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Abstract. Polynomial chaos methods can be used to estimate solutions
of partial differential equations under uncertainty described by random
variables. The stochastic solution is represented by a polynomial ex-
pansion, whose deterministic coefficient functions are recovered through
Galerkin projections. In the presence of multiple uncertainties, the pro-
jection step introduces products (second order moments) of the basis
polynomials. When the input random variables are correlated Gaussians,
calculating the products of the corresponding multivariate basis polyno-
mials is not straightforward and can become computationally expensive.
We present a new expression for the products by introducing multiset
notation for the polynomial indexing, which allows for simple and effi-
cient evaluation of the second-order moments of correlated multivariate
Hermite polynomials.

Keywords: Polynomial chaos ·Multivariate Hermite polynomials · Stochas-
tic Galerkin methods

1 Introduction

Uncertainty quantification (UQ) is crucial for developing confidence in predic-
tions resulting from mathematical models of physical phenomena such as those
described by partial differential equations (PDEs) [2,12]. A common strategy
in computational science is to represent sources of uncertainty by random vari-
ables, which causes the solution to the original differential equation(s) to be-
come a function of stochastic parameters [2,5,12]. A polynomial chaos expansion
(PCE) expresses the solution as an infinite series of square-integrable orthogo-
nal polynomials of independent random variables [21]. A truncated version of
this expansion, as first suggested by Ghanem and Spanos [7], can be used as a
solution approximation; further, for the case in which the orthogonal polynomi-
als are Hermite and the random variables centered Gaussians, this truncation
is proved to converge in mean-square by Xiu et al. [22] via an application of a
theorem by Cameron and Martin [1,5,9].

The most common UQ strategies involve Monte Carlo (MC) sampling, which
suffers from a slow convergence rate proportional to the inverse square root of
the number of samples [2,14]. If each sample evaluation is expensive — as is
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2 L. Lyman and G. Iaccarino

often true for the solutions of PDEs — this slow convergence rate can make
obtaining tens of thousands of samples computationally infeasible [2,12]. PCE
approximations can offer significant computational advantages over Monte Carlo
methods in such instances, although there are some exceptions [15].

In [15], Rahman generalizes the classical PCE to account for arbitrary but de-
pendent multi-dimensional Gaussian parameters, proving convergence in mean-
square, probability, and distribution. Prior to this work, the multivariate PCE
was constrained by the assumption that its input random variables were inde-
pendent. By introducing correlation into this more general representation, the
multi-dimensional analog of Hermite polynomials — referred to as multivariate
Hermite polynomials — become only weakly orthogonal rather than orthogo-
nal [15,22]. Namely, for two multivariate Hermite polynomials Hα and Hβ with
multi-indices α and β, which we define formally in Sect. 1.2, weak orthogonality
guarantees that

E(Hα(ξ)Hβ(ξ)) = 0 if |α| 6= |β|, ξ ∼ N (0, Σ) (1)

where Σ ∈ Rn×n is a real, symmetric positive definite (SPD) covariance matrix.
However, E(Hα(ξ)Hβ(ξ)) can be (and often is) nonzero for distinct α,β satis-
fying |α| = |β|. The quantities E(Hα(ξ)Hβ(ξ)) for various α,β are called the
double products or second moments of the multivariate Hermite polynomials. To
demonstrate why these double products are important, we will illustrate how a
multi-dimensional PCE can be applied in a general setting.

1.1 Application Case and Motivation

For convenience, let D ⊂ Rn × Rt≥0 be a compact subset of a spatial and time
domain Rnx × Rt≥0 with initial time t0 ≥ 0. Let u : D → R be continuous and
differentiable in both its spatial and temporal derivatives; further, let u ∈ L2(D).
This u represents the solution a differential equation

F(u,x, t) = 0. (2)

Here F is a general differential operator, often a mix of linear and nonlinear
terms. Let ξ ∼ N (0, Σ) be an n-dimensional random variable with known SPD
covariance matrix Σ = E(ξξT ). Then ξ has the joint probability density function
[13,15,22]

φ : Rn → R≥0 φ(x;Σ) =
1

(2π)n/2|det(Σ)|1/2
exp

(
−1

2
xTΣ−1x

)
. (3)

We assume uncertainty is present in the initial condition u( · , t0) and represent
it by setting

u(x, t0; ξ) : Rn → R u(x, t0; ξ) = f(x, ξ)

where f is a known function of x and ξ. As statistics of ξ, we require that both
u(x, t; ξ) and f(x, ξ) have existing second moments.

