
LSTM processing of experimental time series
with varied quality.

Krzysztof Podlaski1[0000−0002−2883−0773], Micha l Durka1, Tomasz
Gwizda l la1[0000−0002−3981−6037], Alicja Miniak-Górecka1[0000−0002−1860−8853],
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Abstract. Automatic processing and verification of data obtained in
experiments have an essential role in modern science. In the paper, we
discuss the assessment of data obtained in meteorological measurements
conducted in Biebrza National Park in Poland. The data is essential
for understanding the complex environmental processes, such as global
warming. The measurements of CO2 flux brings a vast amount of data
but suffer from drawbacks like high uncertainty. Part of the data has
a high-level of credibility while, others are not reliable. The method of
automatic evaluation of data with varied quality is proposed. We use
LSTM networks with a weighted square mean error loss function. This
approach allows incorporating the information on data reliability in the
training process.
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1 Introduction

Verification and prediction of real data are important and challenging. Many
experiments conducted every day produce new raw data that has to be assessed
and analyzed. The vast amount of new data acquired every day puts high demand
on automatic methods of data processing. Moreover, some values obtained in the
experiments have higher credibility than the others. Therefore, machine learning
systems have to be sensitive to such issues. In the literature, prediction and
forecasting are connected with the use of neural networks [4, 14, 20]. Here we
discuss Long Short Term Memory (LSTM) networks as the ones that suit well
for the task of analysis and prediction of time series [8, 18].

In the paper, we consider the data acquired in a continuous meteorological
experiment. Some records in the dataset have higher quality (are more reliable)
than others. The prediction of time series with varied quality is similar to the
classification of imbalanced datasets [19]. The methods used in classification can-
not be directly applied to time series prediction but can be used as suggestions.
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We propose a modification of the usual loss function in order to incorporate the
issue of data credibility. The paper combines the computer and meteorological
sciences. The importance of research conducted in the area of global warming is
hard to neglect. The paper follows the idea of using computer science methods
for a better future.

Understanding the complex environmental processes, such as global warm-
ing, belongs to the most challenging, both for cognitive reasons and social conse-
quences. It is a truism to say that reliable data are of fundamental meaning for
this purpose. The standard geophysical data provided by national and interna-
tional services (such as WMO) are generally continuous and high-quality but do
not include all parameters needed. Therefore, they must be supplemented by the
results of experiments that often use very sophisticated measurement techniques.
These experiments allow us to gain a vast amount of unique data but may suffer
from various drawbacks, including a large number of unreliable or missing values.
The missing values introduce high uncertainty when the data is analyzed from
a long-term perspective and must be replaced by the most likely one. The short
gaps in data sets might be filled up with simple interpolation methods, but the
longer ones should be completed with adequately modeled values. This paper
focuses on the time series of CO2 flux collected in the wetlands of Biebrza Na-
tional Park, northeastern Poland [9, 10]. The measured CO2 flux represents the
net exchange of this greenhouse gas between the surface and the atmosphere,
which is vital to understand the role of such ecosystems in the global carbon
cycle. The eddy-covariance method used, although considered to be the most
adequate in measurements of surface-atmosphere exchange in the whole ecosys-
tem scale [2, 3], results in a large number of non-randomly distributed missing
data due to required quality control and sensitivity to unfavorable weather con-
ditions. To evaluate the total uptake or emission of CO2 by the ecosystem in
an annual or multi-year perspective, these gaps must be filled up, taking into
account the sensitivity of the CO2 flux to changing hydrometeorological condi-
tions [2]. Otherwise, the results could be biased towards the flux recorded in fine
weather conditions. Various approaches to the gap-filling procedure have been
suggested [2, 10, 15], [7, 16], but the problem has still not been fully standard-
ized by the eddy-covariance community. Therefore, we propose using methods
known from automatic prediction and verification of time series of CO2 flux data,
which can improve gap-filling methods and consequently reduce uncertainty in
assessing the carbon balance in terrestrial ecosystems.

