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Abstract. Parallel three-dimensional (3D) cellular automaton models
of tumor growth can efficiently model tumor morphology over many
length and time scales. Here, we extended an existing two-dimensional
(2D) model of tumor growth to study how tumor morphology could
change over time and verified the 3D model with the initial 2D model
on a per-slice level. However, increasing the dimensionality of the model
imposes constraints on memory and time-to-solution that could quickly
become intractable when simulating long temporal durations. Paralleliz-
ing such models would enable larger tumors to be investigated and also
pave the way for coupling with treatment models. We parallelized the
3D growth model using N-body and lattice halo exchange schemes and
further optimized the implementation to adaptively exchange informa-
tion based on the state of cell expansion. We demonstrated a factor of
20x speedup compared to the serial model when running on 340 cores
of Stampede2’s Knight’s Landing compute nodes. This proof-of-concept
study highlighted that parallel 3D models could enable the exploration
of large problem and parameter spaces at tractable run times.
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1 Introduction

Three-dimensional (3D) models of tumor growth that leverage parallel comput-
ing can provide a means to explore 3D multiscale tumor morphology efficiently.
Understanding tumor growth dynamics is fundamental in cancer biology, and
parallelized 3D models can efficiently capture large-scale dynamics. Mathemat-
ical models of cancer biology are increasingly being used to understand tumori-
genesis, metastasis, and responses to treatment [1].

Cancer is fundamentally defined by the uninhibited growth of cells. Models
that capture cell-cell interactions that span from individual cells to emergent
tumors are needed to better understand different features that influence growth
dynamics. Cellular automaton models represent cells as dead or alive and interact
within a fixed local neighborhood. Agent-based models (ABMs) can have multi-
ple states and incorporate complex interaction networks beyond local neighbors.
Game of Life (GoL) constructs offer the capability to use simple rules that are
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Fig. 1. 3D Tumor Growth Over Time. Tumor growth over 60, 90, and 120 days
displaying proliferation potential (0-low, 9-high).

fundamentally rooted in single-cell kinetics to observe emergent dynamics that
could span from a few initial seed cells to millions of cells [2, 3]. Dissimilar to
multi-agent systems - where agents are used to solve a specific problem, GoL and
ABM models are used to study emergent behavior. However, implementations
of GoL models have conventionally been restricted to 2D due to computational
complexity and associated burden [4, 5, 6].

The development of tumors resembles Darwinian evolution where cancer cells
would need to compete for resources and space. GoL models of cancer cell growth
are relevant in the pre-angiogenic phase when tumor growth is driven by cell-
cell interactions in small neighborhoods of cells. These GoL models have been
shown to model tumor growth well despite simple rules and small parameter
spaces [4, 7]. However, as these models are expanded from two-dimensional (2D)
to three-dimensional (3D) models, the computational space grows exponentially
and could become intractable to simulate [6]. Exploring certain applications,
such as studying how 3D morphology changes in response to treatment, is only
amenable for 3D models and inherently requires more memory than 2D models
such that simulations could become limited by the size or duration of tumor
growth. Here, we extended a 2D cellular automaton model from Poleszczuk-
Enderling [6] to recapitulate 2D tumor dynamics on a slice-level and output 3D
growth dynamics for tumor morphology studies. Furthermore, we parallelized
the model to realize larger problem sizes.

There are inherent limitations of 2D models. In vitro and in silico 2D models
could reliably mimic in vivo tumor dynamics of a range of cancers, and as a re-
sult, have been instrumental for understanding cancer cell physiology. However,
2D monolayer representations of tumor growth could fail to recapitulate in vivo
proliferation, morphology, and cell-cell and cell-matrix interactions. 2D cell cul-
ture models lack complex 3D architecture and extracellular-matrix interactions
that are pervasive in vivo. While there are sophisticated techniques for efficiently
capturing the 2D dynamics of tumor growth and proliferation, we found a lack
of computationally efficient, scalable methods to capture the 3D morphology.
Our study aims to bridge this gap by developing a parallel 3D model of tumor
growth. In this study, we developed a proof-of-concept multiscale 3D model that
can simulate from a few seed cells to millions of interacting cells (Figure 1). Such
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Fig. 2. 3D Model Design. The Poleszczuk-Enderling 2D model used a 2D Moore
Neighborhood, where the center cell could interact with it’s immediate 8 neighbors.
Extending the model to 3D resulted in a 3D Moore Neighborhood with 26 neighbors.
Cells have a finite proliferation potential and could interact with the neighborhood via
migration, division, or death.

a model could serve as a virtual 3D cell culture and enable low-cost investigation
of cell pathophysiology and drug discovery.

