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Abstract. Recent growth in interest concerning streaming data has been forced 

by the expansion of systems successively providing current measurements and 

information, which enables their ongoing, consecutive analysis. The subject of 

this research is the determination of a density function characterizing potentially 

changeable distribution of streaming data. Stationary and nonstationary condi-

tions, as well as both appearing alternately, are allowed. Within the distribution-

free procedure investigated here, when the data stream becomes nonstationary, 

the procedure begins to be supported by a forecasting apparatus. Atypical ele-

ments are also detected, after which the meaning of those connected with new 

tendencies strengthens, while diminishing elements weaken. The final result is 

an effective procedure, ready for use without studies and laborious research.  

Keywords: Streaming Data, Distribution Density, Nonparametric Estimation, 

Distribution-Free Procedure, Prediction, Atypical Element (Outlier).  

1   Introduction  

Technological progress within the scope of numerical techniques has enabled the com-

prehensive analysis and exploration of data with different natures. Recently interest in a 

specific type, characterized by successive and unlimited inflow of sequential elements, 

named streaming data, has grown. In current practice, data of this type may be nonsta-

tionary (evolving in time), therefore, their characteristics are variable, which additionally 

makes all analysis considerably more difficult. Frequently the character of streaming 

data undergoes changes from stationary to nonstationary and vice-versa, implying fur-

ther research challenges. Moreover, the nature of permanently incoming, often unveri-

fied data causes that they may also contain atypical elements, mostly as a result of errors 

of different kinds. Their automatic removal may, however, result in the elimination of 

valuable information about newly forming tendencies. Finally, effective analysis of 

streaming data fulfilling requirements of contemporary applications needs a range of sig-

nificant factors, frequently absent in classic problems with an assumed finite dataset size, 

to be taken into account. This makes the analysis of streaming data extremely valuable 

from the applicational point of view, but also demanding from a research perspective.  
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The subject of this paper is the synthesis of a procedure enabling the determination 

of distribution density of streaming data, both stationary and nonstationary, also with 

these both cases appearing alternately. The mathematical apparatus is based on the pro-

cedures of contemporary data analysis and mathematical statistics, allowing calculation 

of density without any assumption concerning the specific type of distribution. The 

particular elements, applied later during the creation of the procedure, will be presented 

in chapter 2. Successively, the nonparametric method of kernel estimators, procedure 

for atypical (rare) elements detection, the statistical test of stationarity, and elements of 

forecasting theory, will be presented in the subsequent four sections of this chapter. The 

concept of the procedure developed here for the predicted estimation of distribution 

density of streaming data is the subject of chapter 3. This procedure is modular in na-

ture. In the succeeding four sections, the concepts of fixing the size of a reservoir, the 

outdatedness of its elements, introduction of forecasting methods, and detection of 

atypical elements strengthening the importance of those connected with newly arising 

tendencies and the weakening associated with disappearing trends, have been elabo-

rated. In consequence, a procedure for determining the current distribution density of 

streaming data will be created, while in the case of discovery of nonstationarity, proce-

dures for adaptation and forecasting are activated in order to effectively match to the 

changing environment. The calculation complexity of all algorithms used are linear and 

quadratic; the whole cycle of the calculations is enclosed within few seconds. The 

memory requirements do not exceed the typical capabilities of contemporary computer 

systems. The final conclusions and numerical results of the designed method will be 

briefly described in chapter 4.  

The estimation of distribution density of streaming data is a current topic being stud-

ied and various methods have been applied, e.g. histogram [19] or wavelets [22], how-

ever, concepts based on kernel estimators dominate (see [5] for a rich bibliography) 

consisting of a proper selection of incoming elements [20], specialized clustering [9, 

24], local approach [7], and using calculational intelligence methods, e.g. self-organiz-

ing maps [8]. Fundamental information concerning streaming data can be found in the 

recent books [3, 21].  

