
Batch QR Factorization on GPUs: Design,
Optimization, and Tuning

Ahmad Abdelfattah1, Stan Tomov1, and Jack Dongarra1,2,3

1 University of Tennessee, USA
2 Oak Ridge National Laboratory, USA

3 University of Manchester, UK
{ahmad,tomov,dongarra}@icl.utk.edu

Abstract. QR factorization of dense matrices is a ubiquitous tool in
high performance computing (HPC). From solving linear systems and
least squares problems to eigenvalue problems, and singular value de-
compositions, the impact of a high performance QR factorization is fun-
damental to computer simulations and many applications. More impor-
tantly, the QR factorization on a batch of relatively small matrices has
acquired a lot of attention in sparse direct solvers and low-rank approxi-
mations for Hierarchical matrices. To address this interest and demand,
we developed and present a high performance batch QR factorization for
Graphics Processing Units (GPUs). We present a multi-level blocking
strategy that adjusts various algorithmic designs to the size of the input
matrices. We also show that following the LAPACK QR design conven-
tion, while still useful, is significantly outperformed by unconventional
code structures that increase data reuse. The performance results show
multi-fold speedups against the state of the art libraries on the latest
GPU architectures from both NVIDIA and AMD.

Keywords: Batch Linear Algebra · QR Factorization ·GPU Computing

1 Introduction and Related Work

In the context of dense linear algebra, a batch routine performs a standard linear
algebra algorithm on a batch of relatively small matrices. This kind of workload
is quite different from operating on one large matrix. Many software packages,
from both the industry and the research community, have been serving the latter
form of workloads for many years. Examples include LAPACK [1], PLASMA [13],
MAGMA [12], BLIS [19], and Intel’s MKL [14]. Batch workloads, however, are
relatively recent, and gained a lot of attention in many scientific communities.
Applications include quantum chemistry [8], sparse direct solvers [21], astro-
physics [16], and signal processing [6]. Vendor software libraries such as Intel’s
MKL [14], NVIDIA’s cuBLAS [17], and AMD’s hipBLAS [5] now provide many
batch routines for several BLAS and LAPACK operations.

Batch routines often require a different mindset for performance optimiza-
tion, especially on GPUs. Since we are dealing with small matrices, it is crucial

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

2 A. Abdelfattah et al.

to save as much memory traffic as possible. As an example, for very small matri-
ces that fit in the register file of the GPU, fully unrolled and unblocked kernels
can achieve a performance that is superior to any other approach [3]. For rela-
tively larger matrices, however, different assumptions must be made in order to
maintain a high performance across the size spectrum.

In this paper, we take the batch QR factorization as a case study for op-
timization on GPUs. We show that there is not a single design strategy that
can serve all sizes efficiently. Each design strategy assumes a number of build-
ing blocks (e.g., GPU kernels) of the factorization, which might differ from the
conventional LAPACK structure. This work is considered an improvement over
the work by Haidar et al. [10], which is available in the MAGMA library.

2 Algorithmic Background

The QR factorization decomposes a dense matrix Am×n into the product Qm×m ×
Rm×n, where Q is an orthogonal matrix, and R is upper triangular. Throughout
the paper, we assume m ≥ n. The standard LAPACK implementation does not
compute Q explicitly. Upon completion, the matrix A is overwritten by the two
matrices V and R, as shown in Figure 1a. The matrix V is lower triangular with
unit diagonals (not stored), such that each column vi represents an elementary
Householder reflector Hi = I − τivivTi , where τ is a scalar (stored separately).
The Q factor is computed as Q =

∏n
i Hi.

A V

R

(a) QR factorization output

D
N
R
M
2

D
S
C
A
L

DLARFG

DGEQR2

DGEQRF
D
G
E
M
M

D
T
R
M
M

DLARFB

D
G
E
M
V

D
G
E
R

DLARF

D
G
E
M
V

DLARFT

D
T
R
M
V

(b) Building blocks

Fig. 1: The LAPACK convention of the QR factorization

Assuming double precision, the standard LAPACK implementation is avail-
able in the dgeqrf routine, which has the building blocks shown in Figure 1b.
Both the dgeqr2 and dgeqrf routines perform the QR factorization. However,
dgeqr2 is an unblocked design, meaning that it proceeds one column at a time,
building the corresponding elementary reflector (dlarfg), and applying it to the
rest of the matrix (dlarf). Therefore, dgeqr2 is limited by the memory band-
width of the hardware, since it relies on vector or matrix-vector operations only
(BLAS level 1 and 2). On the other hand, dgeqrf is a blocked design. It uses
dgeqr2 to factorize a rectangular panel. The corresponding block of reflectors are

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

Batch QR Factorization on GPUs 3

applied to the trailing matrix using matrix-matrix (L3 BLAS) operations. The
use of L3 BLAS enables dgeqrf to be compute-bound. The application of the
block reflectors contains a preparatory stage (dlarft), during which a triangu-
lar factor T is computed from the V matrix and the scalars τi, i ∈ {1, 2, · · · , n},
such that Q = I − V × T × V T . The last equation takes advantage of matrix
multiplication (GEMM) when implicitly applying Q to the trailing matrix.