In this model, cell movement was based on a Monte Carlo implementation. An
ensemble of simulations must be completed to buffer randomness in the model,
which further highlights the overarching need to reduce time-to-simulation for
one individual simulation instance. The Poleszczuk-Enderling 2D tumor growth
model took 3-5 hours of runtime for 4 months of tumor growth, and running
multiple instances to get averaged results could scale quickly.

We demonstrated the ability to capture 3D dynamics and propose techniques
for efficient parallelization. As such, we made the following contributions: (1) de-
velopment of a 3D cellular automaton model, (2) parallelization of a 3D serial
model using MPI and optimizations to minimize memory transfer between pro-
cesses, and (3) performance evaluation of the proof-of-concept parallelization
scheme up to 340 tasks (or 5 nodes) on Stampede2 Knight’s Landing (KNL)
compute nodes. Our results demonstrated that the model could be most useful
for simulating dense tumors with a large cell count and long durations.

2 Related Work

3D cellular models can serve as virtual laboratories with fully tunable conditions
that enable the investigation of emergent tumor behavior. 3D cellular automa-
ton models have been used to study tumor microenvironments and treatment
paradigms, but are usually tuned to one cancer type of interest [8, 9, 1]. ABMs
have been used to explicitly model adhesive, locomotive, drag, and repulsive
forces between cells and have been applied to model cellular responses to hy-
poxia in breast cancer. Such models have been shown to scale to millions of
cells [10]. There are also works parallelizing the Poleszczuk-Enderling model,
but are limited to thread-level parallelism on local machines [11]. The cellular
automaton model in this work is designed to be agile by relying on minimal
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input parameters and thereby easily be tuned to different types of cancers [6] to
model single-cell kinetics from a few initial cells to millions of cells. Even so, ac-
tions of the individual cells rely on random sampling to drive their interactions.
The inherent stochasticity requires simulation of a large ensemble of potential
interactions to adequately capture the macroscopic behavior of the tumor. The
computational burden of an individual instance is exacerbated by the need to
complete many simulations to account for the underlying stochasticity. More-
over, current models are typically limited by the size of the tumor that can be
simulated. We addressed these challenges through a multi-level parallelization
scheme targeting 3D tumor models.

3 Methods

3.1 Extension of 2D Cellular Automaton Model to 3D

The Poleszczuk-Enderling model introduced a 2D representation of tumor growth
relying on a cellular automaton representation of cancer cells [6]. Tumor growth
was captured via cellular interactions, where each cell was modeled as an indi-
vidual agent. The interactions characterizing cell growth included migration to
other discrete lattice points, proliferation via mitotic cell division, and cells could
finally die or become quiescent. As proliferation and migration require moving
to a different lattice point, communication was needed within a cell’s neighbor-
hood to determine if there were empty spaces for interaction. The Poleszczuk-
Enderling 2D model used a 2D Moore Neighborhood, where cells could interact
with 8 of it’s immediate neighbors (Figure 2). The model included cancer stem
cells and non-stem cancer cells. Stem cells were assumed to have infinite pro-
liferation potential, whereas the non-stem cells had a maximum proliferation
potential (pmax). Cells interacted in the lattice via discrete lattice-based rules
governed by probabilities of migration (pm), proliferation (pd), and death (α).
Each of these traits was kept as trait vectors for each cell such that there were
N-body cells. On the other hand, the number of free spots in each neighborhood
was stored on the lattice. N-body and lattice components of the simulation were
eventually parallelized separately.

