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Abstract. The epistemic uncertainty quantification concerning the estimation of 

the approximation error using the differences between numerical solutions 

treated in the Inverse Problem statement is addressed and compared with the 

Richardson extrapolation. The Inverse Problem is posed in the variational 

statement with the zero order Tikhonov regularization. The ensemble of numer-

ical results, obtained by the OpenFOAM solvers for the inviscid compressible 

flow with a shock wave is analyzed. The approximation errors, obtained by the 

Richardson extrapolation and the Inverse Problem are compared with the exact 

error, computed as the difference of numerical solutions and the analytical solu-

tion. The Inverse problem based approach is demonstrated to be an inexpensive 

alternative to the Richardson extrapolation. 

Keywords: Richardson extrapolation, approximation error, ensemble of numer-

ical solutions, Euler equations, OpenFOAM, Inverse Problem. 

1 Introduction 

The estimation of the approximation error that is a subject of the epistemic uncertain-

ty quantification is the main element for the verification of numerical calculations. 

The standards [1,2] recommend the Richardson extrapolation (RE) as one of the main 

tools for the verification of solutions and codes in the Computational Fluid Dynamics. 

RE provides the pointwise approximation of the approximation error, unfortunately, 

at the cost of the extremely high computational burden [3-5]. There exist some com-

putationally inexpensive approaches for the approximation error norm estimation, for 

example [6]. However, these approaches do not provide the pointwise information on 

the error. Thus, the need for a computationally inexpensive a posteriori estimation of 

the point-wise approximation error exists. For this reason we consider herein the 

computationally inexpensive approach to a posteriori error estimation [7] that is based 

on the ensemble of numerical solutions obtained by different algorithms. The approx-

imation error is estimated using the differences of solutions at every grid node that are 

treated by the Inverse Ill-posed Problem (IP) stated in the variational statement with 

the Tikhonov zero order regularization [8,9]. The results of the numerical tests for 
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compressible Euler equations are provided that demonstrate both the estimated error 

and the exact error (obtained by a comparison of numerical solution with the exact 

analytical one). The paper [7] analyzed the pointwise error by comparison with the 

etalon solutions [10]. In the present paper we compare the error computed by Inverse 

problem with the exact error (engendered by the analytic solutions) and the results by 

the Richard-son extrapolation. 

2 The Richardson extrapolation for flows with discontinuities 

We consider the numerical solution 𝑢ℎ obtained by some CFD solver, the exact (un-

known) solution 𝑢̃, the approximation error ∆𝑢 = 𝑢ℎ − 𝑢̃. The Richardson extrapola-

tion (RE) applies two numerical solutions obtained for consequently refined grids for 

the pointwise (m is the number of the coarse grid point) estimation of exact solution 

and error: 
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This equation enables to estimate the approximation error as ∆𝑢𝑚
(1)

≈ 𝐶𝑚ℎ1
𝛼 . To 

apply RE the convergence order α should be a priori known and the solutions should 

belong to the asymptotic range of the convergence (the upper order terms should be 

small and may be neglected). To ensure the sequence of solutions to belong the as-

ymptotic range one should use several additional levels of mesh refinement that 

caused an additional computational cost. The traditional domain for the Richardson 

extrapolation corresponds to the elliptic and parabolic problems with smooth solu-

tions. The behavior of Richardson extrapolation error estimates for simulations of 

solutions with jumps, such as shock and contact lines for fluid mechanics, is known to 

be problematic [4,5]. It is caused by the fact that for CFD problems of inviscid com-

pressible fluid containing shock waves and contact discontinuities the error order is 

essentially spatially local and depends on the type of flow structure [3,4,11,12]. So, it 

is necessary to extend RE for the additional estimation of the local order of conver-

gence that is performed by [3,5]. 