2.1 Nested Blocking

A standard QR factorization directly calls the unblocked panel factorization
(dgeqr2). For a batch of relatively small matrices, the panel is thin, typically
4 − 8 in most cases. Thin panels lead to rank-k updates (batch GEMM) that
are memory-bound. On the other hand, passing relatively wide panels directly
to the memory-bound dgeqr2 also hinders the performance. The solution to this
tradeoff is to use nested blocking, which is a well-known approach in LAPACK’s
blocked algorithms, despite not being used in the standard QR implementation.
Figure 2 shows the general idea of nested blocking, where a wide panel is inter-
nally split during its factorization. Nested blocking increases the reliance on L3
BLAS operaiotns (batch GEMM).

pa
ne
l

su
b-
pa
ne
ls

Fig. 2: Nested blocking in the QR panel factorization. The horizontal rectangles
refer to parts of the matrix that are touched solely by the update step.

2.2 Computing the Triangular Factor T

The original implementation of the dlarft routine relies on two memory-bound
operations, the matrix-vector product (dgemv), and the triangular matrix-vector
product (dtrmv). For a block-reflector V of width nb, the factor Tnb×nb can be
computed recursively as in Algorithm 1, where lines 2 and 3 update the same
column of T using dgemv and dtrmv operations, respectively. However, previous
work [11] has shown that all the calls to dgemv can be aggregated into one dgemm
call, while the dtrmv calls remain roughly unchanged. While Algorithm 2 clearly
shows a performance advantage over Algorithm 1, it needs preprocessing stages
that may be costly for small matrices. In order to call dgemm, the matrix V must
be separated from the R factor (refer to Figure 1a). This requires (1) copying
the R matrix into a workspace (dlacpy), (2) setting the upper triangular part of
V to zeros, with units on the diagonal (dlaset), and (3) another copy to bring

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

4 A. Abdelfattah et al.

R back on top of V (dlacpy). In addition to the overhead of these calls, there
is also workspace management overhead. Note that there are other methods for
computing the block Householder transformations [20] [18], which are beyond
the scope of this paper.

Algorithm 1: Classical dlarft
1 for j=1 to nb do

2 T1:j−1,j = −τjV T
j:n,1:j−1 × Vj:n,j

3 T1:j−1,j = T1:j−1,1:j−1 × T1:j−1,j

4 Tj,j = τj
5 end

Algorithm 2: Improved dlarft

1 T1:nb,1:nb = V T
1:n,1:n × V1:n,1:n

2 for j=1 to nb do
3 T1:j−1,j = −τjT1:j−1,1:j−1 ×T1:j−1,j

4 Tj,j = τj
5 end

3 Experimental Setup

Throughout the paper, we show the incremental performance improvements on
a system equipped with an NVIDIA Tesla A100-SXM4 GPU, which is clocked at
1.41 GHz and has 80 GB of memory. The GPU is hosted by an AMD EPYC 7742
64-Core Processor, clocked at 2.25 GHz. The CUDA version is 11.2. The final
performance results are collected on this system as well as on another system
equipped with an AMD Instinct MI100 GPU, which has 32 GB of memory, and
clocked at 1.5 GHz. The ROCM version is 4.5.0. The host CPU is an AMD
EPYC 7662 64-Core Processor, running at 3.25 Ghz. All the developments are
lined up to be released in the MAGMA library. Our solution will be referenced as
“MAGMA” in all the performance results. For NVIDIA GPUs, the performance
results are compared against the batch QR factorization in the cuBLAS library,
as well as against the open source KBLAS library [9]. For AMD GPUs, the
performance is compared against the hipBLAS library.

4 LAPACK-style Design

Our goal is to maximize the batch QR factorization performance on any matrix
size and shape. A straightforward approach is to extend the primitive building
blocks in Figure 1b to support a batch of matrices. There are two advantages to
this approach. First, it uses some of the existing batch BLAS routines, like batch
GEMM, which are often highly optimized by the vendor libraries, or by open
source libraries [2]. For the batch QR factorization in particular, the reliance on
an optimized batch GEMM routine guarantees performance portability across
different GPU architectures. Second, since the building blocks are assumed to
be LAPACK-compliant, the final implementation would support any matrix size
and shape. This is unlike some previous efforts that target application-specific
range of sizes [7, 15].