Expansion from 2D to 3D consisted of transitioning the cell lattice, which
tracks the number of empty nearest neighbors for a given grid location, from a
2D array to a flattened 3D vector. Helper functions for cell death, proliferation,
and migration were adjusted to account for a 3D Moore’s Neighborhood of 26
neighbors rather than the initial 2D Moore’s neighborhood. We retained input
parameter values from the 2D model, but increased the cell division probability
(pd) by 30 %. Though this was not a necessary adjustment, it provided the ben-
efit of creating tumors comparable in cross-sectional density to the Poleszczuk-
Enderling 2D code and allowed comparison of 2D slices across the center of
mass with 2D model outputs. Additionally, this process demonstrated the ease
of model tuning.

The time loop was iterated over a user-specified number of time steps (where
each step was a simulation of one hour). Within each time step, every cell in the

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_1

https://dx.doi.org/10.1007/978-3-031-08751-6_1


Developing a Scalable Cellular Automaton Model of 3D Tumor Growth 5

population was iterated over. Random number generation was used to first check
if the cell should spontaneously die and be removed from the population. If the
cell did not die, a new random number was generated to determine if the cell
should proliferate. Only stem cells or cells that have not reached proliferative
exhaustion could divide. If the cell did not proliferate, the random number was
checked to determine if the cell should migrate. If the cell did not die, proliferate,
or migrate, then nothing would happen and the cell would be added back into
the population vector for the next time loop. For each cell, the lattice containing
the number of empty nearest neighbors at each grid point was updated based
on the cell’s actions. After iterating over all the cells, the vector holding the
population was refreshed to remove any dead cells and add any new ones.

3.2 N-body and Lattice Parallelization Schemes

Parallelization of the main simulation loop took two forms - an N-body scheme
for individual cells and halo exchanges for the underlying lattice. The cell lattice
domain was divided into approximately even blocks along the x axis, where each
rank was responsible for a local cell lattice of size lxlocal∗ly∗lz (where lxlocal was
the length of the x domain local to the rank, ly was the length of the y domain,
and lz was the length of the z domain). We were limited to communicating 2D
packets of 3000x3000 points because of inherent limits to the size of 2D C++
vectors. A potential future direction would be to optimize these messages further.

Cell movement and cell lattices were parallelized separately. Cells were al-
lowed to move freely into empty neighbors until reaching the edge of their do-
main, where we implemented a one layer overlap between each rank. This overlap
was used as a part of domain decomposition for parallelization and did not in-
fluence the mechanics of tumor growth. Cells migrating outwards at the edge
of a task’s boundary would be transferred to neighboring tasks. This particular
overlap allowed cells to move freely into empty spaces, only triggering commu-
nication between ranks when a cell entered border regions where a full Moore’s
neighborhood could not be realized. MPI communication of the cells between
ranks occurred in two parts: all the integer properties associated with the moved
cells were sent, and then the characters associated with the cells were sent.
Communication was implemented using non-blocking sends and receives with
the receives posted at the start of each time step and the sends posted at the
end of each time step.

The cell lattice was represented as a flattened vector of integers denoting the
number of free spaces a cell at a given index had around it. When a cell died,
proliferated, or migrated, the lattice values of the surrounding Moore’s neigh-
borhood must be updated accordingly. Instead of one layer of overlap between
ranks (like that used in the N-body communication), we used an additional layer
of communication on each rank that would track a cell’s movement into and out
of the cell transfer zone. At the end of each time step, before the border cells
from neighboring ranks were transferred, the lattice values for these two layers
were communicated, compared, and reconciled such that when the data from the
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N-body-based communication were added into the rank population, they could
access values from an appropriately updated lattice.

Based on our division of ranks along the x axis, we placed the initial cell in
the simulation in the middle of the median rank. Verification of the parallelized
code with the serial code was performed using both odd and even number of
ranks.

3.3 Adaptive Communication Scheme to Reduce Overhead

The näıve 3D parallelized model communicated cell and lattice data between
each rank in a point-to-point complete manner. Even ranks that contained no
cells participated in this communication, which unnecessarily increased memory
transfer and associated communication costs. To optimize the communication
scheme, before any lattice/cell communication, we gathered across every rank
an array of Boolean values indicating the ranks that contained cells and then
used this array to determine which ranks needed to communicate. Each rank that
had cells would send to both its nearest neighbors, and each rank would receive
from any nearest neighbor that contained cells. This optimization meant that
ranks still participated in point-to-point communication, but communication of
the entire size of the send buffer (up to 222 elements) only occurred when there
were actually cells on the rank that necessitated this communication. As a result,
the communication expanded adaptively as cells propagated across ranks over
time.

