations
as well as the associated metrics used to characterize them.
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2.1 Generating initial configurations of red blood cells in a
microvessel

Dense packing of non-overlapping shapes is a long-standing research problem
of active interest[34–36]. Here we describe a procedure for generating and char-
acterizing packed configurations of RBCs in arbitrary vessels at a set hemat-
ocrit. Rather than generating individual configurations on demand, we instead
start with a large system of packed cells from which we can fill vessels of arbi-
trary size and shape. This technique has the advantage of letting us generate
a packed domain in the simplest possible geometry prior to simulation while
avoiding the code complexity an on-the-fly implementation would require. The
source domain is created to be several times larger than the vessel of interest.
The standalone implementation provided by Birgin et al.[37] is used to pack
ellipsoids that tightly encompass the RBC’s biconcave shape, returning a set
of non-overlapping positions and orientations. Although the fully enclosed RBC
represents approximately 70% of the encompassing ellipsoid volume, a distribu-
tion with a packing fraction of up to 60% is enough to reach the high end of
microvascular hematocrit levels. An example of this packing and a corresponding
cell initialization is shown in Figure 2. Testing vessels ranging in diameter from
20 to 50 µm shows the ability to reach realistic hematocrits from 20% to 35%
consistently.

Fig. 2. An example of a cell initialization taken by submerging the vessel within a
large, pre-generated packing domain. Only cells that fit completely inside the vessel
are returned and used as the starting point for a simulation.

This approach of separately generating a packed source domain has the ad-
vantage of easily allowing for rigorous a priori analysis before performing expen-
sive high performance computing (HPC) simulations. To avoid initializing FSI
runs with non-physical starting configurations, the source bulk system must not
have any long-range order consistent with crystalline packing. The radial distri-
bution function g(r) is a well-established metric in the simulation of fluids[38]
used for confirming liquid structure, defined as:
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g(r) =
dnc

4πr2drρ
(1)

where dnc returns the number of cells within a shell of thickness dr and ρ is
the bulk density. Long-range structure is reflected in the form of multiple peaks
well beyond the average particle spacing. RBCs are assumed to start from a fully
disordered liquid state, reflected by a g(r) that quickly converges to a constant
value of unity.

Once the bulk source geometry has been generated, individual configurations
can be created by submerging the target vessel in the source domain at different
locations and selecting all cells contained within. This process remains the same
for both simple and complex geometries, establishing a straightforward method
for generating many different configurations prior to running HPC simulations.

2.2 Quantifying spatial similarity between cell configurations

After generating a set of multiple cell configurations, the next step is to verify
that each of these packings are distinct by quantifying their spatial similarity
to each other; specifically, the fraction of volume shared by two configurations.
However, due to the irregular biconcave disk shape of RBCs, a simple analytical
algorithm for overlap check given cell positions and orientation angles does not
exist. Therefore in this calculation, a numerical method is utilized, where each
configuration of RBCs is mapped to a 3-D grid, and overlap is calculated by the
number of grid points shared. The Jaccard index, or intersection over union, is
used to measure the similarity between two discrete sample sets, defined as:

J(Ci, Cj) =
|Ci ∩ Cj |
|Ci ∪ Cj |

(2)

where Ci and Cj are independent samples of the same space. We propose
the use of the Jaccard index to quantify the volume overlap between sets of
RBCS by comparing the interior grid points. This is similar in approach to the
algorithms used by the image segmentation community[39], such as the Dice
similarity index.

Since J(Ci, Cj) represents the percentage of overlapping cell volume between
Ci and Cj , J(Ci, Cj) = 100% if two arrangements are identical and zero if there
is no shared cell volume in space. A threshold value ϕ is chosen to label whether
or not two configurations are correlated; if J(Ci, Cj) > ϕ, the pair is marked
similar. For example, two test configurations that contained the same group of
cells shifted by a few tenths of a microns led to J over 90%, and would be
marked as a similar pair. Because the likelihood of two configurations of cells
both occupying a certain space increases with hematocrit, ϕ is not a static value,
and is chosen on a per hematocrit basis.

A two-dimensional example for calculating J using RBCs is provided in Fig-
ure 3. Each initialization contains a single cell marked red for configuration 1 and
blue for configuration 2. The corresponding lattice points are marked with the
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color of containing cell. Once these two lattices are overlaid, the shared points
are marked in yellow.