2 The dataset

In the paper, we use raw, real data obtained during measurements conducted at
the Biebrza National Park’s wetlands in northeastern Poland. The measure-
ment site was located in the middle basin of Biebrza valley (53◦35′30.8′′N,
22◦53′32.4′′E, 109m a.s.l.) in a large flat area covered by patches of reeds, high
sedges, and rushes, very typical of wetlands of the Biebrza National Park. The
measurement period used in this analysis covers the years 2013-2017. The open-
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(a) Years 2013-17

(b) June 2015

Fig. 1: Parameters measured during geographical experiments in Biebrza Na-
tional park.

path eddy-covariance system consisted of fast-response sensors: CO2/H2O gas
analyzer (Li7500, Li-cor Inc., USA) and a sonic anemometer (81000, R. M.
Young, USA) with the middle of the path at 3.7 m above ground level [9], [10].
The CO2 fluxes were calculated for 1-hour block averaging (and auxiliary on
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a 5-min basis) with the aid of EddyPro 6.0 (Li-cor Inc., USA) software to en-
sure compatibility with other studies. In the flux calculations, covariance was
maximized within a ±2s window, a double rotation of the natural wind co-
ordinates was performed, the sonic temperature was humidity corrected, the
Webb-Pearman-Leuning correction was applied, and spectral losses were cor-
rected. Complementary fourteen hydrometeorological parameters were collected
simultaneously using slow response sensors: water table depth (wd), temperature
at 2 and 0.5 meters above the ground (T50, T2), the temperature of the ground
(Tg), atmospheric pressure (p), wind speed (v), wind direction (vdir), volumet-
ric water content (vwc), incident shortwave (visible) radiation (isw), reflected
shortwave (visible) radiation (rsw), incident/reflected longwave radiation (ilw,
rlw), incident/reflected photosynthetically active radiation (ipar, rpar). Most of
these parameters show a seasonal behavior and a dependence on the time of the
day (see Figure 1). Moreover, the Figure 1b shows that high-quality data on CO2

flux is very sparse in June 2015 and in total is available only in about 25% of the
records in the dataset. In the paper, we assume that CO2 flux (fco2) depends
on the time of the measurement and the rest of the fourteen parameters.

A detailed description of the acquired data’s measurement equipment and
postprocessing can be found in [9]. The postprocessing data quality included
three stationarity tests and the friction velocity threshold criterion. In the result,
the data was divided into three classes that define the quality of the result,
High-quality (HQ), Medium-quality (MQ), and Low-quality (LQ). These groups
describe the credibility of the raw data. The HQ data (flagged by EddyPro
and accepted by all three additional tests) passed more rigorous criteria than
usually used in eddy-covariance data analysis. The MQ data (accepted by at
least one of the three additional tests) are similar to those usually analyzed. The
remaining data were classified as LQ, and they may be burdened with substantial
measurement errors.

3 Neural network approach

The verification and prediction of real data are two areas of data processing.
These approaches are similar in many ways. We build, train, and validate the
prediction model with historical data. We can use the system to predict new
values that will be obtained in the future. Usually, the real result has higher
credibility and any differences are used to assess the model. In that way, we ver-
ify the model with historical data. If we do not observe any external effects that
should result in model modification, we can assume some level of correctness
of the model. Such an approved prediction models can be used for verification
purposes. The differences between the predictions made by the approved model
and the data obtained from the measurements can suggest low-quality measure-
ments. Researchers use artificial neural networks for gap-filling in meteorological
for some time [6,16,17]. First, we have to build the model and validate it against
the historical dataset.
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All changes in time in a meteorological system preserve continuity. There-
fore, we can treat the measurements as a time series. The changes between two
consecutive measurements should express a level of smoothness. In the paper,
we plan to follow the presented approach and assess the measurement data using
Long Short Term Memory (LSTM) neural network [11,13].

3.1 Neural networks

The neural network is a technique based on the neural structures of living ani-
mals. A feed-forward artificial network is built from neurons grouped in layers.
Each layer receives signals only from the preceding layer. The information flows
sequentially from layer to layer. The first layer is usually called the Input Layer.
The last layer is denoted as the Output Layer. All layers in between are called
hidden ones. Each neuron receives information from neurons in the preceding
layer. Each input signal is assigned with a weight. A neuron counts a weighted
sum of inputs, adds a bias b, and applies an appropriate activation function. All
neurons in a layer have the same activation function, and all of them have individ-
ual weights and bias. The networks can be trained in a supervised approach using
an optimization method (for example, SGD, Adam, AdaGrad, RMSProp) [12].
The training goal is to find a set of network parameters that minimize a given loss
function. Usually, the loss function measures the distance between an expected
answer and the one obtained from the network.