3.4 3D Serial and Parallel Verification Protocols

We verified our 3D model by comparing per-slice cell population sizes with the
2D simulation at 60 days of simulation. The morphology was compared using
the dice similarity coefficient (DSC), which measures the spatial overlap of the
tumor. We verified our parallel code by comparing it to the serial code. To do
so, we needed to consider the inherent stochasticity of our simulation model
which used multiple randomly generated numbers per cell in the population
per time step. While the simulation was capable of being seeded to generate
the same tumor population for runs of the same world size, seeding each rank
individually would not yield the same results. Consequently, we verified the code
by defining 4 variables of interest - cell population size, the proportion of stem
cells, the distribution of cell proliferation potential across the population, and the
distribution of the number of empty nearest neighbors across the population. We
used world sizes of 1, 16, 17, 54, and 55 ranks when completing verification runs
and performed 5 different unseeded runs for each case. We calculated the mean
and standard error for the 4 variables of interest on the 80th day of simulation.

3.5 Performance Evaluation of the Parallelized 3D Model

The parallelized model was evaluated for performance through strong scaling,
throughput, and efficiency of using parallel resources. For all performance eval-
uation runs, we ran simulations of up to 120 days of tumor growth and up to
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2D 3D

Fig. 3. 3D Model Verification. Per-slice population counts through the center of
mass at 60 days resulted in a mean DSC score of 0.94.

340 cores of Intel Xeon Phi cores (clock rate of 1.40 GHz) or 5 nodes on Stam-
pede2 KNL compute nodes with 100 Gb/s Intel Omni-Path network with fat
tree topology interconnect. All code were compiled using the -O3 optimization
flag. These resources were accessed at TACC via an XSEDE allocation [12].
We simulated up to 120 days because this was a similar time scale used in the
Poleszczuk-Enderling 2D model [6].

Strong scaling curves were generated by computing the speedup with an
increasing number of ranks for 120 day simulations. However, we found that the
serial 3D code was inherently faster for the first 2-3 months of simulation time
through some initial testing. This was likely due to the low number of cells in
the initial stages of growth and that parallelization only became necessary once
the tumor size reached a threshold. To test this observation, we measured strong
scaling when neglecting the first 90 days of simulation time to illustrate that the
parallel implementation needed to ramp up before eventually outperforming the
serial 3D model. Ideal scaling was taken as the number of processors containing
cells, averaged over the strong scaling runs due to stochasticity in the model.

We also investigated the throughput of the model by computing the cellular
operations per second (CLOPs) for different core counts (up to 340 ranks) at
different points in time (i.e., 60, 90, and 120 days). Lastly, the efficiency - the
number of ranks containing cells relative to the total number of ranks used in
the simulation - was measured across all time points and averaged across all the
different runs with different number of ranks. This performance measure would
indicate the rate of uptake of ranks and the increase in efficiency over time. As
the simulations were inherently stochastic, we ran 5 unseeded simulations per
data point to compute for means and standard errors.
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4 Results

4.1 3D Model Preserves Per-Slice Tumor Morphology

The 3D model agreed with the 2D model on a per-slice basis through the cen-
ter of mass of the tumor (Figure 3). The comparison was made at 60 days
of simulation. The DSC was 0.94, which demonstrated that the morphology
was successfully preserved after increasing the dimensionality of the model and
changing input parameters.

4.2 3D Parallel Model Matches 3D Serial Model

We first verified the final proportion of stem cells over varying world sizes
(Figure 4A). The ideal plot would be a horizontal line, indicating that the
mean proportion did not change with the number of ranks used. Though the ex-
perimental values deviated slightly from a perfect horizontal line, the stem cell
proportion values for each world size were within each points’ standard error
range. There was a similarly horizontal trend for the final cell population size.

Next, we verified the distribution of empty neighbors and cell proliferation
potential. Figure 4B demonstrates that the shapes of the distributions for each
world size were all similar. The distribution of cell proliferation potential also
resulted in similar trends. Therefore, we have verified the parallelized 3D model
using the proportion of stem cells, final cell population size, distribution of empty
neighbors, and the distribution of cell proliferation potential.