Fig. 3.A 2-D example for the calculation of Jaccard index J between two configurations
of RBCs. After the RBCs are mapped to their corresponding lattices, there are 18 total
points which contain a cell, of which 3 are shared in both configurations. J = 3/18 =
16.7% in this example.

Another two-dimensional visual example is shown in Figure 4, displaying dis-
tinct configurations of circles with significantly different J values. Compared to
the base configuration, there is a clear difference in overlap, which can be identi-
fied visually and captured quantitatively through an analytical computation of
J .

Fig. 4. A 2-D example of differing Jaccard indices compared to a base configuration
(left) using circular particles. Two other distinct configurations are generated and over-
laid on the base configuration (middle and right). The middle configuration is less
similar to the base case than the right configuration and can be confirmed visually
by identifying by the overlapping violet regions and computed using J . Although the
overlap is easier to visualize in 2-D, it is much easier to numerically identify similarity
in 3-D space by using J .
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Although these examples are displayed in two dimensions for clarity, our RBC
configurations and future simulations are performed in three-dimensional space.
The Jaccard index provides a numerical method to identify spatial similarity
rather than a qualitative comparison.

Since the Jaccard index is applied between two particular configurations, J
needs to be calculated on a pairwise basis before it can be used to quantify the
entire distribution of configurations. For a set of configurations S = {C1, ..., Cn},
we define JS , the set of Jaccard similarity scores, as:

JS = {J(Ci, Cj)
∣∣i, j = 1...n, i ̸= j}. (3)

To quantify the similarity of a particular configuration Ci with respect to all
the others, the mean Jaccard index J̄(Ci) is calculated as:

J̄(Ci) =
1

n− 1

n∑
j=1

J(Ci, Cj), j ̸= i (4)

for a set of n configurations. Given two similar configurations C and C ′

such that J(C,C ′) > ϕ, and mean Jaccard indices such that J̄(C) < J̄(C ′),
configuration C ′ would be considered first for removal from the set.

3 Results and Discussion

3.1 Applying the radial distribution function to quantify structure
in a single packing

To test for the presence of long-range structure, the radial distribution function
g(r) is applied to two large, dense packings of RBCs. Both source arrangements
are generated in a cubic domain of side length 200 µm with over 35,000 cells.
A random distribution Xrand is created by packing the cube and then applying
an external force to perturb the initial arrangement of cells, while a structured
set of cells Xstruct is produced by tessellating a small set of RBCs across the
space. The radial distribution function is then applied to each set of cell centers
splitting dr into 0.25 µm buckets, and the cell configurations and corresponding
g(r) functions are shown in Figure 5.

Within Xrand, g(r) contains a single peak near the lengthwise diameter of
the RBC that quickly trails off to unity, indicative of a liquid-like, random dis-
tribution of particles. In the case of Xstruct, multiple discrete peaks are visible,
signifying the presence of long-range structure in the distribution of cells. A
qualitative comparison between the two source domains can be performed vi-
sually, but the use of the radial distribution functions provide a quantitative
confirmation for the presence of ordered structure.

Since the procedure to generate many cell configurations in a microvessel
utilizes a subset of the cells in the large domain, it is important to confirm the
randomness of the initial cell arrangements. The packing found in Xstruct is non-
physiological, and would generate many structured cell initializations as inputs
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Fig. 5. A random distribution Xrand (top) and ordered distribution Xstruct (bottom)
of cells packed within a cube of side length 200 µm. The corresponding radial distribu-
tion functions are shown to the right. Xrand’s g(r) shows a single peak and trails off
to 1 quickly, analogous to a random liquid-like state, while Xstruct’s g(r) displays sev-
eral peaks, indicating that the distribution contains a repetitive structure. Sampling
cells from the random distribution provides a better initial set of the positions and
orientations of red blood cells for running HPC simulations.
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to HPC simulations. Moving forward, we sample configurations from Xrand after
confirming the lack of long-range structure in its distribution of cells.

3.2 Utilizing Jaccard index to quantify distributions of cell
configurations

Fig. 6. There are 72 different non-overlapping initializations for a cylinder of diameter
30 µm and length 100 µm pulled from a packing domain of 2003 µm3. Cells within this
region are used to generate RBC configurations of initial positions and orientations at
a target hematocrit of 25%. A subset of the cutouts are shown in each xy and yz planes
for this set of initializations.