Our first implementation of batching the building blocks is based on the
efforts by Haidar et al. [10]. It is improved by taking into account some of
the new features in the vendor libraries, especially the more optimized batch
GEMM kernels. Figure 3 shows the performance results on square and tall-skinny
matrices. For square sizes, KBLAS outperforms the original MAGMA design for

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

Batch QR Factorization on GPUs 5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

 0 3
2

 6
4

 9
6

 1
28

 1
60

 1
92

 2
24

 2
56

 2
88

 3
20

 3
52

 3
84

 4
16

 4
48

 4
80

 5
12

G
f
o
p
/s

Matrix size (m = n)

 magma

 kblas
 cublas

0

100

200

300

400

500

600

 0 3
2

 6
4

 9
6

 1
28

 1
60

 1
92

 2
24

 2
56

 2
88

 3
20

 3
52

 3
84

 4
16

 4
48

 4
80

 5
12

G
f
o
p
/s

Matrix size (n fxed at 16)

 magma

 kblas
 cublas

Fig. 3: Batch QR performance in double precision. The MAGMA design is based
on batching the building blocks of Figure 1b. Results are shown for square ma-
trices (left) and tall-skinny matrices (right), using a Tesla A100 GPU.

sizes less than 192. Otherwise, MAGMA has the best performance. Our profiling
results show that only MAGMA calls batch GEMM underneath, which explains
why its performance scales well, while cuBLAS and KBLAS stagnate.

Category
Matrix size (m, n)

(128,16) (64,64) (128,128) (256,256)

dgeqr2 kernels 64.4 55.09 45.86 30.28
dgemm 12.47 24.68 35.4 56.23
Auxiliary (dlacpy, dlaset, etc.) 21.28 15.93 14.48 10.48
trmv (for dlarft) 1.85 4.29 4.26 3.01

Table 1: Time breakdown (%) for the original MAGMA design. Results are
shown for double precision on the A100 GPU, with 1000 matrices per batch.

For tall-skinny matrices, both cuBLAS and KBLAS have a clear advantage
over MAGMA. Our conclusion is that the MAGMA design favors wide matrices,
where the trailing matrix update is rich in batch GEMM calls. For tall-skinny
matrices, such an advantage is absent. In addition, the current panel implemen-
tation in MAGMA lacks optimizations for tall-skinny matrices. To emphasize
this point, Table 1 shows the percentage of time spent in different parts of the
MAGMA design for four selected sizes. It shows that the panel kernels con-
tribute significantly to the total execution time. Therefore, we cannot rely on
batch DGEMM alone in order to achieve high performance. The QR panel must
undergo an extensive optimization. Since the dgeqr2 kernels are memory-bound,
it is imperative to save memory traffic as much as possible. This can be achieved
by merging multiple building blocks into a single execution context, which is
often called kernel fusion. We use a multi-level kernel fusion, in which different
parts of the algorithm are fused based on the matrix size.

5 Panel Optimization

We begin by designing a new GPU kernel for the panel factorization. The kernel
caches a panel of size m×nb in the register file of the GPU and implements the

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

6 A. Abdelfattah et al.

unblocked factorization (dgeqr2). In a thread block, each thread possesses one
row of the panel, so at least m threads are required for each thread block. There
are two occasions where we perform a reduction operation across the columns of
the panel. The first is during the generation of the Householder reflector, where
the norm of the current column is computed. The second is when applying the
reflector to the trailing matrix, i.e., A = (I−τvvT)×A. The product vTA requires
a reduction operation across the columns of A. Since these reductions contradict
with the thread-per-row assignment, a shared memory workspace is allocated
to perform tree reductions. Note that the vTA product involves a multi-column
reduction, for which we re-organize the threads into independent groups, and
each group collaboratively reduces the assigned column. A key design aspect of
this kernel is the use of compile-time constants. For example, the width of the
panel nb must be known at compile time in order to avoid register spilling. It
also helps the compiler unroll most of the loops inside the kernel. The kernel is
instantiated for 1 ≤ nb ≤ nbmax, where nbmax depends on the GPU resources
as well as the compute precision.

The performance of this kernel is dependent on the height of the panel, since
it requires one thread per row. For example, a panel of size 512× nb needs 512
threads. Assuming that all other resources are not a bottleneck, we can schedule
four thread blocks at maximum per SM, due to a hardware limitation. Panels
taller than 512 would cause at least 25% drop in the thread occupancy per SM.
Depending on the width of the panel, other resources could be underutilized as
well. The remedy to such a behavior is to relax the constraint on the number
of threads. We propose a second kernel that stores the panel in shared memory
instead. This enables us use any number of threads to factorize the panel. The
proposed kernel assumes nb ≤#threads≤ m. The tree reductions mentioned
above are redesigned to work with any number of threads in that range. To
prove our point, Figure 4 shows the performance of the two kernels for a panel
of width 4. For the shared memory kernel, we use 32, 64, and 128 threads. The
figure shows that there is no clear winner, and that two decisions should be
made before the panel factorization: (1) which kernel should be used (register
vs. shared memory), and (2) if the shared memory kernel is used, how many
threads should be used? All performance graphs in this figure have a staircase-
like behavior. As the panel becomes taller, more resources are required, leading
to drops in occupancy. In order to select the best performing kernel, we collect
offline tuning data based on panel width, precision, and GPU architecture. These
data are used to select such a kernel at run time.