The pointwise results of numerical computation for three consequent meshes of 

different steps (to avoid the interpolation issue, the steps corresponds consequent 

doubling of the number of grid nodes: ℎ𝑞~(1/2)𝑞−1, 𝑞 = 1,2,3) may be presented as: 
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This system (generalized Richardson extrapolation (GRE), [3]) may be resolved 

regarding 𝑢̃𝑚, 𝐶𝑚, 𝛼𝑚 by several methods described by [3-5] if 𝐶𝑚 is independent 
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on ℎ and higher order terms may be neglected, that is, the solution is in the asymptotic 

range. This approach requires the use of several sequentially refined grids. The num-

ber of such grids can increase if the results for the coarse grid fall outside the asymp-

totic range. Unfortunately, in the contrast to the standard RE, the estimation of 𝛼𝑚 is 

the ill-posed problem [5] and requires a regularization in order to obtain the stable 

results. The approximation error on the rough grid in the frame of GRE may be esti-

mated as 

 mhCu mm



1

)1(  . (3) 

It should be mentioned that the accuracy of RE (and GRE) for the error estimation 

remains unresolved quantitatively that excludes estimates by computable inequalities 

of the form |∆𝑢𝑚
(1)

| ≤ 𝐶. So, the Richardson extrapolation provides the pointwise 

approximation for the error field at the cost of the extremely high computational bur-

den, requires a regularization (in its generalized form) and does not provide the math-

ematically rigorous estimates in the form of the inequality. 

3 The relation of approximation error and the distances 

between numerical solutions 

Let’s consider the approximation error estimation using the distances between numer-

ical solutions treated using the Inverse problem in accordance with [7]. We analyze an 

ensemble of numerical solutions 𝑢𝑚
(𝑖)

 (i = 1…n), obtained by n different numerical 

algorithms (different solvers) on the same grid. Herein, we apply certain vectoriza-

tion, so m is the grid point number (m = 1,…,L). We note the projection of the exact 

solution 𝑢̃ onto the grid as 𝑢̃ℎ,𝑚 and the approximation error for i-th solution as ∆𝑢𝑚
(𝑖)

 

(𝑢𝑚
(𝑖)

= 𝑢̃𝑚 + ∆𝑢𝑚
(𝑖)

). Since the differences of numerical solutions 𝑑𝑖𝑗,𝑚 = 𝑢𝑚
(𝑖)

−

𝑢𝑚
(𝑗)

= 𝑢̃ℎ,𝑚+∆𝑢𝑚
(𝑖)

− 𝑢̃ℎ,𝑚 − ∆𝑢𝑚
(𝑗)

= ∆𝑢𝑚
(𝑖)

− ∆𝑢𝑚
(𝑗)

 are equal to the differences of 

approximation errors one may get 𝑁 = 𝑛 ∙ (𝑛 − 1)/2 independent equations relating 

unknown approximation errors and computable differences of numerical solutions 

 mi

j

mij fuD ,

)(  . (4) 

Herein, 𝐷𝑖𝑗 is a rectangular 𝑁 × 𝑛 matrix, 𝑓𝑖,𝑚 is a vectorized form of the 

ences 𝑑𝑖𝑗,𝑚, the summation over a repeating index is implied. 

Formally, the approximation error may be expressed as  

 miij

j

m fDu ,

1)( )(  . (5) 

In the considered case ( 4n ) the equation (4) has the form 
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At the first glance the system is overdetermined. However, the solution of system 

(4) is invariant relatively a simultaneous shift transformation of all terms 𝑢𝑚
(𝑗)

=

𝑢̃𝑚
(𝑗)

+ 𝑏 (and corresponding errors ∆𝑢𝑚
(𝑗)

= ∆𝑢̃𝑚
(𝑗)

+ 𝑏) for any 𝑏 ∈ (−∞, ∞) due to 

the usage of the difference of solutions as the input data. For this reason, the problem 

of approximation error estimation from the difference of solutions is really underde-

termined and  therefore ill-posed. We solve the system of equations (6) by the method 

considered in following section. 

4 The estimation of approximation error using regularized 

Inverse Problem 

In general, a regularization ([8,9]) is necessary in order to obtain the steady and 

bounded solution of the ill-posed problems. Herein we apply the zero order Tikhonov 

regularization in order to obtain solutions with the minimum shift error |𝑏|. The min-

imal 𝐿2 norm of ∆𝑢(𝑗) restricts the absolute value of  𝑏, since: 
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This expression is used as the regularizing term in variational statement of the Inverse 

Problem. 