2   Mathematical Preliminaries  

2.1   Nonparametric Estimation, Kernel Estimators  

Consider a set consisting of the � elements being the �-dimensional vectors with 

continuous attributes:  

 �� , ��, … , �	 ∈ ℝ�  . (1) 

The kernel estimator �: ℝ� → �0, ∞� of the density of a dataset (1) distribution, is de-

fined then as [11, 23]:  

 ���� = �	 ∑ ���, �� , ℎ�	���   , (2) 
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where after separation into coordinates  

 � = �����⋮��
� ,   �� = ���,���,�⋮��,�

�    for  " = 1,2, … , �  ,   ℎ = �ℎ�ℎ�⋮ℎ�
�  , (3) 

while the positive constants ℎ% are the so-called smoothing parameters; the kernel � 

will be used here in the product form:  

 ���, �� , ℎ� = ∏ �'(�%�� �% )*(+*,,('( -  , (4) 

whereas the one-dimensional kernels �%: ℝ → �0, ∞�, for . = 1,2, … , �, are measurable 

with unit integral / �%�0� d0ℝ = 1 , symmetrical, and non-increasing for �0, ∞� ;  

(in consequence: non-decreasing for �−∞, 03 ). For the needs of further considerations, 

the definition (2) will be generalized to the weighted form:  

 ���� = �∑ 4,5,67 ∑ 8�  ���, �� , ℎ� 	���   , (5) 

where the introduced parameters 8� ≥ 0 are not all equal to 0. Assuming 8� ≡ 1, one 

simply obtains the formula (2). The kernel estimator allows us to calculate the density 

on the basis of the dataset (1) without any arbitrary assumption concerning the type of 

its distribution.  

Generally, the selection of the kernel �% form is practically meaningless and the user 

should, above all, take into account the properties of the desired estimator or/and com-

putational aspects, beneficial for the application being worked out. In the following, the 

normal (Gauss) kernel  

�%��� = �√�< exp @− *A� B  (6) 

will be applied, as generally used.  

The fixing of the smoothing parameter ℎ% has significant meaning for quality of es-

timation. Fortunately, many suitable procedures for calculating its optimal value have 

been worked out. In particular, for simple unimodal distributions and in the preliminary 

phase of investigation, the normal concept is suggested. Then  

ℎ% = @C√<D  E�F�G�F�A �	B� H⁄ JK%  ,  (7) 

where L��� = / ��0�� d0M+M  and N��� = / 0���0� d0M+M . For the normal kernel (6) 

one has L��� = 1 2√O⁄  and N��� = 1. The standard deviation estimator JK%, occur-

ring above, can be calculated for the dataset (1) from the classic formula, potentially 

extended for the weighted form (5) as follows:  
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JK%� = �	+� ∑ �8���,%��	��� − �	�	+�� P∑ 8���,%	��� Q�
  .  (8) 

In other situations we propose testing the plug-in method [11, Section 3.1.5; 23, Section 

3.6.1], where its degree should be equal to the number of separated factors (modes), but 

in practice not greater than 3; the value 2 can be treated as a standard. A generalization 

of this method to the weighted form should be made similarly to the formula (8).  

In practice various modifications, generalizations and fitting properties of the estimator 

to specific realities can be applied, e.g. other algorithms for fixing the smoothing param-

eter, its adaptation, or boundary of the function � support. The procedure worked out in 

this paper has no limits in this range besides requirements regarding time and memory 

as well as excessive complexity of interpretation, which should be individually consid-

ered. The classic textbooks on kernel estimators constitute the monographs [11, 23]. The 

effective determination of distribution density enables comprehensive data analysis 

[12, 13] and various valuable applications [14, 15].  

2.2   Detection of Atypical Elements (Outliers)  

The determination of distribution density enables effective detection of atypical el-

ements [2], which are understood here in the sense of rare occurrence. Unlike distance 

methods, one can then find atypical observations not only on the peripheries of the pop-

ulation, but in the case of multimodal distributions with wide-spreading segments, also 

those lying in between these segments, even if they are close to the ‘center’ of the set.  