Non-overlapping cutouts representing an ideal microvessel geometry with di-
ameter 30 µm and length 100 µm are created from Xrand. The dimensions of the
source geometry allow for 72 independent configurations to be generated: 6 from
the y- and z-planes, and 2 in the x-plane, as shown in Figure 6. All configurations
have a hematocrit of 25% with N = 160 RBCs on average. The Jaccard index is
calculated using a grid spacing of 0.25 µm. A histogram of all pairwise Jaccard
similarity index values is presented in Figure 7a. For comparison, random config-
urations of 160 spheres were numerically generated at a 25% packing density in
a cylinder with the same aspect ratio (see Figure 7b-d). We note that increasing
the number of configurations for better statistics gave smoother distributions
but did not fundamentally change the shape.

As expected, the overlap index of configurations of randomly-placed spheres
follows a normal distribution. The distribution of RBCs, on the other hand, is
clearly skewed away from normal. This may be an artifact of the packing algo-
rithm used to populate the source distribution Xrand or may be a fundamental
difference in how biconcave disks pack into a confined geometry; more work will
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be needed to elucidate the underlying cause. The magnitude of the average over-
lap differs significantly between the shapes as well despite all systems having
the same volume packing fraction. It should be noted that the RBC geometry
likely has a systematic underestimation of the overlap due to discretization er-
ror, though this is not expected to be large. The spherical overlap was computed
analytically as a function of distance between sphere centers. Figure 8 shows J̄ ,
the average pair overlap of a configuration with all other configurations. This
provides a method to compare individual configurations’ spatial coverage against
the full set. We expect that both JS and J̄ distributions will change based on
vessel geometry and hematocrit. However, this study establishes that a pairwise
Jaccard index distribution can be used as a quantitative metric to describe a set
of cell configurations, generated with the same packing fraction. We posit that
selecting configurations with low J̄ could be used to sample the configurational
phase space more efficiently; this will be the topic of a follow-up study.

Fig. 7. The distribution JS of pairwise J values for (a) RBC and (b-d) sphere config-
urations. N=160 objects.

4 Conclusion

In the microvessel regime, FSI models are used to perform simulations with
explicit RBCs to account for non-Newtonian effects. Now that recent computa-
tional advances have enabled the rise of large-scale FSI simulation studies, it is
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Fig. 8. Distribution of J̄ on a per configuration basis for (a) RBC and (b-d) sphere
configurations. N=160 objects.

important to sufficiently sample the ensemble of potential cell arrangements to
capture a macroscopic behavior. In order to select the minimum set of config-
urations that spans the parameter space, certain quantitative metrics must be
established which (1) indicate that a particular configuration is a good starting
point and (2) show that two separate arrangements are distinct and spatially
uncorrelated. These parameters can then be used to define the space of possible
configurations and determine which set of arrangements best span the space.

In this study, we apply the radial distribution function to particular config-
urations of RBCs to qualify whether a structured arrangement of cells exists in
the distribution. We choose two large distributions of cells, one randomly placed
and one structured, analogous to atoms in liquid- and solid-like materials, and
show that this function is able to quantify the presence of long-range structure
in cell positions. We also use the Jaccard index J to capture a quantitative
representation of shared cell volume between two configurations. Taking the ir-
regular shape of RBCs into account, we devise a numerical method that maps
cells on to a 3-D lattice which is used to compute J . We then produce a set
of 72 RBC configurations in a 30 µm diameter and 100 µm length microvessel
from the randomly-distributed group of RBCs. For comparison, we also generate
sets of 72, 200, and 1000 configurations of spheres at the same packing fraction.
Finally, we perform pairwise J calculations and plot the distribution of Jaccard
index values, showing that this metric can be used to define the space of particle
configurations.
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This study sets the groundwork for identifying the optimal set of initial cell
arrangements for a specific group of simulation parameters. Next steps for this
work include performing simulation studies with sets of spatially uncorrelated
RBC configurations to determine how these affect certain outputs, such as mo-
tion of individual cells. Future work will also study the effect of different vessel
sizes, shapes, and hematocrit on distributions of the Jaccard similarity index.
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36. Mískiewicz, K., Banasiak, R., Niedostatkiewicz, M., Grudzień, K., Babout, L.:
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