Figure 5 shows the updated performance after incorporating the fused dgeqr2

kernels. For square matrices, the performance of MAGMA is improved by 12.9%−
57.1%, while the speedups for the tall-skinny case are in the range 11.9%−41.4%.
We generally observe that the smaller the matrix, the larger the speedup. This is
expected, since the savings in memory traffic should be more critical for smaller
problems. However, the general behavior against cuBLAS and KBLAS remains
the same, except for the slightly earlier intersection points with the MAGMA
performance graphs.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

Batch QR Factorization on GPUs 7

0

50

100

150

200

250

300

350

400

 0 6
4

 1
28

 1
92

 2
56

 3
20

 3
84

 4
48

 5
12

 5
76

 6
40

 7
04

 7
68

 8
32

 8
96

 9
60

 1
02
4

G
f
o
p
/s

Number of Rows (n = 4)

 register storage

 shared memory, 32 threads
 shared memory, 64 threads
 shared memory, 128 threads

Fig. 4: Comparing different kernels for the fused dgeqr2 step. Results are shown
for double precision using a Tesla A100 GPU, with 1000 per batch.

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600

 0 3
2

 6
4

 9
6

 1
28

 1
60

 1
92

 2
24

 2
56

 2
88

 3
20

 3
52

 3
84

 4
16

 4
48

 4
80

 5
12

G
f
o
p
/s

Matrix size (m = n)

 magma

 kblas
 cublas

0

100

200

300

400

500

600

 0 3
2

 6
4

 9
6

 1
28

 1
60

 1
92

 2
24

 2
56

 2
88

 3
20

 3
52

 3
84

 4
16

 4
48

 4
80

 5
12

G
f
o
p
/s

Matrix size (n fxed at 16)

 magma

 kblas
 cublas

Fig. 5: Batch QR performance in double precision, with the fused panel kernels
incorporated into the MAGMA design. Results are shown for square matrices
(left) and tall-skinny matrices (right), using a Tesla A100 GPU.

In order to decide where the next optimization should be, we repeat the time
breakdown experiment after using the fused panel kernels, which is shown in
Table 2. The table shows that the panel kernels are no longer dominant in any
of the four sizes. Another positive sign is the increased percentage of the dgemm

kernel. However, the auxiliary kernels now contribute a noticeable amount of
time, and even dominate the execution time for size 128× 16. Recall that these
auxiliary kernels are mostly called in a setup phase for computing the T factor
(Section 2.2). In addition, if the size of T is small, calling batch GEMM multiple
times on small matrices might be inefficient. We need to avoid these auxiliary
kernels as much as possible, especially for tall-skinny sizes.

6 Optimizing the Trailing Matrix Update

We acknowledge that we cannot use the batch dgemm kernel to compute the T
factor for relatively thin matrices. At the same time, using the memory bound
dgemv and dtrmv kernels is not expected to be a faster solution. Since this
improvement is critical mostly for tall-skinny sizes, a candidate solution is to

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

8 A. Abdelfattah et al.

Category
Matrix size (m, n)

(128,16) (64,64) (128,128) (256,256)

dgeqr2 kernels 24.37 11.37 10.26 7.81
dgemm 26.39 48.66 58.78 74.41
Auxiliary (dlacpy, dlaset, etc.) 45.29 31.53 23.89 13.81
trmv (for dlarft) 3.95 8.44 7.07 3.96

Table 2: Time breakdown (%) for the MAGMA design with fused geqr2. Results
are shown for double precision on the A100 GPU, with 1000 matrices per batch.

merge the dlarft and the dlarfb operations into one GPU kernel. However,
since the fused kernels operate on the fastest memory levels of the GPU, the
implementation can be simplified into applying the elementary reflectors directly
to the trailing matrix (without forming the T factor). This strategy is partially
similar to cuBLAS and KBLAS in the sense that they don’t use the batch GEMM
for the trailing matrix update. However, we limit its use for a certain width, as
we discuss later in the paper. Algorithm 3 shows a pseudo code of the proposed
kernel. It reads the output of dgeqr2 into shared memory, setting its upper
triangular part to zeros, and its diagonal to ones. The factorized panel remains
cached for the lifetime of the kernel. Assuming that the trailing matrix has a
width n̄, we loop over this width in a small step ib, so that the sub-trailing
panel (tA[]) is cacheable in either the shared memory or the register file. We
use a device routine implementation of the dlarf routine to apply each reflector
in the panel. The dlarf routine has an optimized multi-column tree reduction
and a parallel rank-1 update, which are the two main components required for
the update. Finally, the tA[] buffer is written into the main memory, and a
new sub-trailing panel is loaded. Similar to the fused panel kernel, there are
two implementations of the update kernel, one that uses the register file for
storing tA[] and uses a restricted number of threads, while the other uses shared
memory only, and has a tunable number of threads.