The multivariate polynomial chaos expansion separates the deterministic and
random components of u by writing u(x, t; ξ) =

∑
α∈Nn0

uα(x, t)Hα(ξ) where
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α ∈ Nn0 is a multi-index with `1 norm |α| (see Sect. 1.2) and Hα is a multivariate
Hermite polynomial (Def. 3). The uα : D → R output deterministic coefficients.
The Hα are weakly orthogonal (Eq. 1) with respect to the measure dξ induced
by ξ. When truncating to some M value, we can define

u(M)(x, t; ξ) :=
∑
α∈Nn0

0≤|α|≤M

u(M)
α (x, t)Hα(ξ). (4)

As proved in [15], u(M)(x, t; ξ) converges to u(x, t; ξ) in mean-square, proba-
bility, and distribution. The procedure is to substitute u(M)(x, t; ξ) into Eq. 2,
multiply through by an arbitrary Hβ, and integrate with respect to the dξ mea-
sure, repeating for each Hβ; this is effectively projecting onto the polynomial
basis. From there, orthogonality conditions can be used to eliminate terms. For
instance, if Eq. 2 represents the inviscid Burgers’ equation,

∂u

∂t
+ u [aT∇xu] = 0 u(x, 0; ξ) = f(ξ,x) a ∈ Rn fixed, (5)

then this projection process and weak orthogonality (Eq. 1) gives∑
i∈Nn0
|i|=|k|

∂u
(M)
i

∂t
〈Hi, Hk〉+

∑
i∈Nn0

0≤|i|≤M

∑
j∈Nn0

0≤|j|≤M

u
(M)
i (aT∇xu(M)

j )〈Hi, Hj , Hk〉 = 0 (6)

for every k ∈ Nn0 , 1 ≤ |k| ≤ M . Here 〈Hi, Hk〉 := Eξ(Hi(ξ)Hk(ξ)) denotes the
double product and 〈Hi, Hj , Hk〉 := Eξ(Hi(ξ)Hj(ξ)Hk(ξ)) denotes the triple
product.

Eq. 6 is a system of deterministic PDEs to solve, where the number of PDEs
is equal to the number of k ∈ Nn0 such that 1 ≤ |k| ≤ M for the selected M
bound. In particular, a computer can solve such a system via standard numeric
techniques if the coefficients 〈Hi, Hk〉 and 〈Hi, Hj , Hk〉 are known. Moreover,
any linear term of a general differential operator F(u,x, t) of Eq. 2 will generate
double product coefficients; this is not specific to inviscid Burgers’ equation.

When the centered ξ is one dimensional, the double and triple products are
given by simple expressions [19]. However, when ξ is n-dimensional and corre-
lated, the expressions (first proved in [15]) become cumbersome. Our contribution
provides a new formula (Thm. 2) for the double product of multivariate Hermite
polynomials of a centered Gaussian with generic covariance that is both simpler
and more computationally efficient to implement than its previous formulation.

This paper is organized as follows. In Sect. 1.2, we establish the necessary
preliminaries for proving our contribution (Thm. 2). Sect. 2 outlines both the
previous formula (Thm. 1) and our contribution for the double product and
provides an instructive example (Ex. 1) in which each formula is applied. In
Sect. 3, we compare and discuss computational complexity. Appendices A (Sect.
5) and B (Sect. 6) prove Thm. 2 and report some technical lemmas applied
throughout the document.

1.2 Definitions and Notation

The following notation will be utilized throughout this paper:
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• N := the natural numbers = {1, 2, 3, . . .},
• N0 := N ∪ {0} = {0, 1, 2, . . .},
• [n] := {1, . . . , n} for any n ∈ N.

Definition 1 (Multi-index). An n-dimensional multi-index α is an n-tuple
(α1, . . . , αn) ∈ Nn0 of non-negative integers. For any n ∈ N, a multi-index α
over [n] is an n-tuple such that every αi ∈ N0 satisfies αi ≤ n. Each αi is
referred to as the ith element of the multi-index α.

Unless otherwise specified, a multi-index α is assumed to have the notation given
in Def. 1. For multi-indices α,β ∈ Nn0 , one defines [15,17]

1. componentwise sum and difference: α± β = (α1 ± β1, . . . , αn ± βn),
2. absolute value: |α| := ‖α‖1 = α1 + · · ·+ αn, which we call the order of α,
3. factorial : α! = α1! · · ·αn! =

∏n
i=1 αi!, and the

4. partial derivative: D
|α|
α = ∂α1

1 · · · ∂αnn .

Moving forward, any α will denote a multi-index over [n] of order k ≥ 1 unless
otherwise specified.

Sometimes we will need to express α in what we will refer to as its mutliset
notation. Recall that a multiset is a modification of a set that allows for multiple
instances of each of its elements. More formally [8,18], a multiset M on a set S
is a pair (S, ν), where ν is a function ν : S → N assigning each element x ∈ S its
positive multiplicity i.e. the number of times x is repeated in M . We consider
both the multi-index (Def. 1) and the proposed multiset notation (Def. 2) for a
label α, because

1. the multi-index version is standard in relevant previous literature [13,15,17],
and

2. the multiset version can be easier to utilize, as later showcased in Theorem 2.

