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Abstract. In this work, we study resources co-allocation approaches for a de-

pendable execution of parallel jobs in high performance computing systems 

with heterogeneous hosts. Complex computing systems often operate under 

conditions of the resources availability uncertainty caused by job-flow execu-

tion features, local operations, and other static and dynamic utilization events. 

At the same time, there is a high demand for reliable computational services en-

suring an adequate quality of service level. Thus, it is necessary to maintain a 

trade-off between the available scheduling services (for example, guaranteed 

resources reservations) and the overall resources usage efficiency. The pro-

posed solution can optimize resources allocation and reservation procedure for 

parallel jobs’ execution considering static and dynamic features of the re-

sources’ utilization by using the resources availability as a target criterion. 

Keywords: Computing, Grid, Resource, Scheduling, Uncertainty, Dynamic, 

Availability, Probability, Job, Allocation, Optimization 

1 Introduction 

Today, Grid and cloud computing systems are used universally. Due to their commer-

cial reach and low entry threshold, they attract users with different technical skills, 

who solve a wide range of computational tasks (time- and volume-wise) and require 

different quality of service. 

It usually takes certain economic costs to build and manage the necessary compu-

ting infrastructure, including the purchase and installation of equipment, the provision 

of power supply, and user support. Thus, when a budget for job performance is lim-

ited, it becomes important to allocate suitable resources efficiently in accordance with 

both technical specification and a constraint on the total cost [1-6]. 

The system’s resources may include computational nodes, storage devices, data 

communication links, software, etc. Each resource has a set of characteristics, their 

values determine its suitability for performing a specific job. Generally, computation-

al nodes have the widest set of characteristics. For example, a virtual machine is the 

main computing resource in the commonly used CloudSim simulator [2, 3], its char-
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acteristics include overall performance, number of CPU cores, size of RAM and disk 

memory, bandwidth limit of the data link. 

It is worth mentioning the dynamic utilization issue of available resources and 

computational nodes at time. High performance and distributed computing systems 

(HPDCS) are the dynamic systems, in which the following processes take place: exe-

cution of parallel jobs from multiple users, utilization with local jobs, maintenance 

works, a physical shutdown of nodes (both scheduled and unscheduled). To procure 

the reliability and dependability of such systems, an advance allocation mechanism is 

used [5-8]. This mechanism allows one to pre-allocate resources for a specific job 

and, thereby, prevents possible contention between jobs. Thus, a utilization schedule 

for each resource can be obtained: a list of utilization intervals (allocated time, sched-

uled maintenance, and outages) and downtime periods. Downtime periods can be used 

to perform other jobs and to allocate the resources for the execution of user jobs.  

The problem of scheduling and co-allocating resources for executing parallel jobs in a 

distributed computing system with non-dedicated resources is stated as follows. 

 

• The set 𝑅 of the computing system resources, as a rule, is heterogeneous and in-

cludes resources 𝑟𝑖 of several types with different sets of characteristics 𝐶𝑖. The 

values of these characteristics for the resources of the same type may also differ. 

Among the most important characteristics of a resource, one can single out its per-

formance, which affects the execution time of a job, as well as the cost required to 

allocate the resource. Besides, at any specific time, some subsets of the resources 

may be unavailable for a user job. Therefore, available resources, as a rule, are rep-

resented in classical models as a set of slots - intervals of availability of each re-

source [5-8].  

• Resources co-allocation for a parallel job execution typically requires selection 

(allocation) of a set of resources with types and characteristics defined by the user 

who is running the job. The resource request for the job execution includes the 

number of concurrently required resources 𝑛, the minimum suitable values of the 

characteristics 𝐶ℎ𝑖, the volume of task 𝑉 (the number of calculations/instructions) 

or the ordered resource allocation time 𝑇, as well as the total execution budget 𝐶 

[1-8]. 

However, as a rule, the structure and specifics of submitted jobs in HPDCS imply 

some uncertainty, primarily in the execution time and load of the allocated resources. 

So, users can only roughly estimate the execution time of their jobs, while special 

expert systems for predicting the execution time of user programs or the level of re-

source load (based on the use of machine learning, statistics, and big data) present the 

results in the form of probabilities of outcomes [4, 9-14]. 

In this paper, we propose proactive algorithm for resources allocation and reserva-

tion in heterogeneous market-based computing environments considering static and 

dynamic resources availability uncertainties. The uncertainties are formalized with the 

availability probability functions as a natural way of statistical and machine learning 

predictions presentation. The novelty of the proposed solution is in general knapsack-
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based resources selection procedure performing resources availability maximization 

according to the parallel job requirements. 

