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Abstract. There are a variety of factors that can influence the decision
of which modeling technique to select for a problem being investigated,
such as a modeler’s familiarity with a technique, or the characteristics of
the problem. We present a study which controls for modeler familiarity
by studying novice modelers choosing between the only modeling tech-
niques they have been introduced to: in this case, cellular automata and
agent-based models. Undergraduates in introductory modeling courses
in 2018 and 2019 were asked to consider a set of modeling problems, first
on their own, and then collaboratively with a partner. They completed a
questionnaire in which they characterized their modeling method, rated
the factors that influenced their decision, and characterized the problem
according to contrasting adjectives. Applying a decision tree algorithm
to the responses, we discovered that one question (Is the problem com-
plex or simple? ) explained 72.72% of their choices. When asked to re-
solve a conflicting choice with their partners, we observed the repeated
themes of mobility and decision-making in their explanation of which
problem characteristics influence their resolution. This study provides
both qualitative and quantitative insights into factors driving modeling
choice among novice modelers. These insights are valuable for instruc-
tors teaching computational modeling, by identifying key factors shaping
how students resolve conflict with different preferences and negotiate a
mutually agreeable choice in the decision process in a team project en-
vironment.

Keywords: Agent-Based Model · Cellular Automata · Education · First-
Year Experience · Team-Based Modeling.
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2 Giabbanelli and Jackson

1 Introduction

For a given project, modelers can choose from a very large number of modeling
techniques, both discrete (e.g., Agent-Based Modeling, Cellular Automata) or
continuous (e.g., System Dynamics). Ideally, this choice would be driven by the
availability of data, the project scope negotiated with the end-user, or the model
performance given available computing resources [3]. However, all of these factors
overlook an essential aspect of the model-building process: models are created by
modelers. As most available literature provides little justification on the choice
of a particular modeling approach, our previous study performed a survey of
practitioners and found that the selection of methods primarily depended on
factors related to the modelers, as 92% of respondents admitted that they chose
the most familiar method [34]. However, 87% of respondents also declared that
they chose a method based on the problem characteristics. This paradox suggests
that a modeler may look at a problem and then decide on one method, convinced
that it is the best fit, while a modeler with a different experience would make a
case for another method in the same context. These two choices may have to be
reconciled, since computational modeling is often constructed as a team-based
discipline. In this paper, we examine the process through which novice modelers
within the educational setting of a first year course negotiate the choice of a
modeling approach.

A survey of 51 professionals in simulation education showed that 95.2% of
programs on simulation education include a project, which involves a team in
92.1% of cases [20]. It is thus very common for students to be faced with the
problem of reconciling multiple viewpoints when designing a model collabora-
tively, starting with the choice of a modeling approach. Although there has been
research for several decades on how people behave when building a model, much
of the focus has been on scenarios involving a single modeler [30, 37] rather than
collaborative settings. When a team is studied, the focus may be on the dia-
logues between subject-matter experts (also called ‘domain experts’) and mod-
elers rather than among the modelers themselves [8]. Similarly to Peter Rittgen,
we conducted experiments involving groups of students who were provided with
a textual description of four problems and asked to model them by choosing
among techniques [23]. While Rittgen’s experiment involved ARIS-EPC, Petri
Nets, UML, DEMO, our approach focused on the choice between two closely re-
lated techniques: Cellular Automata (CA) or Agent-Based Models (ABM). Our
experiments were repeated over two classes and used a scaffolding technique
starting with independently choosing and justifying a model, then reviewing the
choices made by a student with different arguments, and finally working in pairs
to reach a consensus.

Our three main contributions are as follows:

(1) Through experiments, we identify a core set of three problems that lead to
high divergence among students. These problems can be used by instructors
to intentionally maximize divergent thinking and practice skills in collabo-
rative problem solving for an introductory course on computational science.
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(2) By applying machine learning on experimental data, we show that the initial
choice of agent-based models or cellular automata is primarily motivated by
the perceived level of complexity of the problem.

(3) Through a thematic analysis of narratives by teams, we explain how students
have a different perception of agent-environment interactions compared to
interactions among agents. When a problem evokes interactions with the
environment (e.g. through mobility), students choose Agent-Based Modeling;
conversely, the absence of such interactions often justifies their use of Cellular
Automata. In contrast, interactions among agents can lead to either option
through the notion of networks or neighborhoods.