One may see that 
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j

m

n

j
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and the minimum occurs at 𝑏𝑚 that equals the mean error (with the opposite sign):  

 m

j

m

n

j
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n

b   )(~1
. (9) 

So, the expression (7) may be treated as the minimum of the deviation of the exact 

error from the mean ∆𝑢(𝑗) = ∆𝑢̃(𝑗) − ∆𝑢̅ (the exact error dispersion). The minimality 
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of 𝛿 ensures the boundedness of the shift error 𝑏𝑚. Thus, the accuracy of the error 

∆𝑢(𝑗) estimation in considered approach is restricted by the mean error value. 

We pose the Inverse Problem for ∆𝑢(𝑗) estimation in the variational statement [9] 

that implies the minimization of the following functional: 

 )(2/)()(2/1)( )()(

,

)(

,

)( k
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j

mmi

k

mikmi

j

mijm uEufuDfuDu  


. (10) 

The first term of (10) is the discrepancy of the predictions and observations, the sec-

ond term is the zero order Tikhonov regularization (𝛼 is the regularization parameter, 

𝐸𝑗𝑘 is the unite matrix). We apply the gradient based (steepest descent) iterations (𝑘 is 

the number of the iteration) for the minimization of the functional: 

 m

kj

m

kj

m uu   ),(1),( . (11) 

The gradient is obtained in the present work by the direct numerical differentiation, 

the iterations terminate at certain small value of the functional 𝜀 ≤ 𝜀∗ (𝜀∗ = 10−8 was 

used).  The obtained solution depends on the choice of the regularization parameter 𝛼. 

Without regularization (𝛼 = 0) |∆𝑢(𝑗)(𝛼)| is not bounded and is not acceptable for 

this reason. The limit 𝛼 → ∞ is not acceptable also, since |∆𝑢(𝑗)(𝛼)| → 0. A range of 

the regularization parameter 𝛼 exists where the weak dependence of the solution on 𝛼 

is manifested. In this range, the solution ∆𝑢(𝑗)(𝛼) is close to the exact one ∆𝑢̃(𝑗) and 

is considered as the regularized solution [8]. By the rearranging Eq. (10) one may 

obtain 
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and 
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This expression enables the estimation of the mean local error in the form of inequali-

ty: 
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The corresponding estimation of the global error norm has the appearance 
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So, in contrast to the Richardson extrapolation, the Inverse Problem based ap-

proach enables the estimation of the averaged error in the form of strict inequalities. 
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5 The test problem 

The estimation of the approximation error for the problems containing discontinuities 

is a challenging task. In CFD problems the errors arising at shock waves and contact 

discontinuities are of the significant magnitude, demonstrate the oscillating behavior 

and are specified by nonstandard order of the convergence. For this reason our atten-

tion in the present paper is focused on the errors engendered by the shock waves. The 

similar topics arising at the contact discontinuities and the shock interferences are 

reserved for the future works. The test problem is governed by the two dimensional 

compressible Euler equations describing a shock wave. The following flowfield pa-

rameters: density, velocity components along x and y axes, pressure ({𝜌, 𝑣𝑥 , 𝑣𝑦 , 𝑝}) 

and the Mach number (𝑀) are used in the analysis. We estimate the approximation 

error by minimizing the functional (7) using Expression (11) for parameters 𝑢𝑚
(𝑖)

 that 

correspond the flowfield variables {𝜌, 𝑣𝑥 , 𝑣𝑦 , 𝑝} at every grid point. The flowfield 

around a plate at the angle of attack 𝛼 = 6° and 𝛼 = 20° in the uniform supersonic 

flow (𝑀 = 2 and  𝑀 = 4) of ideal gas is analyzed. The approximation error is esti-

mated using generalized Richardson extrapolation [3,5] and the Inverse problem 

based statement. The results are compared with the exact error obtained by the sub-

traction of the numerical solution and the projection of the analytic solution on the 

computational grid. At 𝛼 = 6° and  𝑀 = 2 we obtain a relatively weak shock wave, 

while at 𝛼 = 20° and  𝑀 = 4 the shock wave is strong. On the left boundary (“inlet”) 

and on the upper boundary (“top”), the inflow parameters are set for Mach number 

𝑀 = 2, 𝑀 = 4 an corresponding angles. On the right boundary (“outlet”) the zero 

gradient condition for the gas dynamic functions is specified. On the plate surface, the 

condition of zero normal gradient is posed for the pressure and the temperature, and 

the condition “slip” is posed for the speed, corresponding to the non-penetration. The 

parameters of the OpenFOAM package are the same as in [7]. 