Definition 2 (Multiset notation). For a multi-index α over [n] of order
|α| = k ≥ 1, let s(α) denote the map

s(α) : [k]→ [n] s(α)(`) := s(α)` = min{i ∈ [n] | ` ≤
i∑

r=1

αr}, 3

which we call the multiset notation for α. It is straightforward (see Lemma 1)
to verify that

[s(α)1, . . . , s(α)k] = [

α1 times︷ ︸︸ ︷
1, . . . , 1, . . . ,

αn times︷ ︸︸ ︷
n · · ·n ] = [1α1 , . . . , nαn ].

Sometimes we use s(α) to refer to the output [s(α)1, . . . , s(α)k] of the map
across its whole domain [k] rather than to the map itself, with context making
the distinction clear. The elements of s(α) are s(α)1, . . . , s(α)k, and the order
|s(α)| of s(α) is the total number of such elements k, which is also the order
of α. When k = 0, so that α = (0, . . . , 0), we write s(α) = ∅.
3 Note that this set is nonempty, because always ` ≤ k =

∑n
r=1 αi, so i = n always

satisfies the condition that ` ≤
∑i

r=1 αi.
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The name multiset notation is chosen, since the outputs of s(α) are reminis-
cent of a multiset when written as [s(α)1 . . . s(α)k], with each i ∈ [n] represented
with multiplicity αi in the array (Lem. 1). Note that αi = 0 indicates that an i
is not present in the s(α) array.

As an example, if α = (2, 1, 0, 0, 1), then s(α) has order k = 2 + 1 + 1 = 4
with s(α)1 = s(α)2 = 1, s(α)3 = 2, and s(α)4 = 5. Thus, we represent α via
the map s(α) by the multiset notation s(α) = [1, 1, 2, 5].

Finally, the partial derivative operator for s(α) is defined as

Dk
s(α) := ∂s(α)1 · · · ∂s(α)k = ∂α1

1 · · · ∂αnn

so that Dk
s(α) = Dk

α as expected. With this notation in place, we present the
multi-dimensional analog of the Hermite polynomial.

Definition 3 (Multivariate Hermite polynomial). Let ξ ∼ N (0, Σ) such
that Σ ∈ Rn×n is symmetric positive definite (SPD) with joint density function
φ(ξ;Σ) given by Eq. 3. Then for any multi-index α over [n], the multivariate
Hermite polynomial Hα(ξ;Σ) indexed by α is a polynomial in ξ of degree |α|
defined as

Hα(ξ;Σ) =

{
(−1)|α|
φ(ξ;Σ) D

|α|
α (φ(ξ;Σ)) if |α| ≥ 1

1 if |α| = 0.

With multiset notation s(α), note that Hs(α)(ξ;Σ) = Hα(ξ;Σ), since D
|α|
α and

D
|s(α)|
s(α) denote identical derivative operators.

To establish notation for the proof of Thm. 2, let

Tα = {(`, s(α)`) | ` ∈ [k]} (7)

be the set of k-tuples, one for each index ` ∈ [k]. For multi-indices α,β of the
same order k, we will consider bijections between Tα and Tβ, i.e. the ways to
pair-off the elements of Tα and Tβ. As a heuristic, we can think of this as the
number of ways to draw lines between the “entries” of s(α) and s(β) such that
each entry has a unique partner and all entries are covered. For instance, for
s(α) = [1, 1, 5] and s(β) = [1, 2, 4], we have the 3! = 6 options depicted in
Figure 1. Observe how the copies of entries (e.g. 1 in s(α) = [1, 1, 5]) are treated
as distinct when drawing these lines; in particular, the number of such pairings
for |α| = |β| = k will always be k!.

Fig. 1: All possible bijections between Tα and Tβ for α = (2, 0, 1, 0) and β = (0, 1, 1, 1).
Both α,β are multi-indices of order k = 3 over [4], with s(α) = [1, 1, 3] and s(β) =
[2, 3, 4].

1 2 1 2 1 2 1 2 1 2 1 2

1 3 1 3 1 3 1 3 1 3 1 3

3 4 3 4 3 4 3 4 3 4 3 4
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6 L. Lyman and G. Iaccarino

If we are imagining pairings of the form (s(α)`, s(β)j), why discuss bijections
between Tα and Tβ rather than bijections between the s(α) and s(β) outputs
directly? There are several reasons. For one, we would like to have “repeated”
mappings counted with multiplicity rather than treated as single entities.4 For
instance, in Fig. 1 the first and third mappings are counted as distinct, even
though they choose the same pairings (1, 2), (1, 3), (3, 4).

The bijections between Tα and Tβ are the foundation for our new and com-
putationally efficient double-product formula (Theorem 2). As we shall see in
Sect. 2, the proposed formula involves multiplying entries of the inverse covari-
ance matrix Σ−1 — and the bijections between Tα and Tβ determine precisely
which entries of Σ−1 are selected in this calculation.