LSTM neural networks proved to be adequate for the prediction of time-series
data. In short, we can perceive the LSTM cell as a subsystem with a set of fully
connected sub-layers and gates. Input signal contains a time series of signals that
are fed to four fully connected sub-layers one by one. The sub-layers’ signals are
joined with three types of gates (forget, input, and output). The so-called long-
term state represents the memory of the cell. Forget gate controls how long-term
state should incorporate a new signal from a given series. An activation function
accompanied each LSTM cell. The LSTM cell processes inputs row by row using
the embedded memory feature. Each row contains a single event in a time series
processed. Therefore, the cell size depends only on the size of the information
stored in one row.

In the classical approach, all time series provided during training have the
same credibility. Therefore, all are treated in the same way. We know that the
experiment’s data has a varied quality and needs to be treated in a special way. In
classification approaches, a few solutions to an imbalance in class representation
are proposed [19]. For example, each training input is assigned to a weight used
during training. We can enforce the underrepresented class signals to appear
more often in the training process. In the prediction approach, we can either
change the ratio of occurrences of the high-quality signals during training or
change the loss function to take the quality into account. In the paper, we use
the latter approach and define the weighted mean square error as a loss function.
Similar solutions to our approach can be found in [5].
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3.2 Input data

The dataset contains fourteen meteorological parameters measured simultane-
ously, the date and time of the measurements, and registered CO2 flux. We
decide not to limit ourselves to a subset of experimental data and assume that
the CO2 flux depends on all fourteen meteorological parameters (described in the
previous section). It should be mentioned that the authors of the paper [9] limit
themselves to nine measured parameters. Additionally, as neural networks treat
better signals in the range (−1, 1), all parameters are normalized to this range.
We prepare input data representing a set of n + 1 consecutive occurrences of
measured parameters for our experiments. That means the input of the network
has a shape of an (n+ 1)×m matrix, where m denotes the size of a single set of
simultaneous meteorological parameters accompanied by the measurement time,
n denotes the number of consecutive predecessors of the actual measurement.
We can interpret n + 1 as the size of the time window used to predict the value
of CO2 flux. At each time step ti, we have a vector of input parameters vi. Each
vector vi contains the year, month, day, hour, minute of measurement, as well
as all fourteen meteorological parameters. In the preprocessing phase, we create
a set of input matrices of the form:

Ii =


vi

vi−1
. . .
vi−n

 (1)

.
The input matrix Ii has a size (n + 1)×m, with n + 1 rows of size m. Each

row contains consecutive measurement vectors vi. The matrix Ii is accompanied
by the expected output that contains the value of registered CO2 flux at the
moment ti (fco2i). The values fco2i are the results the model will be trained to
predict.

3.3 LSTM model

LSTM model uses an LSTM layer as well as dense ones (fully connected) as
presented in Figure 2. The model contains an LSTM layer of size s and one
dense layer with 2s neurons. Both layers use tanh activation functions. The
output layer is discussed in the next subsection.

3.4 Output layer and loss function

During training, the neural network use loss function and appropriate optimiza-
tion method to derive modifications of the actual network parameters. In the
dataset, we have three types of measurements connected to their quality. High-
quality CO2 flux values, the most reliable data (HQ) accounted for about 25% of
all records, Medium-quality (MQ) around (35%), and the rest is a Low-quality
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Fig. 2: LSTM neural network model, the subscripts denote size of the Layer

(LQ) (40%). Therefore, during the training, the HQ data need to have the high-
est priority. The designed network has two neurons in the output layer. The
first one yfco predicts the value of CO2 flux the other yq expected quality. The
expected results, used for training and testing has the same structure:

ŷ =
[
ŷfco, ŷq

]
, where: ŷq =

0 for result in LQ
1 for result in MQ
2 for result in HQ

. (2)

The results with high quality have higher reliability than the ones for other
classes. Thus, we should enforce the network to take the data credibility into
account during the training process. We propose to incorporate quality into the
loss function. Our self-defined loss function has the form:

loss(y, ŷ) = mean
(
(yfco − ŷfco)2 · 2ŷq

)
, (3)

where y, ŷ denote the batch of predicted and expected results, respectively. The
presented loss function is a weighted version of the mean standard error function
(WMSE), where HQ results have a weight of 4, the weight of MQ results equals
2, while LQ results have the weight factor set to 1. In this manner, we do not
totally neglect the results with low quality but assign them with much lower
priority.