Consider the dataset (1) containing elements representative of the considered popu-

lation. Based on the material from section 2.2, the kernel estimator (5) can be calcu-

lated. Then, consider also the set of its values for elements of the dataset (1), therefore  

 �+�����, �+�����, … , �+	��	�  , (9) 

where �+� means the kernel estimator � calculated excluding the i-th element of the da-

taset. Next, define the number R ∈ �0, 1� determining the sensitivity of the procedure 

for identifying atypical elements. This number will simply determine the assumed pro-

portion of atypical elements in relation to the total population; therefore, the ratio of the 

number of atypical elements to the sum of atypical and typical elements. In practice  

 R = 0.01, 0.05, 0.1  (10) 

is the most often used. Next, for the set (23) one can calculate the positional estimator 

for the quantile of the degree R given by the formula  

 UKV = W  X� for �R < 0.5�0.5 + " − �R�X� + �0.5 − " + �R�X�[� for �R ≥ 0.5  , (11) 

where " = "�\��R + 0.5�, while "�\ denotes an integral part of a number, and X� is the "-th value in size of the set (9) after being sorted; thus  

 ]X�, X�, … , X	^ = _�+�����, �+�����, … , �+	��	�` (12) 
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with X� ≤ X� ≤ ⋯ ≤ X	. Generally, there are no special recommendations concerning 

the choice of the sorting algorithm used for specifying set (12). However, let us interpret 

the definition (11), taking into account the values (10). So, it is enough to sort only the " + 1 smallest values in the set (9), therefore, about 1-10% of its size. One can apply a 

simple algorithm that subsequently finds the " + 1 smallest elements of the set (9).  

Finally, if for a given tested element �c ∈ ℝ�, the condition ���c� ≤ UKV is fulfilled, then 

this element should be considered atypical; for the opposite ���c� > UKV it is typical.  

The details of the above method can be found in the paper [16]. A review of various 

methods of outlier detection is given in the monograph [2].  

2.3   Testing of Stationarity, KPSS Test  

Let the real time series ]ef^f��,�,… be given. The stationarity of the stochastic pro-

cess, from which this series originate, will be verified using the KPSS test [18]. The 

hypothesis being tested here is the stationarity, with respect to the alternative hypothesis 

that the process is nonstationary. Generally, the KPSS test is applied in two options: 

without considering the trend and assuming its presence. Here, the first of them will be 

used − in the investigated procedure, each trend will be treated as a nonstationary factor.  

The test statistics, calculated on the basis of g values e�, e�, … , eh takes the form  

 �ijj = ∑ klAml67nopA    , (13) 

where jf denotes the partial sum of the residuals of mean-square approximation of the 

series by a constant function (the optimal value here is equal to the arithmetic mean), i.e.  

 jf = ∑ qrfr��   (14) 

 qr = er − es      for  t = 1, 2, … , \ (15) 

 es = �h ∑ erhr��   , (16) 

and JKu means the consistent estimator of a standard deviation, given by the formulas  

 JKu� = g ∑ qr�hr�� + 2g ∑ L�X, v�wx�� ∑ qyqy+xhy�x[�  (17) 

 L�X, v� = 1 − xw[� (18) 

 v = "�\�4 ∙ �0.01 g�7| 3  , (19) 

where "�\ means rounding to an integer. To avoid 0 0⁄ , define �ijj = 0 for g = 1.  

The critical set takes the right-hand form, while the critical values for critical levels 

equal respectively  

  critical levelcritical value          0.10.347     0.050.463     0.0250.574     0.010.739  . (20) 

Based on the fuzzy approach, a quantity with values from the interval [0, 1] will now 
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be defined, characterizing the “degree of nonstationarity” of the data stream under 

research. Namely, the function KPSS will be subjected to a linear transformation and 

then covered by the sigmoid function X�� ∶ ℝ → �0, 1� given as  

 X����� = ��[���  . (21) 

After determining the transfomation parameters one obtains  

 X���ijj = X���0.995 �ijj −  2.932�  . (22) 

The coefficients of the linear transformation, appearing in the formula (22) were fixed 

heuristically such that the biggest, used in practice, critical value 0.739 is transformed 

into the highest critical level 0.1, and the smallest critical value 0.347 into the level 

lower by 30%. The last value has been fixed through the inspiration of automatic 

control practice, in particular the Ziegler-Nichols method of tuning PID controllers [6]. 