6 OpenFOAM solvers 

The solvers from the OpenFOAM software package [13] that were used are the fol-

lowing:  

 rhoCentralFoam (marked as rCF), which is based on a central-upwind scheme 

[14,15].  

 sonicFoam (sF), which is based on the PISO algorithm [16].  

 pisoCentralFoam (pCF) [17], which combines the Kurganov-Tadmor scheme [14] 

and the PISO algorithm [16]. 

 QGDFoam (QGDF), which implements the quasi-gas dynamic equations [18]. 

These solvers are of the second approximation order, while they are based on the 

algorithms of the quite different ideas and inner structure. 

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_42

https://dx.doi.org/10.1007/978-3-030-77980-1_42


7 

7 Numerical results 

The exact errors are obtained by the comparison of the numerical solution with the 

analytic one for the shock wave (Rankine-Hugoniot relations). The relative exact 

errors in 𝐿1 and 𝐿2 norms are presented in Tables 1-6 for 𝛼 = 20°, 𝑀 = 4 and three 

grids (20000, 80000 and 320000 nodes). For QGDF code the coefficient 𝛽 = 0.1 is 

used that controls the artificial viscosity. 

Table 1. The relative errors in L1 norm (M = 4, α = 20°, 20000 nodes). 

 rCF pCF sF QGDF 

M 0.001295 0.001489 0.002267 0.01155 

p 0.010745 0.011226 0.025567 0.018022 

ρ 0.005817 0.006573 0.015622 0.008541 

Table 2. The relative errors in L1 norm (M = 4, α = 20°, 80000 nodes). 

 rCF pCF sF QGDF 

M 0.000701 0.000816 0.001205 0.000611 

p 0.005512 0.005964 0.013733 0.009629 

ρ 0.003086 0.003601 0.008663 0.004549 

Table 3. The relative errors in L1 norm (M = 4, α = 20°, 320000 nodes). 

 rCF pCF sF QGDF 

M 0.000381 0.000439 0.000678 0.000439 

p 0.002944 0.003217 0.007621 0.003217 

ρ 0.001654 0.001938 0.005043 0.001938 

Table 4. The relative errors in L2 norm (M = 4, α = 20°, 20000 nodes). 

 rCF pCF sF QGDF 

Ma 0.013951 0.015138 0.013520 0.009920 

p 0.080503 0.079493 0.143794 0.098895 

ρ 0.047797 0.047157 0.092308 0.055613 

Table 5. The relative errors in L2 norm (M = 4, α = 20°, 80000 nodes) 

 rCF pCF sF QGDF 

M 0.010127 0.011202 0.009191 0.007125 

p 0.055094 0.056591 0.104672 0.070171 

ρ 0.033143 0.033612 0.066215 0.039410 
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Table 6. The relative errors in L2 norm (M = 4, α = 20°, 320000 nodes) 

 rCF pCF sF QGDF 

M 0.007527 0.008263 0.006610 0.008263 

p 0.039382 0.040675 0.081605 0.040675 

ρ 0.024024 0.024262 0.051199 0.024262 

Tables 1-6 demonstrate the order of convergence about 1.0 in 𝐿1 norm and about 

0.5 in 𝐿2 that is far from the nominal (second) order of considered algorithms and 

corresponds results by [3,4,11,12]. 

We estimate the approximation error using the generalized Richardson extrapola-

tion [3,5] on three consequent grids containing 20000, 80000 and 320000 nodes (with 

doubling number of nodes along both directions at every refinement). 

In the inverse problem statement, we minimize the functional (7) for each flow pa-

rameter from the set {𝜌, 𝑣𝑥 , 𝑣𝑦 , 𝑝} separately at every grid point. 

The Figs. 1-5 present the pieces of vectorized grid function of density error ob-

tained by the Inverse Problem in comparison with the results of the generalized Rich-

ardson extrapolation and the exact error. The index along abscissa axis 𝑖 =
𝑁𝑥(𝑘𝑥 − 1) + 𝑚𝑦 is defined by indexes along 𝑋(𝑘𝑥) and 𝑌(𝑚𝑦). The periodical jump 

of solution variables corresponds to the transition through the shock wave. One may 

see that the error at the shock wave is under resolved by both (RE and IP) methods. 