4 The numerical experiment

We conducted our numerical experiments using the Tensorflow library [1] in
python on a computer with AMD Ryzen 9 3900X processor and 32GB of RAM.
In all models, we use the Stochastic Gradient Descent (SGD) optimization algo-
rithm. The dataset was split into two disjoint sets, a training set consisting of 30
766 elements (80% of the total number of measurements) and a test set with 7
666 elements (20%). The ratio 80/20 between training and test sets is typically
used in classification and prediction tasks that use neural networks.

The different models have been tested with a few selections of network layer
the size parameter s, size of series time window n (Figure 2). The number of
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Trainable parameters

for model LSTMn,s

s = 10 s = 15 s = 20

n = 3 1502 2702 4202

n = 4 1502 2702 4202

n = 5 1502 2702 4202

n = 6 1502 2702 4202

Table 1: The size of the LSTM models trained in numerical experiment.

trainable parameters for each tested model is presented in Table 1. As mentioned
before, the number of trainable parameters in the LSTM layer depends on the
row’s size in an input signal. It does not depend on the number of rows in the
input (the input represents a time series, and each row is a single event). There-
fore, the increase of n, number of elements in a time series, has no impact on the
number of trainable parameters. There are no rules on how to set network layer
sizes for data to be processed. We have tried to keep our neural model small.
The s parameter used had values 10, 15, 20. The parameter n represents the size
of the time series of measurements taken into account in a single input for our
model. The measurements in the dataset in consideration were measured hourly.
Thus, the parameter n = 6 means we use for prediction the actual results and
values measured in the previous six hours. As most of the parameters have a visi-
ble daily routine (Table 1), we have decided to experiment with n ∈ (2, 3, 4, 5, 6).
This expresses the continuity and causality property of the measured parame-
ters in a short time frame from two to six hours. For timeframes longer than six
hours, many unmeasured parameters can have non-negligible impact.

Fig. 3: Training process for LSTM network with n = 6 and s = 20.
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All trained networks achieve stability after around 50 epochs, and the loss
function decreases at a stable slow pace. No vital difference has been observed
when trained for 300 epochs. For example, we present the training process of the
LSTM network with n = 6 and s = 20 in Figure 3. Therefore, for most of the
cases, we have trained the models for 120 epochs.

(a) LQ class (b) LQ class

(c) MQ class (d) MQ class

(e) HQ Class (f) HQ Class

Fig. 4: Prediction given from LSTM network with s = 20, n = 6 after 120
epochs. On both axes we present normalized predicted CO2 flux compared to
expected(real) CO2 flux.
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Model class R2 slope MSE RMSE