2 Double Product Formulations

For both Theorems 1 and 2, let Σ−1 denote the known n × n SPD inverse
matrix of the generic covariance Σ given in Def. 3. In this context, the second-
order moments of multivariate Hermite polynomials were first proved in the
comprehensive work of [15] to equal the expression in Thm. 1 below.

Theorem 1 (Proved in [15]). Let θ ∈ Nn×n0 . Define r(θ) as the vector of row
sums of θ; that is,

r(θ) = (r1, . . . , rn)T with ri =
∑n
j=1 θij = ‖θi•‖1 = `1 norm of the ith row of θ.

Similarly, let c(θ) be the n× 1 vector such that cj = ‖θ•j‖1. Then

〈Hα, Hβ〉 =


α!β!

∑
θ∈Nn×n0

r(θ)=α,c(θ)=β

∏n
p=1

∏n
q=1

(
Σ−1pq

)θpq
θ!

, if |α| = |β|

0 else.

where θ! =
∏n
i=1

∏n
`=1 θi`!.

We now propose a novel evaluation of the double product based on the multiset
notation introduced in Def. 2.

Theorem 2. Let α,β be multi-indices over [n] with |α| = |β| = k ≥ 1. Then

〈Hα, Hβ〉 =
∑
p∈Sk

k∏
i=1

Σ−1s(α)i, s(β)p(i)

where Σ−1s(α)i, s(β)p(i)
is the

(
s(α)i, s(β)p(i)

)
th entry of Σ−1 and Sk is the sym-

metric group on {1, . . . , k}, recalling the multiset index notation s(α) given in
Def. 2. If |α| 6= |β|, then 〈Hα, Hβ〉 = 0.

4 Accordingly, we introduce s(α) as multiset notation rather than a literal multiset.
An underlying philosophy of multisets is that copies of elements cannot be picked
out or distinguished by (say) an indexing convention [8,10,16]. For our purposes,
however, we want to treat such copies as distinct.
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Note that Thm. 2 only considers when k > 0, since the case k = 0 is trivial. To
explore and illustrate the differences between these two formulas for the double
product, we provide the following Ex. 1.

Example 1. Let α = (2, 0, 1, 0) and β = (0, 1, 1, 1) over [4], as they were in Fig.
1. To use Thm. 1, we are searching for θ ∈ N4×4

0 such that r(θ) = (2, 0, 1, 0)
and c(θ) = (0, 1, 1, 1). Let r(i) denote the ith row of θ. For the constraint
r(θ) = (2, 0, 1, 0), noting that rows 2 and 4 must be zeroes, we have

(
4+2−1

2

)
= 10

options for r(1) and
(
4+1−1

2

)
= 3 options for r(3) [18]. Naively, we could then

check all 10 × 3 = 30 options for θ and eliminate those that fail to satisfy the
column constraint c(θ) = β. To be clever, we can eliminate the r(i) along the

way whose entries r
(i)
j ≥ βj , since these rows guarantee that some columns sums

in θ will be too large — which is indicated by the slashes in Fig. 2. Hence, we
have 3 × 3 = 9 initial matrices θ to iterate through to find those such that
c(θ) = β, from which there are 3 final candidates (Fig. 2).

Fig. 2: Determining the possible θ ∈ N4×4
0 such that r(θ) = (2, 0, 1, 0) and c(θ) =

(0, 1, 1, 1) in Ex. 1 to use Thm. 1. First we find the options for r(1) and r(3) (rows 1
and 3) of θ such that r(1) sums to 2 and r(3) sums to 1, eliminating the options along

the way that have an entry r
(i)
j ≥ βj , as indicated by the slashes. The 3×3 = 9 possible

θ are iterated over to see which satisfy the column sums constraint c(θ) = (0, 1, 1, 1).
This leaves the 3 matrices denoted by θ(1),θ(2),θ(3) below.

r(1) options: �����
(2, 0, 0, 0),�����

(0, 2, 0, 0),�����
(0, 0, 2, 0),�����

(0, 0, 0, 2),�����
(1, 1, 0, 0),�����

(1, 0, 1, 0),�����
(1, 0, 0, 1),

(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)

r(3) options: (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).