Namely, the integral quality index v� was minimized in a response to the unique step 

in the time series ]ef^f��,�,… . Such a value generally seems to be the most favorable 

(Section 4). Using the classic automatic control language, one then obtains a course 

without or with small over-regulations.  

For purposes of the procedure investigated here, we fixed by the same method  g = 600. Its increase results in sensitivity improving, however, at the expense in a 

slower reaction; a reduction brings opposite efects. Naturaly, in the initial \ steps when \ < 600 we should emloy as many elements as we have; therefore  

 g = � \ when \ < 600600 when \ ≥ 600  . (23) 

For simple unimodal distributions, the value g = 600 can be reduced to 500.  

In the multidimensional case  

 X���ijj = max���,�,… ,� X���ijj�   , (24) 

where X���ijj�  denotes the quantity X���ijj given by the formula (22) for the  "-th continuous attribute. The maximum norm assumed in the formula (24) allow the 

strongest, among particular attributes, nonstationarity to be identified. Note that using 

smooth functions in the above formulas will result in relatively mild fluctuations in time 

of the estimated density. For further considerations recall also that 0 < X���ijj < 1.  

2.4   Forecasting, Exponential Smoothing  

If a nonstationarity is detected, the possibility appears of identification of a potential 

trend of the changes that have occurred, and regarding in the algorithm the values related 

with it. In this paper the exponential smoothing forecasting method [10] will be applied 

with the assumption of linear form of the trend. This method enables effective updating 

of the prediction model after receiving the subsequent value of the time series ]ef^f��,�,…  .  

The identified trend is assumed in the form ��\ + ��; denote the coefficients existing 

here in the form of a line vector, additionally denoting they dependence on \:  
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 �f = ���,f , ��,f3  . (25) 

The prognosis calculated at the moment \, with the anticipation � ∈ ℕ\]0^ is given by:  

 ef� = �f �1��  , (26) 

and then ��,f characterizes the velocity of changes.  

In order to determine the matrix �f, first define the following matrixes:  

 v = �1 01 1� (27) 

 �� = �1 00 0�  ,     �f[� = �f + �f � 1 −\−\ \� �     for  \ = 1, 2, … (28) 

 �� = �e�0 �  ,     �f[� = �v+��f + �10� ef[�     for  \ = 1, 2, …  , (29) 

where the parameter � ∈ �0, 13 determines the intensity of adaptation of the forecasting 

model, fitting it to the changing reality. The possible increase in its value reduces the 

speed of reaction for forecasting errors, while decrease intensifies this reaction but 

threatens instability. The parameter � value will be determined in the following.  

On the basis of the values successively obtained in the examined time series e�, e�, …  one can calculate the matrixes (28)-(29), and finally  

 �f = �f+��f     for  \ = 1, 2, …  . (30) 

Its second element ��,f will be used in the next chapter for the procedure designed there.  

Detailed information on the exponential smoothing method can be found in the mon-

ograph [10] and the classic textbook [1].  

3   Procedure for Predicted Distribution Density Estimation  

The distribution density of streaming data will be determined using the moving win-

dow concept. Assume three parameters �	�� , �, �� ∈ ℕ\]0^  such that �	�� ≤� ≤ ��. They represent a minimal, current and standard (in practice also maximal) 

number of elements, on the basis of which the kernel estimator � will be calculated. A 

reservoir consisting of �� last elements of the data stream under research will be cre-

ated and successively updated. The elements of the reservoir are stored with the order 

of currency, from the newest �� to the oldest �	  .  

