
A collaborative peer review process for grading
coding assignments

Pratik Nayak, Fritz Göbel, and Hartwig Anzt

Steinbuch Center for Computing, Karlsruhe Institute of Technology, Germany.

Abstract. With software technology becoming one of the most impor-
tant aspects of computational science, it is imperative that we train
students in the use of software development tools and teach them to ad-
here to sustainable software development workflows. In this paper, we
showcase how we employ a collaborative peer review workflow for the
homework assignments of our course on Numerical Linear Algebra for
High Performance Computing (HPC). In the workflow we employ, the
students are required to operate with the git version control system,
perform code reviews, realize unit tests, and plug into a continuous in-
tegration system. From the students’ performance and feedback, we are
optimistic that this workflow encourages the acceptance and usage of
software development tools in academic software development.

Keywords: Peer review · Continuous Integration · Collaborative learn-
ing · Sustainable software development.

1 Introduction

With the digital revolution, much of the research, engineering, and production
is no longer realized by the human workforce but automatized and controlled by
computer programs. This radically changes the labor market and the skill-set
wanted by employers. While a significant portion of the automate-able work will
be handled by robots and computer programs in the future, other skills such
as expertise in developing software and using the tools that enable sustainable
software development will be important. Though there exist tutorials and talks
discussing the use of development tools, experience tells us that only the practical
use of the tools prepares the researchers for operating them in larger software
projects. Against this background, we decided to expose graduate students to
the practical use of sustainable software development tools by establishing a
collaborative peer review concept for grading coding assignments.

In this paper, we elaborate on how we encourage the use of sustainable soft-
ware development paradigms and enforce the usage of software development
tools in a course on Numerical Linear Algebra for High Performance Computing
offered at the Karlsruhe Institute of Technology. The course content includes the
design of efficient algorithms for basic linear algebra operations, direct and it-
erative linear solvers, hierarchical methods, preconditioners, etc., concentrating
on massively parallel architectures such as multi-core CPUs and GPUs. By the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_49

https://dx.doi.org/10.1007/978-3-030-77980-1_49


2 Nayak et al.

end of the course, we expect the typical student to be able to use the techniques
of parallel programming they have learned in the course and apply them to
their thesis projects and their future coding endeavours. Additionally, we want
to provide them with some knowledge about paradigms for sustainable software
development and give them hands-on experience in using tools that are popular
in the realization of software projects. We reiterate that the course does not focus
on programming tools and software engineering paradigms but on the design of
high performance computing algorithms, and the course content can be taught
without touching the topic of sustainable software development. But we use our
first-hand experience in large software efforts to propagate software sustainabil-
ity paradigms and require the use of collaborative software development tools in
the homework assignments.

Before detailing in Section 3 the peer review workflow we employ for the
homework assignments, we provide in Section 2 some background about the
tools we use for this. In Section 4 we discuss our experience with the approach,
and conclude in Section 5.

2 Background

For sustainable software development, a set of tools has proven to ease software
development and maintenance. While there exist tutorials, textbooks, and semi-
nars on the use of those tools, we want to review some of them that we consider
most important and thus include in our homework peer review workflow.

Version control systems (VCS). Version control systems are a popular
way to manage codebases. They started as a snapshot capability, enabling the
developer to roll-back the code history, thereby easing debugging and mainte-
nance. They evolved as powerful platforms for collaborative software develop-
ment. Some of the popular open-source version control systems are: Revision
Control System (RCS), Concurrent Version Control (CVS), Subversion (SVN),
Mercurial, and Git.

Figure 1 shows a typical version control workflow with the git version con-
trol system. In this workflow, a developer can create a feature branch from the
main branch, add new functionality or change existing functionality, and cre-
ate a merge request (MR) to merge the feature branch back to the main branch.
The process where peers inspect and criticize the code changes and provide feed-
back to the developer is called a code review. This step may appear tedious, but
is one of the most important components of sustainable software development.
It is essential that both the feedback-giving peer and the developer take the
code review seriously, and the developer acknowledges and adopts the reviewers’
comments. Once all flaws and improvement suggestions are taken care of, the
reviewers approve the merge request and the changes are merged into the main
branch. The git version control system orchestrates the merge in case multiple
developers want to merge to the main branch and enables the developers to re-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_49

https://dx.doi.org/10.1007/978-3-030-77980-1_49


Collaborative Peer Review 3

Fig. 1: A typical git work-
flow. [1]

Fig. 2: A software development workflow [8]

trieve new changes from the main branch into the feature branch.