�
�
��


0 1 1 0
0 0 0 0
0 1 0 0
0 0 0 0

,
�
�
��


0 1 1 0
0 0 0 0
0 0 1 0
0 0 0 0

,
θ(1)︷ ︸︸ ︷

0 1 1 0
0 0 0 0
0 0 0 1
0 0 0 0


�
�

��


0 1 0 1
0 0 0 0
0 1 0 0
0 0 0 0

,
θ(2)︷ ︸︸ ︷

0 1 0 1
0 0 0 0
0 0 1 0
0 0 0 0

,
�

�
��


0 1 0 1
0 0 0 0
0 0 0 1
0 0 0 0


θ(3)︷ ︸︸ ︷

0 0 1 1
0 0 0 0
0 1 0 0
0 0 0 0

,
�
�

��


0 0 1 1
0 0 0 0
0 0 1 0
0 0 0 0

,
�
�

��


0 0 1 1
0 0 0 0
0 0 0 1
0 0 0 0



Each of these θ satisfies θ! = 1. Compute

〈Hα, Hβ〉 = 2[Σ−112 Σ
−1
13 Σ

−1
34 +Σ−112 Σ

−1
14 Σ

−1
33 +Σ−113 Σ

−1
14 Σ

−1
23 ],

where we tacitly used that Σ−1 is symmetric.
By using the formulation in Thm. 2 instead, we have the 3! = 6 terms to

consider from the start, one for each p ∈ S3. Once a computer obtains these S3

entries, which often is elementary and trivially fast to do,5 the Σ−1(s(α)i, s(β)p(i))

can be evaluated directly. Alternatively, we evaluate Σ−1 at the pairs matched
by the mappings drawn in Fig. 1. From the final row in Table 1, which sums
the entries of the previous rows, we yield the same 〈Hα, Hβ〉 as was found with
Thm. 1 previously.

What happens to the product in Thm. 2 when the ξi are uncorrelated? In
this case, every Σ−1ij in which i 6= j equals zero. If α 6= β, then it is easy to show
that for every p ∈ Sk there is at least one ` ∈ [k] for which s(α)` 6= s(β)p(`). As
expected, then Thm. 2 gives that E(HαHβ) = 0.

5 For instance, in Python3, the combinatorics module in itertools [20] suffices.
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8 L. Lyman and G. Iaccarino

Table 1: Using Thm. 2 to compute 〈Hα, Hβ〉 in Ex. 1. For each permutation p on
{1, 2, 3}, we find the tuples (s(α)i, s(β)p(i)) for s(α) = [1, 1, 3] and s(β) = [2, 3, 4].

Then the product
∏3

i=1Σ
−1
s(α)i,s(β)p(i)

is evaluated at these tuples. Equivalently, the

(s(α)i, s(β)p(i)) are precisely the pairings shown in the maps of Fig. 1 (left to right),
matched by color to show correspondence across the two figures.

p ∈ S3 (s(α)i, s(β)p(i)) ∀i∈[3], i.e. pairings in Fig. 1
∏3

i=1Σ
−1
s(α)i,s(β)p(i)

(123) (1, 2), (1, 3), (3, 4) Σ−1
12 Σ

−1
13 Σ

−1
34

(132) (1, 2), (1, 4), (3, 3) Σ−1
12 Σ

−1
14 Σ

−1
33

(213) (1, 3), (1, 2), (3, 4) Σ−1
12 Σ

−1
13 Σ

−1
34

(231) (1, 3), (1, 4), (3, 2) Σ−1
13 Σ

−1
14 Σ

−1
23

(312) (1, 4), (1, 2), (3, 3) Σ−1
12 Σ

−1
14 Σ

−1
33

(321) (1, 4), (1, 3), (3, 2) Σ−1
13 Σ

−1
14 Σ

−1
23

〈Hα, Hβ〉 2[Σ−1
12 Σ

−1
13 Σ

−1
34 +Σ−1

12 Σ
−1
14 Σ

−1
33 +Σ−1

13 Σ
−1
14 Σ

−1
23 ]

3 Comparing Computational Complexity

We assume that the inverse covariance matrix Σ−1 and α,β of order k are
given. To use Thm. 1 to compute a single double product, the computation time
is dominated by producing all the θ ∈ Nn0 such that r(θ) = α, c(θ) = β.6 A
reasonable, albeit naive, algorithm for finding all such θ is to first generate the
possible θ such that r(θ) = α and then eliminate those which do not satisfy the
column constraint; this was the process taken in Ex. 1. Along the way, perhaps

we can eliminate possibilities for the ith row r(i) based on whether r
(i)
j ≤ βj ,

but in the worst case scenario, none of the possibilities for any of the r(i) can be
discarded based on β. We do not claim that this procedure is the most efficient
computation of 〈Hα, Hβ〉 via Thm. 1 — but we will use it as the straightforward
benchmark for comparison against computing the double product via Thm. 2.

Before considering column constraints,

# of options for row i = # of n-tuples whose entries sum to αi

=
(
n+αi−1
n−1

)
by [8,10,15,16,18]. Following §4.5.1 in [16], there exist algorithms that output
all of the options for r(i) with computational complexity proportional to the
number of options, i.e.

(
n+αi−1
n−1

)
. Repeating for all of the rows, there are at least

(
n+α1−1
n−1

)
· · ·
(
n+αn−1
n−1

)
= (n−1)!n[

α1 terms︷ ︸︸ ︷
(n)(n + 1) · · · (n + α1 − 1)]···

αn terms︷ ︸︸ ︷
[(n)(n + 1) · · · (n + αn − 1)]

(n−1)!nα!