The parameters �	�� , �� are constant, while � changes depending on the current 

behavior of the data stream (see section 3.1). They are assigned weights resulting from 

the outdatedness with intensity depending on the nature of the stream under research 

(section 3.2). Following its characteristics, the procedure will be supported by forecast-

ing methods (section 3.3). Atypical elements are accordingly amplified or reduced de-

pending on whether it represents new or diminishing tendencies (section 3.4). Each of 

the above concepts reduces the estimation error, while these gains are independent and 
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cumulative (chapter 4).  

3.1   Variable Reservoir Size  

The reservoir size �, on the basis of which the kernel estimator is calculated, has a 

fundamental meaning for the quality of estimation. In the stationary case, when the 

characteristics of the data stream do not change, the higher value of this parameter gives 

more accurate results. However in the case of nonstationarity, smaller values of � en-

able us to more effectively keep up with changes.  

We have assumed the following heuristic evaluation concerning the accuracy of the 

basic one-dimensional (� = 1) estimator:  � = 100  - acceptable quality  � = 1,000  - good quality  (31) � = 5,000  - very good quality  .  

The accuracies obtained experimentally for exemplary one-, two-, and three-modals 

distributions are shown in Tab. 1. Of course, all intermediate values as well as outside 

of the above range are possible. Enlarging the data dimension by one, requires about  

4-fold increase in the size � to maintain quality.  

Table 1. Accuracy of estimation of the exemplary distributions  

one-modal N(0,1) with formula (7),  

two-modals 60% N(0,1)+40% N(5,1) with plug-in of degree 2,  

three-modals 30% N(-5,1)+40% N(0,1)+30%N (5,1) with plug-in of degree 3,  

for v�, v� and sup norms.  

Accuracy  One-modal  Two-modals  Three-modals  � = 50  0.184, 0.300, 0.080  0.246, 0.340, 0.056  0.254, 0.350, 0.044  � = 100  0.141, 0.224, 0.062  0.187, 0.264, 0.046  0.205, 0.283, 0.037  � = 1,000  0.060, 0.098, 0.030  0.076, 0.112, 0.023  0.091, 0.127, 0.018  � = 5,000  0.032, 0.054, 0.018  0.041, 0.062, 0.013  0.050, 0.071, 0.011  � = 10,000  0.024, 0.041, 0.014  0.031, 0.047, 0.011  0.038, 0.055, 0.009  

Therefore let �� constitute the assumed reservoir size for the conditions of station-

arity, as well as �	�� its minimal permissible level. Then define the value on the basis 

of which the kernel estimator � will be calculated as  

 � = ¡�	�� when �∗ < �	���∗ when �	�� ≤ �∗ ≤ ���� when �∗ > ��   , (32) 

while  

 �∗ = "�\�1.1 �� �1 − X���ijj�)  , (33) 
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where X���ijj is given by the formula (22) substituting (13)-(19) and (21)-(24). 

Therefore, if one is dealing with a stationary process, then X���ijj ≅ 0 and in con-

sequence � ≅ ��. In turn, in the case of distinct nonstationarity X���ijj ≅ 1, and 

then � ≅ �	��. The intermediate values consecutively fluctuate in a continuous man-

ner, as the term X���ijj successively changes its value. Multiplication of the param-

eter �� by 1.1 (i.e. increase by 10%) in the formula (33) and then restriction � to �� 

in (33) eliminates possible fluctuations of � near ��, resulting from the “tail” of the 

KPSS test statistics. To justify the level of 10%, see the determination of the parameters 

of the linear transformation in the equality (22). Note also that for purposes of the KPSS 

test (and only here) described in section 2.4, the elements should be provided in the 

opposite order, from the oldest with the index 1 to the newest with ��.  

Using the classic automatic control methods, in the basic one-dimensional case � =1, the value �� = 1,000 has been obtained as a standard (compare the formula (31) 

and Tab. 1). In the case of complex, significantly multimodal distributions, it can be 

increased by 100 for each additional mode.  

The parameter �	�� value should be dependent on the biggest speed of changes. In 

particular, we propose  

 �	�� = "�\�	 �� �  , (34) 

The value �	�� = 100 can be treated as a standard. Such a value enables an effective 

tracking of changes not faster than 0.01JK per step. For slower changes, the bottom 

boundary by �	�� will be simply inactive. For faster alternations �	�� = 50 is possi-

ble, however, runs can excessive fluctuating in time. Further decreasing of this value is 

not recommended (compare the formula (31) and Tab. 1).  