Algorithm 3: Pseudo code for the fused trailing panel update

1 pA[] ← read factorized panel in shared memory
2 pA[] ← dlaset(pA[], ‘upper’, 0, ‘diag’, 1) //device-routine

3 for =1 to n̄ step ib do
4 tA[] ← read the next block of columns from the trailing panel
5 for j=1 to ib do
6 tA ← dlarf(pA(:,j), tA[]) //device-routine

7 end
8 write tA[] back into memory

9 end

An important point is that the fused panel and update kernels can be used
to factorize the entire matrix, without utilizing the batch dgemm kernel. This
decision is dependent on so many parameters, like the dimensions (m, n) of the
matrix, the compute precision, and the GPU architecture. To achieve the best

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

Batch QR Factorization on GPUs 9

performance, we conducted a set of offline tuning sweeps that discover the cut-off
width, below which we should use the fused panel/update kernels. The results
from the tuning sweeps are stored in lookup tables. While we originally tuned
the performance for the A100 GPU, it is straightforward to add lookup tables to
other GPUs. During the run time, the correct lookup table is used for deciding
the best code path to execute. Figure 6 shows the performance of the MAGMA
design after incorporating the new update kernel, where MAGMA is now able
to outperform both cuBLAS and KBLAS across almost all sizes.

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800

 0 3
2

 6
4

 9
6

 1
28

 1
60

 1
92

 2
24

 2
56

 2
88

 3
20

 3
52

 3
84

 4
16

 4
48

 4
80

 5
12

G
f
o
p
/s

Matrix size (m = n)

 magma

 kblas
 cublas

0

100

200

300

400

500

600

700

 0 3
2

 6
4

 9
6

 1
28

 1
60

 1
92

 2
24

 2
56

 2
88

 3
20

 3
52

 3
84

 4
16

 4
48

 4
80

 5
12

G
f
o
p
/s

Matrix size (n fxed at 16)

 magma

 kblas
 cublas

Fig. 6: Batch QR performance in double precision, with both the fused panel and
fused update kernels incorporated into the MAGMA design. Results are shown
for square matrices (left) and tall-skinny matrices (right), using a Tesla A100
GPU. Batch size = 1k.

7 Optimizations for Sub-warp Dimensions

A final optimization is possible when the entire matrix can be cached in the
register file or in the shared memory. At this point, a fully fused and unrolled
dgeqr2 is used. We have addressed this case in a previous work [4], but we discuss
it here to complete the scope of the paper. The kernel has some similarities with
the one described in Section 5, but it has some unique features. First, it uses a
serial reduction for computing the norm of a column, and for the vT×A product.
For sub-warp dimensions, we found out that a serial reduction is often faster than
a parallel reduction with repetitive synchronizations. Second, one warp can be
involved in factorizing more than one matrix simultaneously. For example, a
single warp can factorize four 8× 8 matrices at the same time. Third, the code
template is instantiated for every possible size. Without the loss of generality,
we discuss square sizes up to 32 only. The obvious drawbacks to this approach is
its applicability to a restricted range of sizes. It should also be instantiated for
every possible (m, n) combination. However, its advantage is clear as shown in
Figure 7. Despite all the optimizations mentioned in the previous sections and
in other libraries, the Figure shows significant speedups, up to 3.22× against the
best competition.

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

10 A. Abdelfattah et al.

1.07x

1.56x

2.1x

3.22x
2.15x

1

10

100

1000

2 4 8 16 32

G
flo

p/
s

Matrix size (m = n)

cuBLAS
KBLAS
MAGMA (semi-fused)
MAGMA (fully-fused)

Fig. 7: Batch QR performance in double precision for tiny square matrices. Re-
sults are shown for a Tesla A100 GPU. Batch size = 10k. The speedup labels of
the fully-fused design are calculated with respect to the best performance of the
other three approaches.

8 The Big Picture

The optimized GPU kernels described in Sections 4 through 7 are now put
together into one solution. The factorization begins by a check for tiny matrices,
for which the fully unrolled kernel (Section 7) can be used. Otherwise, it moves
to a decision-making layer that determines whether to use a fused panel/update
kernels for the entire factorization(Sections 5 and 6).