≥ nα1 ···nαn
α! =

n
∑
i αi

α!
=
nk

α!
≥ nk

k!
[since max

|α|=k
α! = k!]

6 Counting the number of such index matrices, which are often called contingency
tables with fixed margins in statistics literature, is well-studied [3,6] and can be done
in poly(n) time [4]. This does not mean that the number of contingency tables is
poly(n) but that algorithms can produce the total count of them in poly(n) time.
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options for θ ∈ Nn×n0 in Eq. 1 such that r(θ) = α. Thus, producing the necessary

θ to sum over in Eq. 1 involves iterating over at least nk

k! matrices in terms of
asymptotic complexity. Per θ, computing

∏n
p=1

∏n
q=1(Σ−1pq )θpq involves a total

of at least
∑n
p,q=1 θp,q = k multiplications. Then the computational complexity

of implementing Eq. 1 in this direct manner is Ω( nk

(k−1)! ), which is exponential

in k.
When computing the double product via Thm. 2, there are k! terms in the

summation, and each summand is the product of k entries of Σ−1. So the cost
for computing 〈Hα, Hβ〉 in this case is factorial in k, namely O(kk!) = O(k!),
for α,β of order k.

4 Conclusion

Polynomial chaos (PC) expansions are effective for incorporating and quantify-
ing uncertainties in problems governed by partial differential equations. In some
contexts, they offer significant computational advantages to classic Monte Carlo
sampling methods (for example) [2,15], whose converge rates are especially hin-
dered when each sample evaluation of the PDE is expensive [2,12]. However,
when multiple input uncertainties are considered without transformations, PC
approaches cannot be generalized in a simple fashion unless the uncertainties are
represented in terms of independent variables. Unlike when ξ is one dimensional
or uncorrelated, many of the double product coefficients 〈Hα, Hβ〉 := Eξ(HαHβ)
that appear from the Galerkin projections are nonzero and therefore essential
to compute a priori in order to solve the resulting system numerically.

In this paper, we prove a new formula (Thm. 2) for the double product of two
multivariate Hermite polynomials whose n-dimensional input Gaussian random
variable has an arbitrary SPD covariance matrix. To do so, we introduce what
we call multiset notation (Def. 2) for the label indices α. Calculating the double
product is computationally more efficient and (arguably) simpler with the pro-
posed approach than doing so with the classical formula in [15] given by Thm. 1.
In particular, Sect. 3 analyzes the computational complexity of the two formu-
lations; the implementations considered for each were purposely straightforward
and already showcase the reduced cost achieved by the use of the multiset no-
tation.

From the foundational work in this paper, the authors plan to explore the
triple product 〈Hα, Hβ, Hγ〉 calculations in terms of these double product con-
stituents. As demonstrated in inviscid Burgers’ equation (Eq. 5), the triple prod-
ucts can arise when the original PDE has quadratic nonlinear terms. Establishing
these triple product values will be a pivotal building block for handling nonlinear
PDEs that incorporate uncertainties in a general setting.

5 Appendix A: Proof of Theorem 2

The proof of Thm. 2 relies on the following Thms. 3 and 4. In the following
discussion, assume α is a multi-index over [n] of order k ≥ 1 unless otherwise
specified.
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Recall the definition of Tα in Eq. 7 in Sect. 1.2. We assign an ordering to
the elements of Tα (or any subset of Tα) based on their first components as-
cending. That is, (Tα)1 = (1, s(α)1), . . . , (Tα)k = (k, s(α)k), and when A ⊆ Tα,
we label A1 = (`1, s(α)`1), . . . , A|A| = (`|A|, s(α)`|A|) such that `1 < · · · <
`|A|. Before fretting about the specifics, realize that this ordering follows in-
tuition. For example, if α = (2, 1, 0, 0, 1), then s(α) = [1, 1, 2, 5], and Tα =
{(1, 1), (2, 1), (3, 2), (4, 5)}. Now, (Tα)1 = (1, 1), (Tα)2 = (2, 1), (Tα)3 = (3, 2),
and (Tα)4 = (4, 5). For the subset A = Tα \ {(2, 1)} = {(1, 1), (3, 2), (4, 5)} of
Tα, we have A1 = (1, 1), A2 = (3, 2), and A3 = (4, 5). In fact, we will use the
shorthand

(Tα)−j := Tα \ { (j, s(α)j) } for any j ∈ [k], (8)

where (Tα)−j` is the `th element of (Tα)−j according to this ordering by first
components ascending.

For any i ∈ [n] such that αi > 0, define

i∗ = min
(
s(α)−1({i})

)
= min{` ∈ [k] | s(α)` = i}. (9)

By Lemma 2, we have

(Tα)−i
∗

` =

{
(`, s(α)`) if ` < i∗

(`+ 1, s(α)`+1) else
=

{
(`, s(α− ei)`) if ` < i∗

(`+ 1, s(α− ei)`) else.