3.2   Outdatedness  

Particular elements used to calculate the kernel estimator will undergo outdatedness 

over time. This function will be performed by appropriate definition of values of the 

coefficients 8f , introduced in the definition (5). The linear formula will be applied  

 8�∗ = 2 �1 − ¤��+��	 �     for  " = 1, 2, … , �  , (35) 

where ¥ ∈ �0, 13 specifies the intensity of outdatedness. In particular ¥ = 0 means its ab-

sence; all the reservoir elements then have the same weight. In contrast, if ¥ = 1, the 

weights successively decreased from 2 for the newest element with the index 1, to 2 �⁄  

for the oldest with the index �, with the step 2 �⁄ .  

In the case of stationarity, it is worth assuming the value ¥ = 0, successively grow-

ing it as nonstationarity increases, to the maximum permissible value 1. As a natural 

consequence, it has been accepted that  

 ¥ = X���ijj  , (36) 

where X���ijj is given by the formula (22) substituting (13)-(19) and (21)-(24).  

Finally, to take account of the above outdatedness procedure, for the purposes of 
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constructing the estimator (5) one should assume 8� = 8�∗ for " = 1, 2, … , �, where 8�∗ are given by the formulas (35)-(36).  

3.3   Prediction  

In the case when nonstationarity of the data stream under research results from a 

formed trend, it is worthwhile suitably introducing elements of forecasting methods, 

described in section 2.4, to the model.  

For each new reservoir element ��, sequentially, from the moment of its receiving, 

one builds a forecasting model, following the material presented in section 2.4, for 

which the consecutive quantities �����, where � is the kernel estimator calculated on 

the basis of section 3.1 are treated as successive values of the observed time series. 

Thanks to this we have the vector (25) and in particular its second component ��,f, 

which for the element �� can be naturally denoted as ��,f,�. Note also that the forecast-

ing model is assigned to the specific element �� and when its index " changes over time 

within the reservoir, this model moves with it for " = 1, 2, … , ��.  

Now define the function representing changes of the kernel estimator (5). Let, there-

fore, for the fixed \, the function �f: ℝ� → ℝ be given by the formula  

 �f��� = �	 ∑ ��,f,����, �� , ℎ�	���   , (37) 

where ��,f,� is the second element of the vector �f (25), at the moment \, for the element ��; the function � remains unchanged (4), while the parameter ℎ value is the same as in 

the estimator � calculated on the base of section 3.1.  

Introduce now the coefficients  

 8�∗∗ = 1 + ¦�  X���ijj     for  " = 1, 2, … , �  , (38) 

where X���ijj is given by the formula (22) substituting (13)-(19) and (21)-(23), 

while ¦� ∈ �−1, 13. The presence in the above dependence (38) of the factor X���ijj 

causes that in the case when the data stream is stationary, the coefficients 8�∗∗ are close 

to 1, while in the nonstationary case the influence of the parameters ¦� is manifested 

accordingly. Define their values as  

 ¦� = ¦� ∙ §l�*,�§sl      for  " = 1, 2, … , �  , (39) 

where  

 �̅� = 1  ,      �̅f = max���,�,…,	l |�f����|    for  \ = 2, 3, …  , (40) 

�f denotes the size of the reservoir in the moment \ and the constant ¦� ∈ �0, 13 indi-

cates the intensity of the forecasting function constructed herein. For the stationary con-

ditions the value ¦� = 0 is natural. In the case of nonstationarity, initially consider ¦� =0.5 as a standard. Generally the values from the range [1/3, 2/3] are satisfactory, while 

for the slow changes smaller values are preferable (also because of the function � fluidity 

over time) and for fast − bigger. For the nonstationarity, values smaller than 1/3 result in 
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too weak prediction, larger than 2/3 seem to be somewhat extreme (in particular, for ¦� =1 some kernels could be removed, which unintentionally reduces a sample size assumed 

in section 3.1). Finally we propose  

 ¦� = �D  X���ijj  . (41) 

Note that the condition ¦� ∈ �−1, 13 is fulfilled only with accuracy of determining 

the maximum of the function �f only on the finite set ]��^ as assumed in the formula 

(40). It has no meaning from the applicational point of view, because these parameters 

are multiplied in the dependence (38) by X���ijj, which is strictly less than 1, what 

in practice ensures the meaningful inequality 8�∗∗ ≥ 0.  