The paper is organized as follows. Section 2 presents a brief overview of works, re-

lated to the jobs execution uncertainties and probabilities in parallel computing envi-

ronments. Section 3 presents a formal model of the resources’ utilization and a gen-

eral procedure for the dynamic resources’ allocation optimization. Additional details 

are provided for the subset selection and time scan algorithms. Section 4 provides 

details about the simulation experiment setup, simulation results and analysis. Section 

5 summarizes the paper and describes further research topics. 

2 Related Works 

Existing systems of distributed computing usually perform resources allocation and 

distribution based on deterministic models of the resource scheduling [1-3, 5-7]. As a 

result, the expected efficiency and accuracy of such scheduling methods are reduced 

due to unforeseen resource events (failures, maintenance works), inaccurate estimates 

and predictions of the jobs’ characteristics and execution times. Late job completion 

time requires rescheduling of all the subsequent jobs or shutting down the job with 

possible loss of results. Early release of resources also requires rescheduling to mini-

mize the resource downtime. For example, according to an existing approach [8], a 

scheduler may double the user’s runtime estimates to improve the efficiency of the 

job flow.  

Many such systems rely on the reactive approach [4, 9, 10], when an actual state of 

the computing environment is analyzed, and the appropriate migration and re-

scheduling decisions are made on the fly. However, these rescheduling and migration 

operations incur additional time, cost, and network losses. Thus, proactive algorithms, 

which concentrate on the resource utilization predictions and advanced resources 

allocations may improve the overall resources usage efficiency. 

In [4] a simple uncertainty-based scheduling approach is proposed for a workflow 

job execution. Concepts of deadline, budget and execution surety are defined to 

choose the Pareto optimal set of the schedules, satisfying the user requirements. The 

task execution surety parameter is provided for each available resource by their own-

ers/administrators.  

Paper [11] discusses the problem of scheduling a flow of sequential jobs with the 

execution time uncertainties. Different resources allocation strategies are studied to 

minimize the total execution time based on the runtime probabilities of the queued 

jobs.  The jobs’ execution times are modeled as self-similar heavy-tail processes. In 

[12] a single-machine scheduling model is proposed to minimize a total flowtime of 

jobs with processing times characterized by normally distributed random variables. In 

[13], a set of distinct availability states is defined to model resource behavior and 

probabilities state transitions 

In [14] we studied the problem of a static resource co-allocation for a parallel job 

execution in a computing environment with utilization uncertainties. Similarly to [4] 

we used concepts of the execution time deadline, cost limit (budget) and the probabil-
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ity of a successful execution as a target optimization criterion. We used a knapsack-

based algorithm to maximize an aggregate availability probability of a set of simul-

taneously allocated resources with the corresponding time and cost constraints. How-

ever, in this static scenario, the resources’ availability probabilities are modeled as 

simple normally distributed estimates at the given static moment of time. 

Current paper extends [14] by studying the dynamic variation of a resources co-

allocation problem during some scheduling interval: when the parallel job may be 

executed at any time inside the given interval. For this purpose, for each independent 

resource we use heavy-tail distribution to model utilization uncertainties caused by 

inaccurate estimates in other jobs’ execution runtimes. Additional scheduling optimi-

zation methods are proposed and analyzed to handle the emerging time scan prob-

lem. 

3 Resource Selection Algorithm 

3.1 Resources Utilization Model 

We consider a set 𝑅 of heterogeneous computing nodes with different performance 𝑝𝑖  

and price 𝑐𝑖 characteristics.  

The probabilities (predictions) of the resource’s availability and utilization for the 

whole scheduling interval 𝐿 are provided as input data. Dynamic job execution uncer-

tainties are modeled as a sequence of allocation, occupation (actual execution) and 

release events with the occupation probability 𝑃𝑜 ≤ 1. Global (static) resources utili-

zation uncertainties, such as maintenance works or network failures, are modeled as a 

continuous occupation events with 𝑃𝑜  <<  1 during the whole considered scheduling 

interval. 

 

Fig. 1. Example of a resource utilization probability schedule. 

Fig. 1 shows an example of a single resource occupation probability 𝑃𝑜 schedule. 

With two jobs already assigned to the resource, there are two resources allocation 

events (with expected times of allocation at 445 and 1230 time units), two resources 

occupation events (starting at 513 and 1319 time units) and two resources release 

events (expected release times are 986 and 1676 time units respectively). Gray trans-

lucent bar at the bottom of the diagram represents a sum of global utilization events 

with a total resource occupation probability 𝑃𝑜 = 0.05.  