The remainder of this paper is organized as follows. In section 2, we introduce
the setting in which we taught the course, including the teaching philosophy, core
material, and institutional factors. In section 3, we explain how we designed ex-
periments and which measurements were recorded at each step. Our results in
section 4 are subdivided to focus on problems leading to different choices, ex-
plaining individual choices, and examining the process of co-creation as a pair.
Finally, we contextualize our findings in the broader domain of collaborative
problem solving in computational science and discuss the potential for applica-
tions to other areas such as processes in organizations.

2 The Setting: Teaching Philosophy and Implementation

The course was offered at Furman University, which is a liberal arts institution
located in South Carolina, USA. The Computer Science Department used topic-
based introductory courses to introduce key concepts of computer science to
both majors and non-majors. The motivation is to “contextualize computing
in a real-world, interdisciplinary problem upfront, and show how a variety of
computer science topics apply to solving problems in that context” [32].

In the same manner as personal preferences and experiences shape a mod-
eler’s actions, simulation education depends on the teaching philosophy of the
instructor [29]. Our teaching philosophy for this course, titled ‘CSC 105: Virtual
Worlds’, rests on the four objectives presented at ICCS2016 [11]:
1 We provide an overview of the field followed by three modeling techniques,

covering both individual- and aggregate-level models. Our implementation of
this objective was similar to courses at peer institutions, such as ‘Modeling and
Simulation for the Sciences’ at Wofford College [27]. Specifically, students were
exposed to system dynamics as aggregate models, then to cellular automata
and agent-based models as individual-level models. In contrast to higher-level
classes such as ‘Introduction to Computational Modeling and Data Analysis’,
we do not include topics such as Markov chains or coupling models (i.e. hybrid
modeling) [28].
2 We cover one programming environment, starting from basic syntax. We com-

plemented conceptual lectures by using the widely adopted NetLogo in weekly
hands-on labs involving paired programming. We also emphasizing best prac-
tices from a software engineering standpoint [33].
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4 Giabbanelli and Jackson

3 We practice through interdisciplinary projects, based on years of experience
in interdisciplinary curricular activities [12]. This objective is also made neces-
sary given that the course includes the general student population, who may not
major in computer science. Projects provide opportunities for creative expres-
sion, which we see as a cornerstone of a student-centered approach [9].
4 We develop critical thinking skills. In line with departmental practices [31],

we used scholarly readings. The emphasis was on identifying limitations and on
contrasting studies rather than in original writing, which is covered in a separate
first-year seminar course [2].

As part of the learning objectives for the course, students should be able to
choose between Cellular Automata (CA) and Agent Based Models (ABMs) in a
given application context, program their model in NetLogo, and analyze simula-
tion results. At a high-level, CA and ABMs are similar as they are both discrete,
individual-level modeling techniques [1]. Consequently, students have to identify
an initial configuration for the individual entities (e.g., initial state for the cells
and/or baseline values for the agents), provide update rules that are applied to
these entities at discrete ‘ticks’, and decide when the simulation should end. In a
CA, the update rules can change the state of each cell based on neighboring cells,
time, or probabilities. Examples include biological models such as the spread of
an infection within a body [18] and the growth of tumor [19], or geographical
models such as forest fires [6] and land use [36]. An ABM optionally includes a
CA, which may serve to represent a physical substrate such as a soil model. An
ABM necessarily includes agents, which can interact with the space (e.g., ani-
mals foraging) and/or with each other. Agents may be equipped with elaborate
anthropomorphic notions, such as manipulating others, making errors, or having
a range of personalities [15]. As an ABM requires more data (for calibration and
validation) and a deeper theoretical understanding than a CA (to craft rules),
applied computational models in fields such as obesity have gradually shifted
from CA in early research to ABMs as they gained maturity [13]. Given the
introductory nature of the course, we focused on homogeneous and synchronous
CA [26] (e.g., all cells are updated at the same time) and we did not cover the
connection between ABM and geographical information systems [16].