– If true, another decision-maker determines which version of the panel/update
to be used (in registers or in shared memory). The decision-maker also deter-
mines the number of threads in case the shared memory version is preferred.

– If false, the factorization proceeds with a LAPACK-style factorization uti-
lizing batch GEMM.

The LAPACK-like implementation has a panel factorization step, during
which it checks agains for the feasibility fused panel/update kernel. If they can-
not be used (e.g. panel is too large), we fall back to a generic non-fused panel
implementation. In either case, the factorization proceeds with computing the T
factor and then calling batch GEMM to apply the block reflector to the trailing
matrix. All the decision-making layers use a comprehensive set of offline perfor-
mance benchmark results. The offline data resulting from these benchmarks are
tabulated per GPU and per compute precision.

9 Final Performance Results

This section shows the final performance results on both NVIDIA and AMD
GPUs. All results are shown for single and double precisions. We show the per-

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

Batch QR Factorization on GPUs 11

formance of the host CPU using OpenBLAS, which is called inside an OpenMP
for loop using 64 threads.

Figure 8 shows the performance on the A100 GPU for square matrices.
MAGMA has a clear asymptotic advantage thanks to the careful utilization
of the batch GEMM kernel (from both cuBLAS and MAGMA’s own kernel). As
mentioned before, the performance graph of MAGMA is the marriage of three
different factorization startegies. The first is the fully fused factorization for sizes
≤ 32, the second is performing the factorization using the fused panel/update
kernel only, and the third is the LAPACK style strategy utilizing batch GEMM.
For single/double precision, MAGMA is up to 2.3×/3.3× faster than KBLAS,
up to 16.2×/25.4× faster than cuBLAS, and up to 21.9×/14.8× against Open-
BLAS+OpenMP.

0

500

1000

1500

2000

2500

3000

3500

4000

 0 3
2

 6
4

 9
6

 1
28

 1
60

 1
92

 2
24

 2
56

 2
88

 3
20

 3
52

 3
84

 4
16

 4
48

 4
80

 5
12

G
f
o
p
/s

Matrix size (m = n)

 magma

 kblas
 cublas
 openblas + openmp

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800

 0 3
2

 6
4

 9
6

 1
28

 1
60

 1
92

 2
24

 2
56

 2
88

 3
20

 3
52

 3
84

 4
16

 4
48

 4
80

 5
12

G
f
o
p
/s

Matrix size (m = n)

 magma

 kblas
 cublas
 openblas + openmp

Fig. 8: Final performance of the batch QR factorization in single/double precision
(left/right). Results are shown for square matrices using a Tesla A100 GPU.
Batch size = 1k.

Figure 9 shows the final performance for tall-skinny matrices with exactly
16 columns. This test case represents problems that require the solution of
least square systems. This test case corresponds to one factorization strategy in
MAGMA, which is the fused panel and update kernels. But recall that MAGMA
has two different kernels for each of the panel and update steps, and invokes
the faster of the two depending on the matrix size. Similar to square sizes,
both cuBLAS and the OpenBLAS with OpenMP are underperforming. Both
MAGMA and KBLAS have the staircase-like behavior, which means that they
both try to take advantage of the fast memory levels on the GPU, but face
gradual degradation due to increased occupancy. However, MAGMA has an
asymptotic advantage for single precision, and an overall advantage for double
precision. This means that our solution has a better use of the available resources
on the GPU. For single/double precision, MAGMA is up to 1.6×/1.7× faster
than KBLAS, up to 5.8×/7.4× faster than cuBLAS, and up to 36.3×/65.9×
against OpenBLAS+OpenMP.

Figures 10 and 11 show the corresponding results on the AMD MI100 GPU,
where we compare the MAGMA performance against hipBLAS as well as Open-
BLAS + OpenMP. To the best of our knowledge, KBLAS does not support
AMD GPUs. We observe that the performance is lower than the A100 perfor-
mance numbers. This is due to multiple reasons. First, the batch GEMM kernel

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

12 A. Abdelfattah et al.

0

200

400

600

800

1000

1200

1400

1600

 0 6
4

 1
28

 1
92

 2
56

 3
20

 3
84

 4
48

 5
12

 5
76

 6
40

 7
04

 7
68

 8
32

 8
96

 9
60

 1
02
4

G
f
o
p
/s

Number of rows (n = 16)

 magma

 kblas
 cublas
 openblas + openmp

0

100

200

300

400

500

600

700

800

900

1000

1100

 0 6
4

 1
28

 1
92

 2
56

 3
20

 3
84

 4
48

 5
12

 5
76

 6
40

 7
04

 7
68

 8
32

 8
96

 9
60

 1
02
4

G
f
o
p
/s

Number of rows (n = 16)

 magma

 kblas
 cublas
 openblas + openmp

Fig. 9: Final performance of the batch QR factorization in single/double precision
(left/right). Results are shown for tall-skinny matrices (n = 16) using a Tesla
A100 GPU. Batch size = 1k.