4.3 Strong Scaling Indicates When to Launch the Parallel Model

The parallelized 3D model had relatively modest strong scaling results (Figure
5). At 120 days of simulation time, there was a factor of 10 speedup compared
to the serial model which was roughly equivalent to a parallel efficiency of 20 %.
Parallel efficiency was taken to be relative to the number of ranks used over the
total number of ranks allocated.

Such performance was because the serial model was inherently faster at the
beginning of the simulation due to communication overhead. In the early steps
of the simulation, the tumor was in the initiation phase going from only a few
cells to many and favored the serial code because there were no communication
overheads. As the tumor grew and expanded in domain to neighboring ranks, the
parallel code would eventually become more efficient than the serial model. The
workload demand didn’t necessitate use of multiple cores at small tumor sizes.
We quantified the speedup when the simulation had surpassed this initiation
threshold to test these observations. We assumed a priori that 90 days would
exceed the initial growth stage. Using this offset, we achieved a factor of 20x
speedup with a parallel efficiency of 40 % at 120 days. This result demonstrated
a trade-off between the serial and parallel code, and that there would be an
optimum point of switching between the two models. The strong scaling curves
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Fig. 4. Verification of Parallelized Model. 80-day simulations of varying world
sizes, from 1 to 55 ranks, had consistent (A) stem cell proportion of population and
(B) distributions of empty nearest neighbors. Results were averaged over 5 unseeded
runs: (A) average = dotted line, standard error = background area; (B) only averages
were presented as standard error bounds were too small to visualize.

had not reached the point of diminishing returns, indicating that running for
longer durations could result in better performance.

The serial model was shown to be more efficient for the first few months
of simulation until reaching larger cell counts and longer simulation durations,
where the parallel model would eventually become more efficient. To quantify a
global, world size-invariant cut-off at which this transition occurs, we computed
speedup (relative to the serial model) over all time points across all simulations
with different world sizes (Figure 6). The results indicated that the global cut-
off occurred at 68 days, which suggested that the parallel code would provide
gains for simulations with durations exceeding this cut-off.
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Fig. 5. Strong Scaling. Neglecting initial parts of the simulated duration resulted
in improved scaling. Ideal scaling was taken as the number of ranks containing cells,
averaged over 5 runs. Average = dotted line, standard error = background area.

4.4 Throughput and Efficiency Increases Over Time

We defined CLOPs as a measure of the parallel model’s throughput. The CLOPs
increased as the number of ranks and the number of simulation days was in-
creased (Figure 7). The parallel code revealed that the model was capable of
over 2 million CLOPs at 120 days of simulation. From the serial model, the
results at 60 days demonstrated some loss in performance, which might indicate
that the serial code was more efficient than the parallel code at this point of the
simulation. On the other hand, the 90 day simulation exceeded the serial run,
but similarly also plateaued in CLOPs when the number of ranks increased.
The 120 day simulation indicated an increasing trend even at the highest num-
ber of ranks, which suggests that the parallel model is more amenable for larger
problem sizes over long simulation periods.

We also investigated the efficiency of the number of ranks used relative to
all the ranks assigned over time (Figure 8). In spite of stochasticity at the 120
day time point, the change in percentage rank utilization (or efficiency) was
consistent across simulations of different world sizes. At best, the efficiency was
just under 20 % after 120 days of simulation. The rise in efficiency has not reached
the point of diminishing returns and serves as a lower limit of performance.

5 Discussion and Conclusion

3D models have the potential to inform cancer research, however, there is a hard
limit to both the domain sizes and runtimes that serial implementations can
capture. This proof-of-concept study extended a 2D model of cellular automa-
ton of dense tumor growth to 3D and parallelized the model in one direction.
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Fig. 6. Cut-off Point for Parallel Model. The serial code was initially faster than
the parallel code, where speedup relative to the serial implementation was close to 0
until 50 days. The benefits of the parallel implementation became evident starting at
68 days when speedup crossed unity. The results were aggregated over multiple runs
ranging from 8-340 tasks to obtain a global cut-off. Average = dotted line, standard
error = background area, baseline speedup relative to serial code = horizontal solid line.