Note that the elements of Tα−ei have the form (`, s(α− ei)`) for ` ∈ [k − 1].

Therefore, the second coordinate of the `th element of (Tα)−i
∗

` is identical to the
second coordinate of the `th element of Tα−ei .

Define the projector operator

proj : [k]× [n]→ [n] proj(t1, t2) = t2 (10)

that simply ignores the first coordinate of its input. Then for any ` ∈ [k−1] and
i ∈ [n] such that αi > 0,

proj((Tα−ei)`) = proj((T−i
∗

α )`), i∗ = min s(α)−1({i}). (11)

Equation 11, along with the definitions in Equations 7, 8, 10, will be utilized in
the proof of Theorem 3.

Theorem 3. Let α,β be two multi-indices over [n] such that |α| = |β| = k ≥ 1.
Then

∂|β|Hα
∂ξβ

=
∑
p∈Sk

k∏
i=1

Σ−1s(α)i, s(β)p(i)
.

Proof. We proceed by induction on k. When k = 1, α = er and β = es for
some r, s ∈ [n], so the base case is proved by Lemma 4. For the inductive step,
let j = min{i ∈ [n] | βi > 0}, where we know j exists since |β| = k ≥ 1. Let
gα,j,Σ be a function on [n] such that gα,j,Σ(i) = Σ−1ij Hα−ei . Then

∂

∂ξj
(Hα) =

n∑
i=1

αiΣ
−1
ij Hα−ei =

n∑
i=1

αi gα,j,Σ(i) [Lem. 5 & def. of gα,j,Σ ]

=

k∑
i=1

gα,j,Σ(s(α)i) =

k∑
i=1

Σ−1s(α)i,j
Hα−es(α)i

[Lem. 6].
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Substituting,

Dk
β(Hα) = Dk−1

β−ej
∂

∂ξj
(Hα) =

k∑
i=1

Σ−1s(α)i,j
Dk−1
β−ej

(
Hα−es(α)i

)
=

k∑
i=1

Σ−1s(α)i,j

∑
p∈Sk−1

k−1∏
`=1

Σ−1s(α−es(α)i
)`, s(β−ej)p(`) [ind. hypothesis].

Let
i∗ = min{` ∈ [k] | s(α)` = s(α)i}, j∗ = {` ∈ [k] | s(β)` = j}.

For all ` ∈ [k − 1], Equations 7, 8, 10, and 11 give

proj
(

(T−i
∗

α )`

)
= proj

(
(Tα−es(α)i

)`

)
= s(α− es(α)i)`

proj
(

(T−j
∗

β )`

)
= proj

(
(Tβ−ej )`

)
= s(α− ej)`.

Let h : Tα × Tβ → R such that h(r, t) = Σ−1proj(r),proj(t), noting that T−i
∗

α ⊂ Tα

and T−j
∗

β ⊂ Tβ. Then

Dk
β(Hα) =

k∑
i=1

Σ−1s(α)i,j

∑
p∈Sk−1

k−1∏
`=1

h
(

(T−i
∗

α )`, (T
−j∗
β )p(`)

)
[def. of h]

=

k∑
i=1

Σ−1s(α)i,j

∑
b:T−i

∗
α ↪→→T−j

∗
β

∏
t∈T−i∗α

h(t, b(t)) [by Lemma 7, Eq. 12]

where we can match notation from Eq. 12 in Lem. 7 by setting A = T−i
∗

α and

B = T−j
∗

β . Now,

s(α)i = proj( (i∗, s(α)i) ) [def. of proj map in Eq. 10]

= proj( (i∗, s(α)i∗) ) [since s(α)i∗ = s(α)i by def. of i∗]

= proj((Tα)i∗) [labeling of Tα elements].

By a similar argument, j = proj((Tβ)j∗). Therefore,

Dk
β(Hα) =

k∑
i=1

h((Tα)i∗ , (Tβ)j∗)
∑

b:T−i
∗

α ↪→→T−j
∗

β

∏
t∈T−i∗α

h(t, b(t))

=
∑

b:Tα↪→→Tβ

∏
t∈Tα

h(t, b(t)) [Lem. 7, Eq. 13]

=
∑
p∈Sk

k∏
`=1

h((Tα)`, (Tβ)p(`)) [Lem. 7, Eq. 12]

=
∑
p∈Sk

k∏
`=1

Σ−1s(α)`,s(β)p(`)
[def. of h]

as desired. ut
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Theorem 4. Let α,β be two multi-indices over [n]. Then

E(HαHβ) =

{
∂|β|Hα
∂ξβ

if |α| = |β|
0 else.