Continuous integration. With the increasing complexity of the coding
tool-chain, from different hardware platforms to the different build systems and
the different compilers that need to be supported, it becomes increasingly chal-
lenging to ensure code robustness. Continuous integration (CI) aims to improve
the reliability of a codebase [2, 3, 5] by automatically checking the code cor-
rectness after a change to the codebase has been pushed through the version
control system. Specifically, the CI replicates the complete code usage process
from source code cloning to the compilation of the code in a specified hardware-
software environment. This is important in particular if the software is devel-
oped as a collaborative effort, and distinct developers are independently making
changes to the codebase. The goal of CI is to ensure the permanent compile-
ability of the codebase on the target system and to notify the developers about
compilation issues. In addition to verifying whether the codebase compiles, CI
systems usually also employ an automated testing workflow.

Automated Testing. Automated software testing pursues the idea of hav-
ing an automatic mechanism that verifies the correctness of all functionality of
a software ecosystem. Of course, this is a very complex goal, as there exists a
large number of use cases and functionality combinations. Ultimately, testing all
combinations, and all end-to-end user applications would be infeasible in terms
of effort and time. Therefore, one typically uses a hierarchical testing strategy:
On the lowest level, each basic functionality is accompanied by a unit test. This
function-specific unit test verifies the correctness of the basic routine for all pos-
sible input and output scenarios. A failing unit test can easily point the developer
to the part of the code that needs debugging.

As the correctness of all basic functionality (passing unit tests) does not
guarantee the correctness of functionality combinations, unit tests are usually

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_49

https://dx.doi.org/10.1007/978-3-030-77980-1_49


4 Nayak et al.

complemented by integration tests that form the second level of the testing hier-
archy. These tests verify the correctness of different functionality combinations.
Often, it is impossible to cover all combinations due to the sheer quantity of the
possible permutations. Therefore, integration tests usually only cover the most
popular functionality combinations.

Finally, the third level of automated testing is formed by end-to-end tests,
which try to emulate a user’s workflow. As it is again impossible to emulate all
possibilities, end-to-end tests only emulate a few, typical use cases. For all levels
of automated testing, there exist sophisticated tools such as Googletest [7]
and the Catch2 test framework [6] that provide frameworks.

Services in the Cloud. Gitlab and Github offer platforms that allow users
to run Continuous Integration pipelines and automated tests on remote servers in
the cloud. They also offer web interfaces for interactive and collaborative coding
using ideas such as Merge Requests (MRs). Using these services removes the
need to procure and run servers that provide version control systems, continuous
integration, and automated testing.

3 Methodology

Numerical linear algebra for High Performance Computing (HPC).
The course we offer at KIT is aimed at Masters students seeking to learn about
computational numerical linear algebra methods suitable for computational sci-
ence and its realization in HPC settings. To encourage the students to apply
these techniques in larger projects, we require a final course project instead of
an end-of-term examination. We offer some project ideas, particularly to enable
them to contribute to Ginkgo [9], but also encourage the students to come
up with ideas or extend their thesis works. Additionally, the students have to
complete several homework assignments where they are required to develop a
parallel version of an algorithm, implement and run benchmarks on an HPC
architecture, and analyze the algorithm performance in a report.

To prepare the students for collaborative coding, an exercises framework is
provided in a version control system which handles the automatic compilation
and testing of the code written by the students [10]. This allows the students to
focus on the algorithms and parallel programming ideas rather than spending
time on the build system. An additional advantage is the uniformization of the
build and execution process for all students making it easier to debug and help
the students.

The Peer review process. Figure 3 shows a schematic of this peer review
process. Each student creates a fork of the exercise framework and a student-
labeled sub-folder from the main folder in which they add their implementations.
On the submission date, the CI is run (which compiles and runs their code
with the unit tests) and the students create an MR for their exercise. The MRs
are assigned to their peers in a round-robin fashion, and with the help of the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_49

https://dx.doi.org/10.1007/978-3-030-77980-1_49


Collaborative Peer Review 5

Gitlab interface, they can provide feedback to their assigned peer. They are
encouraged to follow code reviewing guidelines [4] while reviewing their peers’
code. The review process is iterative, and the students are encouraged to update
and enhance their code according to the feedback received. After approval by
the reviewing peers, the students’ codes are merged into the main repository to
replicate an actual project workflow.

Main repository

Fork 1 Fork 2 Fork n
Student forks ...

In sync

Submission day

Main repository

Run CI

Create MR

Review day Review from 
peer

Merge day
Merge after 

approval

Run CI

Create MR

Review from 
peer

Merge after 
approval

Run CI

Create MR

Review from 
peer

Merge after 
approval

...

...

...