on the A100 is better tuned for the use cases we need than on the MI100 GPU.
Second, we notice that the fused kernels for performing the panel and the up-
dates are also slower than on the A100. Our experience with porting our solution
to AMD GPUs indicates that performing computations in the Local Data Share
(LDS) memory is slower than the shared memory on NVIDIA GPUs. This is
crucial to both the panel and the update kernels, since we perform many tree re-
duction in shared memory. MAGMA still outperforms hipBLAS for square sizes.
The speedups range between 2.6× and 11.5× for single precision, and between
3.8× and 10.1× for double precision.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 0 3
2

 6
4

 9
6

 1
28

 1
60

 1
92

 2
24

 2
56

 2
88

 3
20

 3
52

 3
84

 4
16

 4
48

 4
80

 5
12

G
f
o
p
/s

Matrix size (m = n)

 magma

 hipblas
 openblas + openmp

0

200

400

600

800

1000

1200

1400

1600

1800

 0 3
2

 6
4

 9
6

 1
28

 1
60

 1
92

 2
24

 2
56

 2
88

 3
20

 3
52

 3
84

 4
16

 4
48

 4
80

 5
12

G
f
o
p
/s

Matrix size (m = n)

 magma

 hipblas
 openblas + openmp

Fig. 10: Final performance of the batch QR factorization in single/double pre-
cision (left/right). Results are shown for square matrices using an AMD MI100
GPU. Batch size = 1k.

Another bottleneck on the MI100 GPU is the amount of the LDS mem-
ory available for one thread-block, which has a maximum of 64KB. This is
nearly half the amount that we can allocate dynamically on the A100 GPU.
This limits the ability of MAGMA to cache relatively large panels, and forces it
to switch to either use thinner panels or to use the LAPACK-style factorization.
Both situations hinder the performance due to the increased memory traffic. We
also observe that the staircase shape in Figure 11 are more frequent and more
severe, which can also be explained by the relatively limited opportunities of
data reuse. MAGMA still outperforms hipBLAS for tall-skinny matrices. The

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

Batch QR Factorization on GPUs 13

speedups range between 3.0× and 14.5× for single precision, and between 1.13×
and 12.6× for double precision.

0

100

200

300

400

500

600

700

800

900
 0 6
4

 1
28

 1
92

 2
56

 3
20

 3
84

 4
48

 5
12

 5
76

 6
40

 7
04

 7
68

 8
32

 8
96

 9
60

 1
02
4

G
f
o
p
/s

Number of rows (n = 16)

 magma

 hipblas
 openblas + openmp

0

50

100

150

200

250

300

350

400

450

 0 6
4

 1
28

 1
92

 2
56

 3
20

 3
84

 4
48

 5
12

 5
76

 6
40

 7
04

 7
68

 8
32

 8
96

 9
60

 1
02
4

G
f
o
p
/s

Number of rows (n = 16)

 magma

 hipblas
 openblas + openmp

Fig. 11: Final performance of the batch QR factorization in single/double pre-
cision (left/right). Results are shown for tall-skinny matrices (n = 16) using an
AMD MI100 GPU. Batch size = 1k.

In general, the asymptotic performance is not close to the the GPU theo-
retical peak performances. This is mainly due to the focus on relatively small
sizes, which limits the batch GEMM performance on both the A100 and the
MI100 GPUs. The rank-updates use relatively small widths that are not enough
to saturate the GPU compute power. Note that the batch DGEMM kernel from
cuBLAS uses the Tensor Cores units, and the batch SGEMM kernel from hip-
BLAS uses the Matrix Core units. A possible performance improvement is to
incorporate these accelerators in MAGMA’s own batch GEMM kernel, and tune
them specifically for these rank updates.

10 Conclusion and Future Work

This paper shows the underlying complexity of optimizing batch linear algebra
operations on GPUs, taking the dense batch QR factorization as an example.
We show that, depending on the problem size, there could be different strategies
of performing the factorization. Since memory traffic is often critical to batch
routines, fused kernels are used to efficiently utilize the memory bandwidth.
However, kernel fusion increases the complexity of the overall solution, since
it introduces new non-standard routines not found in BLAS or LAPACK. Our
final solution for the batch QR factorization has three different strategies for
execution, and within each strategy, there are multiple run-time decisions to
select the best performing kernel. Future directions include investigating the
performance regression on AMD GPUs, extension to variable-size batches, and
considering more efficient algorithms for very tall and skinny matrices.