3 Experiments and Measurements

The course was offered on two occasions (Fall 2018 and Spring 2019), which
allowed for repeated measurements. Our experiment involved three consecutive
parts (Figure 1). First, students were given four problem statements and invited
to create their own. In each of the five problems, a student independently chose
to use either CA or ABM. Students had to argue for their choice and provide
a complete design including a description of states, transitions, initial configu-
ration, and condition to stop a simulation. In the second part, the instructor
identified pairs of students who had made different modeling choices on at least
some of the four shared problems. Each student received the anonymized sub-
mission from his or her pair-mate, such that they were unaware of each other’s
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identity and hence unable to communicate directly. Each student reviewed the
submission and sent it to the instructor, who then passed it onto the other
student. Finally, the two students met each other and had to decide on one
technique for each of their five problems. For problems in which they argued for
different solutions in part 1, students had to explicitly write how they resolved
the difference.

Fig. 1. Three steps process through which pairs of students resolve differences in their
choice of ABM or CA.

In Fall 2018, the four problem statements started with “Spreading the flu in
a classroom”, described as follows:

A handful of hard-working students may make the selfish choice of com-
ing to class when they know they have the flu, thus infecting others and
causing problems throughout the community. This model seeks to capture
how flu spreads in the classroom. We consider that students are either infec-
tious, or not (e.g., susceptible, infected but not yet infectious, recovered). A
student may cough/sneeze/talk, which (to really simplify) produces a cloud
of infectious droplets invisible to the human eye. If a person walks through
this cloud, the droplets can land in the mouth/nose or be inhaled into the
lungs, and this person can get sick. Droplets survive in the air for a few
hours.
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The next problem statement was titled “Spreading HIV on campus”:

The Centers for Disease Control and Prevention (CDC) announced last
August that sexually transmissible diseases (STDs) in US reached record
high. The Human Immunodeficiency Virus (HIV) is an STD. We are inter-
ested in creating a model that simulates how residential Furman students
may be getting HIV via unprotected sex over the course of an academic
year. Once a person is infected, this person is extremely infectious (via un-
protected sex) during the next few weeks. After treatment has occurred, the
virus may drop to the point where it becomes undetectable in the body, and
the consensus is that the risk of transmitting HIV then becomes statistically
negligible.

In the third case, students investigated “Landslides”:

Because of flooding in North Carolina, the stability of some surfaces has
been affected and they’re now more prone to landslides. For a given land,
we’re interested in creating a model that can simulate how the land moves
when the landslide takes place (i.e., assuming a landslide is triggered we
want to know where the land goes). As vegetative structures may affect the
dynamics of the landslide, note that the lands in the area of interest all have
some shrubs and trees.

Finally, landslides were revisited in the last problem:

Assume the setting and goals are identical to problem (3) above. In
addition, assume that landowners with peculiar hobbies also have bongos,
oryxes, kudus, and lechwe grazing on the land. As they graze, they damage
shrubs (but not trees) and thus remove some of the vegetative structures
that hold the land together.

Problem statements were re-written in Spring 2019 to provide additional
data, thus limiting the possibility that results are an artifact of our initial prob-
lem statements. The new problem 1 was “Peer-influence on smoking”:

Smoking is partially driven by social norms, that is, whether peers smoke
or endorse smoking. We want to model how students at Furman may choose
non-smoking, vaping, or cigarette smoking. We are particularly interested in
modelling peer influence on these choices within the academic community.
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The second problem focused on “Animal migrations”:

Animals migration are based on the availability of food, climate, and
migration of other animals. For example, birds or grazing animals may want
to be close to similar animals, but too many will result in lack of sufficient
nutrients. We are particularly interested in modelling animal migrations in
the Carolinas, where migrating species include many types of ducks, swans,
snow geese, various other birds for fall coastal migrations (e.g., warblers,
grosbeaks, tanagers, orioles, vireos), fall mountain migrations (e.g., hawks,
eagles, falcons) or springtime mountain migrations (e.g., thrushes, flycatch-
ers). As a model is a simplification, you are not expected to become an
expert in bird ecology to answer this question!

The third problem examined “Shopping malls”:

Retail sales in shopping malls are important to model: where do people
go if we make changes in the mall? How can we promote traffic? How can
we charge rent for a specific shop based on how much traffic it can get?
To answer such questions, we want to model the influence of foot traffic,
customers, location, and neighboring shops, on retail sales in a shopping
mall. You can pick your favorite mall (e.g., Haywood mall) if it helps you
to think of something concrete.