The parameter � introduced in the formulas (28)-(29), defining the intensity of ad-

aptation of the forecasting model, can be determined by the natural dependence:  

 � = 1 − �	  . (42) 

The intensity of adaptation of the forecasting model is therefore proportional to information 

provided by every new element of the data stream with the current reservoir size �.  

Finally, if the prediction is used without the outdatedness procedure, it should be 

assumed that 8� = 8�∗∗, where 8�∗∗ was defined above by the formulas (37)-(42), while 

if the both concepts are implemented, then 8� = 8�∗ ∙ 8�∗∗, for " = 1, 2, … , �.  

3.4   Atypical (rare) elements  

By calculating the distribution density, one can easily detect, separately in every 

moment \, atypical elements in the sense of rarely occurring. As previously, introduce 

the coefficients  

 8�∗∗∗ = 1 + ª�  X���ijj     for  " = 1, 2, … , �  , (43) 

where X���ijj is given by the formula (22) substituting (13)-(19), (21) and (23), and 

moreover ª� ∈ �−1, 13 are defined as  

 ª� = ¡§l�*,�§sl when ��  is atypical element0 when ��  is typical element      for  " = 1, 2, … , �  , (44) 

while �f and �̅f were specified in the previous section 3.3; see formulas (37) and (40). 

Thus, in the case of stationarity, the values of the coefficients 8�∗∗∗ will be close to 1, 

while the data stream is nonstationary, the more amplified will be atypical elements 

which represents a rising tendency (thanks to ª� > 0), and reduced recessive elements 

(due to ª� < 0).  

The procedure presented in section 2.3. can be used to identify atypical elements. 

Based on suggestions from the formula (10), the value of the parameter R, determining 

the procedure sensitivity, will be assumed as  

 R = 0.01 + 0.09 X���ijj  . (45) 
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In the stationary case, a few (around 1%) atypical elements are specified, with an indi-

cation which are connected with new trends (ª� > 0) and which with diminishing (ª� <0). It may be a valuable suggestion in the fundamental analysis of the results obtained. 

In turn, in conditions of strong nonstationarity, when X���ijj ≅ 1, almost 10% of 

elements are recognized as atypical, which introduces an additional forecasting factor, 

as the importance of elements of increasing significance grows (ª� > 0) and of decreas-

ing meaning shrinks (ª� < 0), which generally improves estimation quality. (If the re-

sults are given in the graphical form, it is worthwhile to mark on the graph the atypical 

elements by different color whose with positive ª� values and other with negative.)  

Finally, if the procedure described in sections 3.2-3.4 are used, then the coefficients 

introduced in the definition (5) should be taken in the form  

 8� = 8�∗ ∙ 8�∗∗ ∙ 8�∗∗∗     for  " = 1, 2, … , �  . (46) 

If any of these procedures, outdatedness, prediction or detection of atypical elements, 

should be omitted, then the appropriate element 8�∗, 8�∗∗ or 8�∗∗∗ should be removed 

from the above formula. For clarity of interpretation, each of them varies in the same 

range from 0 to 2. All of them change continuously, which smooths fluctuations of the 

density �.  
4   Conclusion, Additional Aspects, and Numerical Evaluation  

This paper investigates the concept of calculation of the current distribution density 

of the streaming data. The function � is defined by the formula (5), whereas standard 

quantities are associated with kernel estimators are presented in section 2.2, while the 

determination of the reservoir size and the construction of the coefficients 8�  are given 

in the particular sections of chapter 3.  