References

1. LAPACK - Linear Algebra PACKage. ”http://www.netlib.org/lapack/”

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

14 A. Abdelfattah et al.

2. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.: Performance, Design, and
Autotuning of Batched GEMM for GPUs. In: ISC High Performance 2016, Frank-
furt, Germany, June 19-23, 2016, Proceedings. pp. 21–38 (2016)

3. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.: Factorization and Inver-
sion of a Million Matrices using GPUs: Challenges and Countermeasures. Procedia
Computer Science pp. 606 – 615 (2017), ICCS 2017, Zurich, Switzerland

4. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.J.: Batched one-sided factor-
izations of tiny matrices using GPUs: Challenges and countermeasures. Journal of
Computational Science 26, 226–236 (2018)

5. hipBLAS, available at https://github.com/ROCmSoftwarePlatform/hipBLAS
6. Anderson, M., Sheffield, D., Keutzer, K.: A Predictive Model for Solving Small

Linear Algebra Problems in GPU Registers. In: IEEE 26th International Parallel
Distributed Processing Symposium (IPDPS) (2012)

7. Anzt, H., Dongarra, J., Flegar, G., Quintana-Ort́ı, E.S.: Batched Gauss-Jordan
Elimination for Block-Jacobi Preconditioner Generation on GPUs. pp. 1–10.
PMAM’17, ACM, New York, NY, USA (2017)

8. Auer, A.A., Baumgartner, G., Bernholdt, D.E., Bibireata, A., Choppella, V., Co-
ciorva, D., Gao, X., Harrison, R., Krishnamoorthy, S., Krishnan, S., Lam, C.C.,
Luc, Q., Nooijene, M., Pitzerf, R., Ramanujamg, J., Sadayappanc, P., Sibiryakovc,
A.: Automatic Code Generation for Many-body Electronic Structure Methods: The
Tensor Contraction Engine. Molecular Physics 104(2), 211–228 (2006)

9. Boukaram, W.H., Turkiyyah, G., Ltaief, H., Keyes, D.E.: Batched QR and SVD
algorithms on GPUs with applications in hierarchical matrix compression. Parallel
Computing (2017). https://doi.org/https://doi.org/10.1016/j.parco.2017.09.001

10. Haidar, A., Dong, T., Luszczek, P., Tomov, S., Dongarra, J.: Batched Matrix Com-
putations on Hardware Accelerators Based on GPUs. IJHPCA 29(2) (2015)

11. Haidar, A., Tomov, S., Luszczek, P., Dongarra, J.: Magma embedded: Towards a
dense linear algebra library for energy efficient extreme computing. In: 2015 IEEE
High Performance Extreme Computing Conference (HPEC). pp. 1–6 (Sept 2015)

12. MAGMA, available at http://icl.cs.utk.edu/magma/
13. PLASMA. Available at: https://bitbucket.org/icl/plasma (October 2017)
14. Intel Math Kernel Library, available at http://software.intel.com/intel-mkl/
15. Kurzak, J., Anzt, H., Gates, M., Dongarra, J.: Implementation and Tuning of

Batched Cholesky Factorization and Solve for NVIDIA GPUs. Parallel and Dis-
tributed Systems, IEEE Transactions on PP(99), 1–1 (2015)

16. Messer, O., Harris, J., Parete-Koon, S., Chertkow, M.: Multicore and Accelerator
Development for a Leadership-Class Stellar Astrophysics Code. In: Proceedings of
”PARA 2012: State-of-the-Art in Scientific and Parallel Computing.” (2012)

17. NVIDIA CUBLAS, available at https://developer.nvidia.com/cublas
18. Toms Dominguez, Andrs E. and Quintana Orti, Enrique S.: Fast Blocking of House-

holder Reflectors on Graphics Processors. In: 2018 26th Euromicro International
Conference on Parallel, Distributed and Network-based Processing (PDP). pp. 385–
393 (2018). https://doi.org/10.1109/PDP2018.2018.00068

19. Van Zee, F.G., van de Geijn, R.A.: BLIS: A Framework for Rapidly Instantiating
BLAS Functionality. ACM TOMS 41(3) (jun 2015)

20. Walker, Homer F.: Implementation of the GMRES Method Using Householder
Transformations. SIAM Journal on Scientific and Statistical Computing 9(1), 152–
163 (1988). https://doi.org/10.1137/0909010, https://doi.org/10.1137/0909010

21. Yeralan, S.N., Davis, T.A., Sid-Lakhdar, W.M., Ranka, S.: Algorithm 980: Sparse
QR Factorization on the GPU. ACM TOMS 44(2), 17:1–17:29 (Aug 2017)

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_5

https://dx.doi.org/10.1007/978-3-031-08751-6_5