Finally, the fourth problem was about “Laughter”:

Some people have a contagious laughter that will make others laugh
too. We want to simulate how laughter may spread in a room full of people.
Laughter originates from one person, who may or may not have a ’contagious
laugh’. Then, others may laugh or not.

For all students, we collected information on their gender (male, female) and
whether they liked students with whom they worked during paired-programming
sessions (which does not include their pair-mate on the experiment). In Spring
2019, we also administered two questionnaires: one upon completion of step 1
to understand how students made their selection (e.g., were they confident? did
they feel it was appropriate for the problem?), and the other upon completion of
step 3 to characterize how they resolved differences (e.g., was it easy to come to
an agreement? were they impacted by the strength of their partner’s argument?).

4 Results

4.1 Which problems lead modelers to make different choices?

We were able to construct 8 pairs with at least one different modeling choice
across the four problems (out of 9) in Fall 2018 and 4 such pairs (out of 7) in
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Fall 2018 (9 pairs) Spring 2019 (7 pairs)
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Students using CA (%) 33.33 11.11 94.44 27.78 71.43 14.29 7.14 100

Students using ABM (%) 66.67 88.89 5.56 72.22 28.57 85.71 92.86 0.00

Pairs with differences 6/9 2/9 1/9 3/9 4/7 2/7 1/7 0/7

↪→ Number of differences 4 had two diff., 4 had one 3 had two diff., 1 had one

Pairs using CA (%) 44.4 0 100 11.1 85.7 0 0 100.

Pairs using ABM (%) 55.6 100 0 88.9 14.3 100 100 0

Differences solved using CA 3 0 1 0 3 0 0 0

Differences solved using ABM 3 2 0 3 1 2 1 0
Table 1. Modeling choices of individuals and pairs across questions and semesters.

Spring 2019. Our ability to create pairs that need to resolve differences depended
on the extent to which each question led to a consensus. As shown in Table 1,
the problem of “spreading the flu in a classroom” (Fall 2018 Q1) sharply divides
students both as individuals and as pairs. The next questions leading to the
most differences was “Peer-influence on smoking (Spring 2019 Q1) followed by
our revisited landscape problem (Fall 2018 Q4). All other questions had less
variations in modeling choices among individuals and no variation in pairs. This
first result thus provides an experimentally established set of questions that can
be used to promote differences in modeling choices.

4.2 Can we explain how modelers choose?

We analyzed the rationale for the individual modeling choices based on the
questionnaire administered in Spring 2019. For each of the five problems (four
created by the instructor and their own), students characterized their choice of
a modeling method (confidence in the choice they made? Was it easy to de-
cide?), rated the extent to which five factors influenced their choice (complexity
of implementation, preference for the modeling technique, appropriateness for
problem, explanatory power, flexibility of model), and characterized the prob-
lem by choosing between pairs of adjectives (social/physical, complex/simple,
rules/ideas, individual/group, spatial/relational, decisions/behaviors).

The data for analysis thus consists of 14 questions, answered by each respon-
dent (n=11) for five problems thus forming 55 entries. We used the supervised
machine learning approach of binary classification to explain the modeling choice
(CA or ABM) as a function of the 14 questions. The baseline prediction accuracy
achieved by a 0R rule (i.e. simply looking at how often students tend to choose
CA or ABM without considering the questions) was 54.54%, thus any classifi-
cation model able to truly explain choices based on the questions would have
to outperform this baseline. Using a decision tree algorithm without the restric-
tion of depth, we found that one question suffices to correctly explain 72.72% of
choices: seeing a problem as simple or complex. Complex problems overwhelm-
ingly resulted in ABMs (21 out of 26 times), simple problems in CA (28 out of
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32 times), and problems that could not be characterized by either term were still
ABM (6 out of 8 times). If the notion of simple versus complex was removed,
then no combination of the remaining 13 questions had explanatory power as
the accuracy fell to 52.72%, which is below the baseline.

We examined whether simple dynamics could predict whether the final mod-
eling choice in a pair would follow the initial decision of one student or the other.
Since gender is occasionally used as mediating variables in studies on teamwork,
we analyze the final choice in a mixed pair would espouse the initial decisions
of the male student. Due to a small number of mixed teams, we only noted this
situation in 3 out of 5 pairs, which is close to parity. We also tested the theory
that a team may be led by a more ‘knowledgeable’ student. However, in pairs
with different final exam grades, differences were resolved in favor of the student
with the lowest grade GPA in 7 out of 10 pairs. The problem of identifying the
nature and impact of leadership in a team would require further studies and
a larger sample size, thus allowing a more fine-grained analysis of whether de-
mographics or personality factors play a role in driving the final decision of a
modeling team.