In the first step (to avoid zeros in the denominator in the formula (8) ) it is arbitrarily 

assumed that ℎ = 1. If in the initial steps, the number of the elements received is insuf-

ficient to fill the reservoir of the size obtained in section 3.1 or the average �̅f from the 

formula (40), then this size should be reduced naturally to the number we have, simi-

larly to the formula (23). Up to the step \ = �	�� , the results obtained are only indic-

ative and do not give ground for further analysis at the assumed accuracy level. Only 

after the moment \ = �� does the procedure work under appropriate sufficient stabi-

lized conditions.  

Similarly, during an increase in the parameter � value, one should add to the reser-

voir only new elements, even if they come slower than the � grow speed.  

The procedure investigated has been comprehensively verified using both, simulated 

and real, data streams. For the basic illustration, consider a single continuous attribute, 

when the testing stochastic process is given in the form  

 ef = � \ + 0.6 �0,1� + 0.4 �5,1�     for  \ = 1, 2, …  , (47) 

where � \ represents a deterministic trend, while  
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 � =
⎩⎪⎨
⎪⎧0.000,50.010.005+10

whenwhenwhenwhenwhen
\ < 2,0002,000 ≤ \ < 5,0005,000 ≤ \ < 8,000\ = 8,0008,000 < \ ≤ 10,000

  , (48) 

whereas +1 denotes a unit step. Therefore during the initial period with very slow 

changes, a consolidation of the algorithm occurs, and then the data stream increases firstly 

very fast and then with medium speed, and finally, after a unit step, the process becomes 

stationary. Such changes in dynamics pose a big challenge for the worked out method.  

Three performance indexes were used; averaged over time differences between the 

real density resulting from the formulas (47)-(48) and the estimator, in the senses of the v�, v�, X³� norms. The presented results were obtained on the basis of 20 averaged 

runs. Each calculation cycle was performed in a few seconds.  

In the stationary case the results were close (with accuracy to 1%) to those obtained 

simply on the basis of the last �� elements; the KPSS test correctly classified the sta-

tionarity of the data stream. The above simple strategy of the last �� elements was 

generally treated as the reference. The introduction of the variable �, as indicated in 

section 4.1, resulted in a decrease in the value of these indexes of 56%, 67% and 64%, 

respectively for particular indexes. The addition of outdatedness (section 4.2) improved 

the indexes by further 23%, 24% and 9%, while the addition of forecasting (section 4.3) 

reduces their values by 21%, 30% and 16%, and finally, adding atypical elements de-

tection (section 4.4) by further 3%, 2% and 1%. In total, all four factors (sections 4.1-

4.4) improved quality by about 63%, 83% and 65%.  

Atypical elements detection does not introduce significant improvement of indexes. It 

works in those areas, in which the distribution density values are small and is also their 

influence of numerical indicators. This factor, however, captures even insignificant 

changes but often very important in the fundamental analysis of datasets, and also ex-

traordinary errors and situations, not covered by the above research scheme. Note that 

forecasting as well as atypical elements detection work on characteristics which were al-

ready significantly improved by the modification of the reservoir size and outdatedness.  

Similar results were obtained for multidimensional cases, also in the presence of 

categorical attributes [4], and with a noise correlated in time. Detailed experimental 

studies are the subject of the comprehensive paper [17], where a comparative analysis 

with the other methods quoted at the end of chapter 1, is also contained. Generally, the 

procedure presented here gives much better results, where the more clear and ambigu-

ous formed trend is present.  

Future researches will lead to the substitution of the removal of the oldest elements 

of the reservoir by sampling with probabilities dependent on the current size of the 

reservoir, outdatedness, prognosis and atypical elements detection presented in the suc-

cessive sections of chapter 3 of this paper. It prevents the complete omission of phe-

nomena manifested by elements older than the current reservoir size as it is in the case 

of the moving window method applied here. Thanks to forecasting, this goal can be 

achieved without, both qualitative and quantitative, deterioration of a quality.  
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