The results indicated tangible speedup gains that enable larger and longer sim-
ulations. The 3D parallel model verified well with the serial 3D model regarding
cell population size, proportion of stem cells, proliferation potential distribution,
and neighboring spaces distribution. The parallelized model was verified with an
even and odd number of ranks and demonstrated that the variability between
the two models was within the margin of error due to stochasticity. Moreover,
the per-slice cell population size and morphology between the 2D and 3D models
were comparable.

The parallelized model was evaluated for performance up to 340 tasks on
Stampede2 and could result in a 20x speedup. It was evident that the 3D model
needed to ramp up in terms of rank utilization until it would eventually overtake
the serial model. We tested this observation by comparing speedup gains with
and without a time delay. We found that the global cut-off point at which the
parallel model would provide speedup over the serial model was at 68 days
of simulation time. Parallelization increased the lattice size that could fit in
memory, from 231 to around 234 elements - a factor of 27 increase. Although
scaling results have not generally plateaued, we chose to simulate comparable
time scales with the Poleszczuk-Enderling model [6] and show a lower limit of
strong scaling, throughput, and efficiency results.

There are future paths for additional parallelization and model development.
Although we enabled larger domains to be simulated, we only parallelized along
the x dimension. Parallelizing over additional axes would decrease the grid sizes
allocated per rank and the size of buffers to be communicated between ranks.
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Fig. 7. Scaling cellular operations per second (CLOPs). We defined CLOPs
as a measure of throughput. The CLOPs increased with longer simulations and more
processors, which may indicate that the model was better suited for larger problem
sizes. Average = dotted line, standard error = background area.

Though more communication would be required per rank, the size of buffers
would be smaller and would provide speedup over the current implementation. In
terms of biology, allowing cells to occupy multiple lattice points to model cellular
volume expansion could provide a more detailed representation of tumor growth.
Speedup could improve with such an implementation as cells may expand over
the domain quicker to achieve better rank utilization. This work does not intend
to provide an optimal parallel tumor growth model, but offers an evaluation of
strategies that warrant further investigation.

The results indicated that the serial model was more efficient for the first
68 days of simulation, but that the model became exponentially slower from
that cut-off point onward. This was likely the point at which the cells were
starting to expand to a sufficient proportion of ranks that resulted in enough
speedup to overcome inherent MPI communication overheads. Therefore, some
speedup could be gained by restricting simulations to use the serial code until
the cut-off point to avoid unnecessary communication. Checkpointing could be
implemented where the serial code could stop at the cut-off and use its outputs
to launch parallel tasks.

The performance evaluation also revealed that less than 20 % of ranks were
actually engaging in the simulation for up to 120 days. This was a clear bottle-
neck, and ramping up the uptake of ranks faster would likely improve results. Al-
though highly stochastic, the results demonstrated that even across simulations
with a different number of tasks, the uptake in ranks were largely consistent. For
this particular problem, it could be useful to change the thickness (or proportion
of the lattice domain) handled by each rank. Instead of having relatively uniform
allocation, it would be useful to allocate as many ranks as possible to the middle

ICCS Camera Ready Version 2022
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-08751-6_1

https://dx.doi.org/10.1007/978-3-031-08751-6_1


Developing a Scalable Cellular Automaton Model of 3D Tumor Growth 13

Days

Pe
rc

en
ta

ge
 o

f r
an

ks
 (%

)

Fig. 8. Efficiency in Rank Utilization. There was a steady increase in efficiency
over time. Efficiency was the number of ranks that contained cells relative to the total
number of ranks allocated. Average = dotted line, standard error = background area.

20 % of the lattice (i.e., allocate as small of a lattice as possible) and allocate
as few ranks as possible (i.e., allocate as much of the lattice as possible) to the
edge ranks where cells were unlikely to reach.

Ultimately, the 3D parallelized code verified well with the 3D serial code.
The multi-level parallelization scheme of combining N-Body and halo paradigms
alongside adaptive communication enabled efficient simulation of 3D tumor growth.
This pilot study exemplified that even with parallelization across just one direc-
tion, there were clear gains that could enable larger studies and questions to be
explored. We have additionally outlined some directions that could provide more
significant speedups and allow for even longer simulations. This work could lay
the groundwork for future studies of cellular automaton tumor growth models
and parallelization methods of computational N-body and lattice-based models.
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