U
pd

at
e 

w
ith

 re
vi

ew

U
pd

at
e 

w
ith

 re
vi

ew

U
pd

at
e 

w
ith

 re
vi

ew
Fig. 3: The peer review process

Figure 4 shows a snippet of a review by Student 1 of the code written by
Student 2. Student 1 is assigned to the MR opened by Student 2 and can provide
comments on specific lines of the code based on a diff (the difference between
the code in the target branch against the code added by the student).

Grading. In addition to the coding assignments, the students are required
to work on a final course project. We split the final grade into three parts: 40%
of the grade is made up by the project code and report, 30% is assigned for a
short (approximately 10 minutes) presentation on the student’s project, given
at the end of the term, and the remaining 30% of the grade is made up by the
homework assignments. (70% of the points are required to pass the course.) Each
homework assignment carries a maximum of 10 points. A performance analysis
report makes up 4 of the 10 achievable points. Another 4 points are assigned
for the code, where 2 points are awarded for functioning code, 1.5 points for the
code quality, 2 points for the quality of the review a student provides, and 0.5
points for incorporating the review feedback that they receive from their peers.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_49

https://dx.doi.org/10.1007/978-3-030-77980-1_49


6 Nayak et al.

Fig. 4: A typical peer review comment

4 Discussion

The motivation for establishing this peer review process for the homework as-
signments is that we are convinced that the practical experience in using software
development tools, CI, and adhering to a peer review process is an essential skill
for graduates entering the software-focused labor market.

In addition to equipping students with practical experience in using tools for
sustainable software development, we observed that the framework allowed stu-
dents to concentrate on the algorithms and their implementations rather than
concerning themselves with tackling the issues from the build systems. We also
observed a significant improvement in the code quality of most students through-
out the course with students acknowledging the feedback received in the peer
review process in the concurrent exercises, which has not been the case in pre-
vious versions of the course.

Table 1 shows the feedback we received from the students on the homework
workflow. The questions are rated from 1 to 5 with 1 being the best rating
meaning that it was very useful/very easy and 5 being the worst rating meaning
that it was not useful at all/very difficult.

5 Conclusion

With the wide and easy access to computing and the rise of Open-Source soft-
ware, it is necessary that we train our students to be familiar with tools for
sustainable software development. In this paper, we elaborate on how we intro-
duced a collaborative peer review workflow for the homework assignments in a
course on high performance computing. In the future, we plan to enhance the
framework with automatic benchmarking of the coding assignments and test the
workflow’s viability for other courses.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_49

https://dx.doi.org/10.1007/978-3-030-77980-1_49


Collaborative Peer Review 7

Table 1: Student feedback

Question Avg Rating (1–5)

How easy was it to use the framework ? 2

How useful did you find the exercises instructions ? 2

How easy was it to compile and run the code as provided ? 2.3

How useful was the code review from your peer ? 1.6

How easy was the reviewing process ? 3.6

Would you like to see this type of frameworks in other courses ? 1

6 Acknowledgements

The authors were supported by the “Impuls und Vernetzungsfond of the Helmholtz
Association” under grant VH-NG-1241. The authors would also like to thank
Jan-Patrick Lehr of TU Darmstadt for his helpful discussions and perspectives
on this subject.

References

1. Git cheat sheets. https://training.github.com/
2. GitLab CI/CD. https://docs.gitlab.com/ee/ci/
3. Jenkins CI. https://www.jenkins.io/index.html
4. The standard of code review. https://google.github.io/eng-

practices/review/reviewer/standard.html
5. Travis CI - test and deploy your code with confidence. https://travis-ci.org/
6. Catchorg/Catch2. Catch Org (Jan 2021)
7. Google/googletest. Google (Jan 2021)
8. Anzt, H., Chen, Y.C., Cojean, T., Dongarra, J., Flegar, G., Nayak, P., Quintana-

Ort́ı, E.S., Tsai, Y.M., Wang, W.: Towards continuous benchmarking: An auto-
mated performance evaluation framework for high performance software. In: Pro-
ceedings of the Platform for Advanced Scientific Computing Conference. pp. 1–11.
PASC ’19, Association for Computing Machinery, New York, NY, USA (Jun 2019).
https://doi.org/10.1145/3324989.3325719

9. Anzt, H., Cojean, T., Chen, Y.C., Flegar, G., Göbel, F., Grützmacher, T.,
Nayak, P., Ribizel, T., Tsai, Y.H.: Ginkgo: A high performance numeri-
cal linear algebra library. Journal of Open Source Software (Aug 2020).
https://doi.org/10.21105/joss.02260

10. Nayak, P.: Pratikvn/nla4hpc-exercises-framework (Jan 2021)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_49

https://doi.org/10.1145/3324989.3325719
https://doi.org/10.21105/joss.02260
https://dx.doi.org/10.1007/978-3-030-77980-1_49