A detailed analysis of the main utilization characteristics of real HPDCS systems 

was made to design and simulate an adequate resources utilization model. As the 

basis for modeling the availability and utilization probability of computational nodes, 

the log files of the ForHLR II supercomputer from the Karlsruhe Institute of Technol-
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ogy in Germany were taken for the analysis [15, 16]. The available files contain in-

formation on the execution of jobs from June 2016 to January 2018. 

 

Fig. 2. Job size distributions of real (black) and simulated (blue) job-flows. 

After carrying out many experiments, the normal distribution on a logarithmic 

scale (lognormal) was chosen as the most suitable for modeling the jobs’ length and 

size characteristics. The main parameters of the distribution (mathematical expecta-

tion and variance) were selected experimentally to achieve an acceptable accuracy. As 

a result, the generated distribution by form largely replicates the original one (Fig. 2). 

More formal comparison gives 0.14 value by the Kolmogorov - Smirnov test. 

Thus, the resources allocation events are modeled by random variables with a 

normal distribution. Resources release events are modeled with lognormal distribu-

tion and expose heavy tails [11, 16]. Expected allocation and release times are derived 

from the job’s replication and execution time estimations.  

3.2 Resources Allocation under Uncertainties 

To execute a parallel job a set of simultaneously idle nodes (a window) should be 

allocated ensuring user requirements from the resource request. The resource request 

usually specifies number 𝑛 of nodes required simultaneously, their minimum applica-

ble performance 𝑝, job’s total computational volume 𝑉  and a maximum available 

resources allocation budget 𝐶.  

These parameters constitute a formal generalization for resource requests common 

among distributed computing systems and simulators [2, 5, 7]. 

Common allocation and release times for all the window resources ensure the pos-

sibility of inter-node communications during the whole job execution. In this way, the 

occupation and availability probabilities should be estimated for each resource during 

the scheduling interval 𝐿. For the job scheduling, values 𝑃𝑎
𝑟𝑖(𝑡; 𝑡 + 𝑇) may be derived, 
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representing a probability that resource 𝑟𝑖 will be available for the whole job execu-

tion interval 𝑇 starting at time 𝑡. 

When a set of 𝑛 resources is required for a job execution for a period 𝑇, the total 

window availability 𝑃𝑎
w during the expected job execution interval can be estimated 

as a product of availability probabilities of each independent window nodes:  

𝑃𝑎
𝑤(𝑡) = ∏ 𝑃𝑎

𝑟𝑖𝑛
𝑖 (𝑡; 𝑡 + 𝑇).                                                      (1) 

If any of the window nodes will be occupied during the expected job execution in-

terval 𝑇, the whole parallel job will be postponed or even aborted. Therefore, a com-

mon resources allocation problem is a maximization of a total resources’ availability 

probability. 

Based on the model above we consider the following job resources allocation prob-

lem in heterogeneous computing environment with non-dedicated resources and utili-

zation uncertainties: during a scheduling interval 𝐿 allocate a set of 𝑛 nodes with per-

formance 𝑝𝑖  ≥  𝑝 for a time 𝑇, with common allocation and release times and a re-

striction 𝐶 on the total allocation cost. As a target optimization criterion, we assume 

maximization of a whole window availability probability 𝑃𝑎
w  (1).  

The solution for this problem may be divided into two sub-problems. 

1. Static sub-problem. Given the time 𝑡𝑘 and values 𝑃𝑎
𝑟𝑖(𝑡𝑘; 𝑡𝑘 + 𝑇) of the resources’ 

availability for the following period 𝑇, allocate a subset of 𝑛 resources according to 

the job requirements with the maximum probability 𝑃𝑎
w(𝑡𝑘). 

2. Dynamic generalization. Perform time scan and execute the first sub-problem for 

each time moment 𝑡𝑘 ∈ [0; 𝐿]. The solution is then obtained as a maximum from 

all the intermediate solutions: 𝑃𝑎
w= max

𝑡𝑘

𝑃𝑎
w(𝑡𝑘). 

Thus, further in this paper we study different approaches for these two sub-

problems implementation. 

 

Fig. 3. An example of max 𝑃𝑎
𝑤(𝑡) function for a parallel job resources allocation. 
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As an example, Fig. 3 shows maximum values of function 𝑍 = 𝑃𝑎
𝑤(𝑡) obtained for 

a parallel job on the interval [0; 1200] with the maximum availability probability 

reaching 0.93 at 𝑡max = 834. 