This behavior is expected since the error at a shock tends to be singular at the mesh 

refinement. 

The impact of the shock wave intensity on the quality of the error estimation may 

be observed from Figs 1 and 2 that demonstrate the dependence of both the IP-based 

and GRE estimation quality on the strength of the shock wave (for 𝑀 = 2 and 𝑀 = 4 

correspondingly). The Fig. 1 presents the piece of vectorized grid function of density 

error (computed by rCF) for 𝛼 = 6°, 𝑀 = 2. The Fig. 2 presents the piece of vector-

ized grid function of density error (computed by rCF) for 𝛼 = 20°, 𝑀 = 4. For the 

small approximation error (small Mach number and deflection angle, Fig. 1) the gen-

eralized Richardson extrapolation outperforms the Inverse problem based results de-

spite some instability past shock wave. These results are expectable, since the Rich-

ardson extrapolation is known to well behave for the rather regular solutions (weak 

shock waves in our case). For the relatively great approximation errors the IP-based 

results are rather smoothed and shifted in comparison with the exact error. This is 

caused by the using the set of solutions having slightly shifted position of the shock 

waves. Nevertheless the total quality of the IP-based error estimate improves and may 

compete with the results obtained by GRE (which suffer from instabilities). 
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Fig. 1. The comparison of the vectorized density error (rCF), estimated by the Inverse Problem 

and GRE with the exact error for M=2. 

 

Fig. 2. The comparison of the vectorized density error (rCF), estimated by the Inverse Problem 

and GRE with the exact error for M=4. 

The Figs. 3-5 provide the density errors (𝛼 = 20°, 𝑀 = 4) for pCF, QGDF, and sF 

correspondingly. 
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Fig. 3. The comparison of the vectorized density error (pCF), estimated by the Inverse Problem 

and GRE with the exact error for M=4. 

 

Fig. 4. The comparison of the vectorized density error (QGD), estimated by the Inverse Prob-

lem and GRE with the exact error for M=4. 
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Fig. 5. The comparison of the vectorized density error (sF), estimated by the Inverse Problem 

and GRE with the exact error for M=4. 

The results significantly depend on the choice of the solver. On the above numeri-

cal tests the sF solver provides most error over all set of codes (see Tables 1-6). 

The quality of a posteriori error estimate may be described by the effectivity index 

[19] that equals the relation of the estimated error norm to the exact error norm: 
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The vectors ∆𝜌⃗(𝑘), ∆𝜌⃗̃(𝑘) ∈ 𝑅𝑀 (𝑀 is the number of grid nodes) in this relation de-

note the grid functions. Thus, the norms, herein, imply averaging of pointwise errors 

over the total flowfield. To provide the reliability of the error estimation, this index 

should be greater the unit. On the other hand, the estimation should be not too pessi-

mistic, so the value of the effectivity index should be not too great. According [19], 

the range  1 ≤ 𝐼𝑒𝑓𝑓 ≤ 3 is acceptable for the finite elements in the domain of elliptic 

equations. However, for the present discontinuous solutions these values are problem 

dependent. The upper bound may by corrected using the tolerance of the valuable 

functionals and the Cauchy–Bunyakovsky–Schwarz inequality [6]. The down bounda-

ry may be corrected using certain safety coefficient. The corresponding values of the 

effectivity index are provided in the Tables 7 and 8 for IP-based statement and the 

Richardson extrapolation. 

Table 7. Effectivity indexes of error estimation (α = 6°, M = 2). 

 𝐼𝑒𝑓𝑓
𝑟𝐶𝐹 𝐼𝑒𝑓𝑓

𝑝𝐶𝐹
 𝐼𝑒𝑓𝑓

𝑠𝐹  𝐼𝑒𝑓𝑓
𝑄𝐺𝐷𝐹

 

IP 0.316 0.315 0.631 0.385 

Richardson 1.151 1.253 3.366 0.965 
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Table 8. Effectivity indexes of error estimation (α = 20°, M = 4). 