4.3 How do modelers co-create models?

In the survey administered upon resolution of modeling choices in a team, all
students stated that resolving differences was very easy. To further characterize
how differences were resolved, we examined the narratives provided by each
pair on each resolution. In this section, we discuss the themes identified across
narratives and briefly exemplify them through selected quotes in which students’
names were anonymized.

Two themes were present across most narratives: mobility and decision-
making processes. The need for an ABM was overwhelmingly motivated by
the perceived need for entities to move over a space and/or engage in complex
decision-making activities that require a cognitive framework. In contrast, the
choice of a CA was justified by the perceived absence of these needs. For exam-
ple, consider the flu problem. One group conceptualized students as “confined
to one space within the classroom” and this absence of mobility resulted in a
CA. Another group similarly debated the matter of movements:

“Simba claimed that [the flu] moved based on proximity because [it]
cannot decide where it wants to go. Mufasa claimed that the flu was in
the students who could walk around and make choices [...]. In the end,
Mufasa agreed that the model is being used to show where the flu is and
it is true that the flu cannot move so we agreed to explain this model as
being a CA.” (Problem 1, Fall 2018)

In contrast, several other groups endorsed the hypothesis for the same problem
that “agents can walk” thus leading to an ABM:

“Bernard believed that using Cellular Automata was the best approach
and that we could have the students be stationary in an area, as if they
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were in sitting at desks. Bianca believed that using an Agent-Based mod-
eling system was best because she has been in classroom environment that
are hands-on more recently rather than lectures-based meaning the stu-
dents would come in contact with others more often.”

(Problem 1, Fall 2018)

An ABM is defined by interactions between agents and the environment as
well as among agents. While the agents-environment interactions (e.g. through
spatial mobility) were a recurring motivation for ABM, interactions among
agents were less commonly discussed. In addition, the presence of these inter-
actions was equally likely to motivate the use of a CA or an ABM, since both
models include interactions (either through a neighborhood or via networks).
For instance, consider the model of peer pressure over smoking. In one team,
“the agents are interacting with other types of agents and also with the states of
the environment, which are defining qualities of an ABM.” However, for another
team, these interactions can be handled by a CA:

“We believe that this situation is less about agent interaction and
more about spatial orientation. The state of the smokers, non-smokers
and vapers is more influenced by their neighbors than by individual deci-
sion making. Peer pressure often comes from people that are close to you,
usually your friends. We will assume that friendship is stable and you
will not randomly leave to find new friends. This implies that if you have
many friends that smoke or vape it is more likely that you will smoke or
vape. This is well illustrated by a Cellular Automata because while you
interact with your own friends, they also interact with other friends who
interact with other friends and so on and so forth.”

(Problem 1, Spring 2019)

Through the narratives, we also notice that the resulting model and its jus-
tification is far from a one-sided triumph of one student’s ideas over another.
Indeed, students describe how features of the model are obtained collaboratively :

“We took things that Esmeralda’s ABM could represent better and sim-
plified them to fit the CA model. We used Quasimodo’s base CA model and
added those simplified elements for a more complete simulation, adding
components like coughing and entering/leaving the classroom.”

(Problem 1, Fall 2018)

“When we had peer reviewed each other’s responses, we decided to try
to combine each other’s ideas (Mulan had the idea of cells being stable or
unstable and Yao had thought of trying to show land movement through
differences in elevation). This allowed us to be able to use both ideas to
attempt a better model.” (Problem 3, Fall 2018)
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5 Discussion

In order to improve the practice of computational modeling and simulation,
it is essential to understand the process by which we construct models, from
the initial stages of defining the problem, designing the model, implementing it
in software and testing its behavior. Certainly, the hard-earned experience and
well-developed expertise that guide the decisions of experienced modelers are an
invaluable component of building successful models. However, novices provide
an excellent opportunity to examine which other factors may be highly influ-
ential, especially from a fresh perspective that is not invested in a certain way
of doing things. Our study employs a mixed methods approach to investigate
many aspects of the initial decision process as experienced by two groups of new
modelers. We found that, at least in the case of considering cellular automata
versus agent-based models, the apparent complexity of the problem under con-
sideration is the key determining factor in terms of which technique was chosen.
We also identified common themes found in the justification of model choice
in cases where there was disagreement about the ideal technique. For problems
where mobility and/or decision-making were key aspects needing to be modeled,
agent-based models were preferred over cellular automata.