3.3 Near-optimal Resources Allocation 

Let us discuss in more details the procedure which allocates an optimal (according to 

the probability criterion 𝑃𝑎
𝑤) subset of 𝑛 resources at some static time moment 𝑡𝑘. 

We consider the following total resources availability criterion 𝑃𝑎
𝑤 = ∏ 𝑃𝑎

𝑟𝑖𝑛
𝑖 , 

where 𝑃𝑎
𝑟𝑖 = 𝑃𝑖 is an availability probability of a single resource 𝑟𝑖 on the interval 

[𝑡𝑘; 𝑡𝑘 + 𝑇]. 
In this way we can state the following problem of an 𝑛 - size window subset allo-

cation out of 𝑚  available nodes in the system: 

 𝑃𝑎
𝑤 = ∏ 𝑥𝑗𝑃𝑗

𝑚
𝑗=1 , (2) 

with the following restrictions: 

∑ 𝑥𝑗𝑐𝑗
𝑚
𝑗=1 ≤ 𝐶, 

∑ 𝑥𝑗
𝑚
𝑗=1 = 𝑛, 

𝑥𝑗 ∈ {0,1}, 𝑗 = 1. . 𝑚, 

where 𝑐𝑗 is total cost required to allocate resource 𝑟𝑗 for a time 𝑇, 𝑥𝑗 - is a decision 

variable determining whether to allocate resource 𝑟𝑗 (𝑥𝑗 = 1) or not (𝑥𝑗 = 0) for the 

current window. 

In [14] based on a classical 0-1 Knapsack problem solution we proposed the fol-

lowing dynamic programming recurrent scheme to solve problem (2): 

                                  𝑓𝑗(𝑐, 𝑣) = max{𝑓𝑗−1(𝑐, 𝑣), 𝑓𝑗−1(𝑐 − 𝑐𝑗 , 𝑣 − 1)  ∗  𝑃𝑗}, (3) 

𝑗 = 1, . . , 𝑚, 𝑐 = 1, . . , 𝐶, 𝑣 = 1, . . , 𝑛, 

where 𝑓𝑗(𝑐, 𝑣) defines the maximum availability probability value for a 𝑣-size win-

dow allocated from the first 𝑗 considered resources for a budget 𝑐. After the forward 

induction procedure (3) is finished the maximum availability value 𝑃𝑎
𝑤

𝑚𝑎𝑥
=

𝑓𝑚(𝐶, 𝑛). 𝑥𝑗 values are then obtained by a backward induction procedure. Further in 

this paper we will refer to this algorithm simply as Knapsack. 

An estimated computational complexity of the presented recurrent scheme is 

𝑂(𝑚 ∗ 𝑛 ∗ 𝐶), which is 𝑛 times harder compared to the original Knapsack problem 

(𝑂(𝑚 ∗ 𝐶)). 
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3.4 Greedy Resources Allocation Algorithm 

Another approach for the static subset allocation sub-problem is to use more computa-

tionally efficient greedy algorithms. We outline four main greedy algorithms to solve 

the problem (2).  

1. MaxP selects first 𝑛 nodes providing maximum availability probability 𝑃𝑗 values. 

This algorithm does not consider total usage cost limit and may provide infeasible 

solutions. Nevertheless, MaxP can be used to determine the best possible availabil-

ity options and estimate a budget required to obtain them.  

2. An opposite approach MinC selects first 𝑛 nodes providing minimum usage cost 𝑐𝑗 

or an empty list in case it exceeds a total cost limit 𝐶. In this way, MinC does not 

perform any availability optimization, but always provides feasible solutions when 

it is possible. Besides, MinC outlines a lower bound on a budget required to obtain 

a feasible solution. 

3. Third option is to use a weight function to regularize nodes in an appropriate man-

ner. MaxP/C uses 𝑤𝑗  = 𝑃𝑗 𝑐𝑗⁄  as a weight function and selects first 𝑛 nodes provid-

ing maximum 𝑤𝑗  values. Such an approach does not guarantee feasible solutions 

but performs some availability optimization by implementing a compromise solu-

tion between MaxP and MaxC. 

4. Finally, we consider a joint approach GreedyJnt for a more efficient greedy-based 

resources allocation. The algorithm consists of three stages. 

a. Obtain MaxP solution and return it if the constraint on a total usage cost is met. 

b. Else, obtain MaxP/C solution and return it if the constraint on a total usage cost 

is met. 

c. Else, obtain MinC solution and return it if the constraint on a total usage cost is 

met. 