 𝐼𝑒𝑓𝑓
𝑟𝐶𝐹 𝐼𝑒𝑓𝑓

𝑝𝐶𝐹
 𝐼𝑒𝑓𝑓

𝑠𝐹  𝐼𝑒𝑓𝑓
𝑄𝐺𝐷𝐹

 

IP 0.316 0.315 0.631 0.385 

Richardson 1.151 1.253 3.366 0.965 

Tables 7 and 8 present the effectivity index for 𝑀 = 2 and 𝑀 = 4. One may see 

that the reliability of the Richardson extrapolation decreases as the intensity of the 

shock waves increases (Mach number and flow deflection angle rise). On contrary, 

the reliability of the IP-based estimated increases. In general, from the standpoint of 

the global error estimation the GRE provides more reliable results. 

Especially important is the question of comparing the computational costs for the 

GRE and IP methods for a given test problem. Since the Richardson extrapolation 

requires a sequence of grids (in this case 3), with doubling the number of grid nodes, 

it turns out to be very expensive both in terms of computational complexity and 

memory costs. If we apply the Inverse Problem, we need only a few numerical solu-

tions obtained by different methods on the same grid. If we assume that the methods 

do not differ much in computational and memory costs, then the memory costs re-

quired by the Richardson extrapolation are 5.25 times greater than the memory costs 

required by the IP approach. The calculation time ratio is about 18. Additional accel-

eration of computations in the IP approach can be achieved by constructing a general-

ized computational experiment [22]. The construction of a generalized computational 

experiment is based on the simultaneous solution using parallel computations in a 

multitasking mode of a basic problem with different input parameters, obtaining re-

sults in the form of multidimensional data volumes and their visual analysis. Using a 

generalized computational experiment, we can apply the IP approach, calculating in 

parallel the problem for each solver on its own node of the computational cluster in a 

multitasking mode, which provides additional acceleration of computations. 

8 Discussion 

In the paper [7] the Inverse Problem based approach was used for the supersonic ax-

isymmetric flows around cones. The comparison with the etalon (high precision solu-

tion by [10]) was presented. In [20] the flow modes obtained by the crossing shocks 

(Edney-I and Edney-VI patterns by [21]) are analyzed. Herein, the comparison for the 

flat flow is performed for the Inverse Problem based errors, exact error (obtained by 

the comparison with the analytic solutions) and the results of the Richardson approx-

imation. Formally, the Inverse Problem based approach is less accurate if compared 

with the Richardson extrapolation due to the presence of the unremovable error, pro-

portional to the mean error over the ensemble of solutions. However, this statement is 

valid only for the highly smooth solutions. For the above considered problems with 

shock waves the generalized Richardson extrapolation should be used that is the high-

ly unstable, that deteriorates the results. In most cases, the GRE demonstrates highly 

nonsmooth solutions that may approximate the part of the exact error (usually, before 
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the shock wave) with a relatively high resolution, while another part of the exact error 

(past the shock wave) is poorly approximated. The comparison of the results obtained 

by GRE and IP with the exact error demonstrates the high smoothing properties of the 

pointwise IP error estimation and the visible shift of the error location. Since the IP-

based error estimate are polluted by the mean error over the ensemble (9), the best 

results are obtained for the less accurate solutions (herein, for sF, see Fig. 5). 

In general, numerical tests demonstrate the accuracy of the error estimates ob-

tained using generalized Richardson extrapolation to be superior in the comparison 

with the Inverse Problem based results for the weak shocks and comparable for the 

strong shocks. In contrast to the generalized Richardson extrapolation, the considered 

IP-based postprocessor is much more computationally inexpensive, since it uses only 

single grid computations. Additionally, it possesses some natural parallelism, since 

different solvers may be independently computed by different nodes of the cluster, 

which fits into the concept of constructing a generalized computational experi-

ment [22]. 

9 Conclusion 

The numerical tests demonstrate the feasibility for the estimation of the point-wise 

approximation error via the Inverse Problem treating of the ensemble of numerical 

solutions obtained using the four solvers from the OpenFOAM software package for 

the two-dimensional inviscid flow pattern engendered by the oblique shock wave. The 

Inverse Problem based estimation of the point-wise approximation error using the 

differences of numerical solutions as the input data provides the accuracy comparable 

with the generalized Richardson extrapolation, however, it is much more computa-

tionally inexpensive. 
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