The exercise described here provides a sample of how modeling choices can
be studied in an instructional setting. One key component is the set of sample
problems which are designed to provoke consideration and discussion within the
frame of the modeling techniques being considered. Another important compo-
nent is the kind of data gathered by the study. Demographic factors did not
appear to be highly influential among our groups, but further experimentation
could help to clarify this facet of collaborative modeling. This kind of explo-
ration also prompts us as educators to consider what we need to be teaching
alongside the technical aspects of model building. If problem complexity is a
driving factor in decision making (as we have seen here), should we encourage
the consideration of other aspects? Should we provide more guidance on how to
consider complexity?

Thus the primary contributions of our work pertain to simulation education
and the practice of computational science in the classroom. Our work can also
be situated within the broader theme of education and training in Collaborative
Problem Solving (CPS), which is often motivated by the fact that most pro-
fessional work is accomplished by teams within organizations [14]. Oppl further
highlights how human work in organizations presents several salient characteris-
tics that are also found in our study context [21]. Organizational actors can reach
a shared understanding by working on shared conceptual models. As stated by
Oppl, “existing approaches in general assume that the contributing actors have
existing modeling skills [but] actors operatively involved in a work process do
not necessarily have these modeling skills” and the task of model creation can-
not be left to a third-party expert since the active and direct involvement of
actors in the modeling process is “beneficial for the collaborative construction
of a shared understanding” [21]. Our work thus also contributes to a growing
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evidence base on the process of collaborative modeling and the negotiations that
are involved [24].

A benefit of performing our experiments in one course at one institution is
that we have a relatively consistent student population for analysis. However, this
lack of diversity is a limitation when it comes to assessing the factors involved in
shaping the co-creation of models by students of various levels, in different insti-
tutions, or involved in other curricula on computational modeling. In particular,
the experience of students may be a mediated factor, since “conceptual modeling
is often thought of as a skill that improves with experience” [35]. For example,
studies on novice modelers by Powell and Willemain found several issues such as
taking shortcuts [38, 22]. More recent empirical studies on the creation of mod-
els by students have confirmed that experience leads to different patterns [17].
It would thus be of particular interest to complement our study of freshman
(1st year, 1st semester) with follow-up examinations in courses focused on rising
sophomore (2nd year, 2nd semester) or senior (4th year).

A second limitation of our approach is the reliance on a prepared in-person
session requiring a joint decision. In other words, students had to reflect in detail
on each other’s proposed idea then met in-person with the objective of finding
one modeling technique. Results may thus be different if there is less incentive
to achieve a joint decision, which may affect the willingness of participants to
engage in co-creation and find a consensus. Results could also be affected by a
switch to a remote scenario, which introduces an element of technology-mediated
collaboration (e.g. via Zoom, WebEx, and similar platforms). An asynchronous
scenario may rely even more on technology, for example through software for
distributed model negotiation such as COMA in which modelers can propose a
model, support or challenge a proposal (by tracking arguments for/against),
and view the latest agreed upon version [25].

Although our study has collected detailed qualitative and quantitative data
on modeling choices and reconciliation, software provide additional opportuni-
ties to track the series of steps taken by modelers, for example via a replay
function [7]. The time series of modeling steps can be of particular interest if the
models are structured rather than provided as narratives, for instance by using
flow diagrams to document transitions of states for both cells in a cellular au-
tomaton [10] or agents in an agent-based model. A structured graphical notation
may be better aligned with the task of model creation [4] and it supports new
analytical tasks. If modelers co-construct a model as an annotated flow diagram,
then automated metrics from network analysis become available both as a means
of analyzing the evolution of collaboratively created artifacts and as a feedback
tool for students [5]. Future research may include the development of tools that
support asynchronous collaborations and mine structures as they are generated
to either offer guidance to students or inform the instructor.
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