Proof. It is proved in [15] that |α| 6= |β| implies that E(HαHβ) = 0. So suppose
|α| = |β| = k, and we proceed by induction on k. The k = 1 base case is
a straightforward consequence of Lem. 3 and the fact that the expected value
of any multivariate Hermite polynomial is zero by [15]. For the inductive step,
assume |α| = |β| = k. Let j = min{` ∈ [n] | β` > 0}, where we know such a j
exists since |β| > 0. By Lemma 5 and linearity of expectation,

E
(
Dk
α(Hβ)

)
=

n∑
i=1

αiΣ
−1
ij E

(
Dk−1
β−ej (Hα−ei)

)
=

n∑
i=1

Σ−1ij E
(
Hα−eiHβ−ej

)
[inductive hypothesis]

= E

(
Hβ−ej

n∑
i=1

αiΣ
−1
ij Hα−ei

)
= E

(
Hβ−ejDej (Hα)

)
[Lem. 5]

= E
(
Hβ−ejHαHej

)
− E

(
Hβ−ejHα+ej

)
[Lem. 3 for Hα+ej ].

From |β − ej | 6= |α + ej |, E(Hβ−ejHα+ej ) = 0. Therefore, E(Dk
α(Hβ)) =

E(HαHβ−ejHej ). Applying Lem. 3 to Hβ, E(HαHβ−ejHej ) = E(HαHβ) +
E(HαDej (Hβ−ej )). By Lem. 5, we know that Dej (Hβ−ej ) is a linear combina-
tion of polynomials of the form Hβ−ej−er . Hence, E(HαDej (Hβ−ej )) is a linear
combination of such terms E(HαHγ) for |α| 6= |γ|, each of which is zero. Thus,
E(Dk

β(Hα)) = E (HαHβ) . Finally, we know from Thm. 3 that Dβ(Hα) is deter-

ministic (since it is independent of ξ), so E(HαHβ) = E(Dk
β(Hα)) = ∂kHα

∂ξβ
. ut

Proof (of Theorem 2). Combining Theorems 3 and 4 immediately gives the de-
sired result.

6 Appendix B

For brevity, several proofs are omitted, but we outline them here. Lems. 1 and 2
are straightforward. Lems. 3 and 4 involve differentiating the density φ in Def.
3 directly. Lem. 5 is proved by induction and applying Lem. 3. Lem. 6 follows
from decomposing [k] into the preimage sets s(α)−1({`}) for all ` ∈ [n]. Lem. 7
is a specific application of an elementary combinatorial argument that regards
every bijection between two sets as an extension of a bijection on two smaller
subsets [11].

Lemma 1. For multi-index α over [n] of order k > 0,

1. s(α) is non-decreasing in its indices, i.e. s(α)` ≤ s(α)`+1 for all ` ∈ [k− 1],
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2. for fixed j ∈ [n] such that αj > 0, min s(α)−1({j}) =
∑j−1
r=1 αr + 1,

3. each j ∈ [n] appears αj total times in [s(α)1, . . . , s(α)k].

Lemma 2. Let α be a multi-index over [n] such that |α| = k > 0. Let i ∈ [n]
such that αi > 0. Define i∗ = min{` ∈ [k] | s(α)` = i}. Then for ` ∈ [k − 1],
s(α− ei)` = s(α)` if ` < i∗ and s(α− ei)` = s(α)`+1 otherwise.

Lemma 3. Let α be a multi-index over [n]. Then for any i ∈ [n] such that
αi > 0, Hα = Hα−eiHei − ∂

∂ξi
Hα−ei .

Lemma 4. Let ξ ∼ N (0, Σ) be Rn-valued. Then for any ` ∈ [n], He`(ξ;Σ) =
(Σ−1)`• ξ, where (Σ−1)`• is the `th row of the inverse covariance matrix Σ, and

e` is the `th standard basis vector written as a multi-index. Thus,
∂He` (ξ;Σ)

∂ξj
=

Σ−1`j for any j ∈ [n].

Lemma 5. Let α be a multi-index over [n] such that |α| = k ≥ 1. Then for any
j ∈ [n], D1

ej
(Hα) = ∂Hα

∂ξj
=
∑n
i=1 αiΣ

−1
ij Hα−ei .

Lemma 6. Let α be an order-k multi-index for k ≥ 1 over [n]. Let f be a

generic function of the indices [n]. Then
∑n
i=1 αif(i) =

∑k
i=1 f(s(α)i).

Lemma 7. Let A,B be finite sets such that |A| = |B| = k ≥ 1. Let M(A,B)
denote the set of bijections between A and B. Then for fixed b ∈ B and an
arbitrary h : A×B → R,∑

p∈Sk
∏k
`=1 h(A`, Bp(`)) =

∑
f∈M(A,B)

∏
a∈A h(a, f(a)) (12)

=
∑k
`=1 h(A`, b)

∑
g∈M(A\{A`},B\{b})

∏
a∈A\{A`} h(a, g(a)) (13)

where Sk is the symmetric group of permutations on [k] = {1, . . . , k}.
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