LSTMn=3,s=10
HQ 0.798 0.926 2.12 · 10−5 4.60 · 10−3

MQ 0.499 0.973 3.58 · 10−5 5.98 · 10−3

LSTMn=3,s=15
HQ 0.819 1.006 2.06 · 10−5 4.54 · 10−3

MQ 0.529 1.011 3.96 · 10−5 6.29 · 10−3

LSTMn=3,s=20
HQ 0.794 0.978 2.10 · 10−5 4.58 · 10−3

MQ 0.542 0.941 3.52 · 10−5 5.94 · 10−3

LSTMn=4,s=10
HQ 0.824 1.006 1.93 · 10−5 4.43 · 10−3

MQ 0.562 0.972 3.24 · 10−5 5.69 · 10−3

LSTMn=4,s=15
HQ 0.857 0.978 1.81 · 10−5 4.26 · 10−3

MQ 0.536 0.975 3.37 · 10−5 5.81 · 10−3

LSTMn=4,s=20
HQ 0.848 1.006 1.59 · 10−5 3.99 · 10−3

MQ 0.584 1.002 3.29 · 10−5 5.74 · 10−3

LSTMn=5,s=10
HQ 0.824 0.975 1.96 · 10−5 4.43 · 10−3

MQ 0.549 0.967 3.31 · 10−5 5.75 · 10−3

LSTMn=5,s=20
HQ 0.836 0.986 1.76 · 10−5 4.19 · 10−3

MQ 0.569 1.027 3.36 · 10−5 5.79 · 10−3

LSTMn=5,s=15
HQ 0.835 0.961 1.76 · 10−5 4.19 · 10−3

MQ 0.553 0.949 3.41 · 10−5 5.84 · 10−3

LSTMn=6,s=10
HQ 0.847 0.965 1.72 · 10−5 4.14 · 10−3

MQ 0.561 0.954 3.24 · 10−5 5.69 · 10−3

LSTMn=6,s=15
HQ 0.823 0.976 1.73 · 10−5 4.16 · 10−3

MQ 0.541 0.963 3.33 · 10−5 5.77 · 10−3

LSTMn=6,s=20
HQ 0.804 0.981 1.85 · 10−5 4.31 · 10−3

MQ 0.543 0.983 3.46 · 10−5 5.88 · 10−3

Table 2: Estimation of the quality of prediction of CO2 flux for considered mod-
els. For each model parameters Mean Squared Error (SME), Root Mean Squared
Error (RSME) and R2 as well as the slope of the trend line are presented.

The models are trained to focus on HQ results. Therefore, for a detailed as-
sessment of the training process, we measure each class’s effectiveness indepen-
dently. We present a comparison of the results obtained from a neural network
with the expected value of CO2 flux for each class. The assessment was con-
ducted on the test dataset that was not used in training. As shown in Figure
4, the results predicted from LSTMn=6,s=20 network give results with a high
level of agreement with the expected (real) values for HQ and MQ classes. The
results for the lowest quality data are not similar to the expected ones. As was
mentioned before, these measurements have very low reliability. In Figures 4a,
4c, 4e we present the dependence of predicted CO2 flux on the real value, this
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plot should be as near as possible to a line. In the figures, we draw the orange
lines that represents the optimal prediction (a line with slope equal to 1) and
the trend line based on data points (in blue). We can see that the HQ data is
predicted with high accuracy. The MQ data is not so well concentrated around
the optimal prediction line as HQ one is. The last low-quality class is not pre-
dicted properly, but as was mentioned before, this was expected, as this data
has low credibility. Figures 4b, 4d, 4f compare the behaviour of predictions and
expected values for a test set in time. As we can see again, the prediction for
HQ class well agrees with the expected values.

The optimal prediction would result in a simple relation: ŷ = 1 ∗ y for all ŷ
that belong to the class in consideration. Therefore, we derive linear regression
estimators for every class and all models: R2, slope, MSE (Mean Squared Error),
RMSE (Root Mean Square error) to qualify the prediction. The estimator values
are presented in Table 2.

Table 2 presents that most of the LSTM network models have similar quality.
It seems that the LSTM with a window length set to 4 gives the best prediction.
However, the differences between the qualities of the models are small. The
models that have been trained can be used for additional assessment of the
quality of experimental data. As we can see in the Figure 4f, the model predicts
more often lower values of high quality CO2 flux than measured. Therefore,
we analyze the residuum of prediction (i.e., the difference between prediction
and a real value) Figure 5. We can see that the shape of the histogram is not
symmetric. As a result, the model predicts more often values lower than the real
experimental data. It can be understood as extreme values of CO2 flux are rare
and hard to predict.

(a) LQ class (b) MQ class (c) HQ class

Fig. 5: The histograms of residuum for prediction using LSTM network with
s = 20, n = 6 after 120 epochs on test set. On the horizontal axis we can see the
value of residuum on the vertical one the number of occurrences.

5 Conclusions

In the paper, we present LSTM neural network usage for CO2 flux prediction in
the meteorological experiment. The data have three different levels of credibility
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and have to be treated differently during training. We propose to use a weighted
means squared error as a loss function during the training process. The method
leads to good results with a high level of agreement with the expected values for
high-quality results. The network also correctly assesses the quality of the record
in consideration. The prepared LSTM network can be used for the automatic
verification of experimental raw data. Additionally, we can use the method for
gap filling to repair the records with flows. In the future, the usage of the method
for gap filling will be analyzed in detail.
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