This combined algorithm is designed to perform the best possible greedy optimiza-

tion considering restrictions on total resources allocation size and cost. 

Estimated computational complexity for the greedy resources’ allocation step is 

𝑂(𝑚 ∗ log 𝑚).  

3.5 Time Scan Optimization 

Dynamic generalization of the static resources’ allocation problem requires a full-time 

scan performed over all the considered scheduling interval 𝐿. In general, this leads to 

a significant increase in the computational cost of the dynamic scheduling algorithm 

(especially, when a full knapsack-based optimization should be performed for all time 

moments 𝑡𝑘 ∈ [0; 𝐿]). 
To optimize the performance of the proposed resources allocation procedure during 

the time scan we consider a computational method which performs search for the 

maximum from a set of starting time points. Assuming, that the functions 𝑃𝑎
𝑟𝑖(𝑡) for 

each resource are continuous in time (see Fig. 1), then their product 𝑃𝑎
𝑤(𝑡) will be 

continuous as well. This means that certain computational algorithms are applicable 

for 𝑃𝑎
𝑤(𝑡) function study and the extrema search. Fig. 2 shows an example of 𝑃𝑎

𝑤(𝑡) 
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function calculated by the resources allocation algorithm after scanning all time points 

if [0; 1200] interval. 

A general procedure for max 𝑃𝑎
𝑤(𝑡) search optimization during the scheduling in-

terval 𝐿 can be presented as follows. 

1. A set of starting time points is allocated on the interval 𝐿. Their particular locations 

can be given as 1) uniform, 2) randomized, 3) a combination of options 1 and 2. 

2. At each starting time point 𝑡𝑖
𝑠 the value of 𝑃𝑎

𝑤(𝑡𝑖
𝑠 ) is calculated by the static re-

sources’ allocation algorithm (Knapsack or GreedyJnt) based on actual resources 

state at 𝑡𝑖
𝑠. 

3. The gradient value is determined for each starting point by calculating and compar-

ing neighbor values 𝑃𝑎
𝑤(𝑡𝑖

𝑠 + 1) and 𝑃𝑎
𝑤(𝑡𝑖

𝑠 − 1) with 𝑃𝑎
𝑤(𝑡𝑖

𝑠 ). 

4. From each starting point 𝑡𝑖
𝑠 an incremental movement is performed in the direction 

of increasing the gradient by the sequential calculation of 𝑃𝑎
𝑤(𝑡𝑖

𝑠 ± δ ∗ 𝑘) = 

𝑃𝑎
𝑤(𝑡𝑖

𝑠, 𝑘), where  𝑘 is a step number. The movement is stopped if the maximum is 

reached (when 𝑃𝑎
𝑤(𝑡𝑖

𝑠, 𝑘) <  𝑃𝑎
𝑤(𝑡𝑖

𝑠, 𝑘 − 1)) and, thus, can be found on the interval 

[𝑡𝑖
𝑠 ± δ ∗ (𝑘 − 1) ; 𝑡𝑖

𝑠 ± δ ∗ 𝑘]. Besides, the search movement stops if any other 

starting points 𝑡𝑖+1
𝑠  or 𝑡𝑖−1

𝑠  are reached. In this case, the search will be continued 

independently, starting from the corresponding points.  

It should be noted that the above optimization procedure does not guarantee an ex-

act solution: scenarios of finding local maxima or missing abrupt function changes are 

possible. Improving the accuracy is possible by increasing the set of starting points 

and by decreasing the search step length δ. On the other hand, the performance of this 

procedure is significantly increased compared to the full-time scan: the calculation of 

function 𝑃𝑎
𝑤(𝑡) is performed on a limited set of time points, guaranteed to be smaller 

than the whole interval 𝐿. 

4 Simulation Study 

4.1 Simulation Environment  

We performed a series of simulations to study optimization properties of the proposed 

dynamic resources allocation approaches. An experiment was prepared as follows 

using a custom distributed environment simulator [5, 6, 14]. For our purpose, it im-

plements a heterogeneous resource domain model: nodes have different usage costs 

and performance levels. A space-shared resources allocation policy simulates a local 

queuing system (like in CloudSim [2, 3]) and, thus, each node can process only one 

task at any given simulation time. Additionally, each node supports a list of active 

global and local job utilization events.  

Global static uncertainty events represent resources failure or shutdown suscepti-

bility and keep a constant occupation probability during the whole scheduling interval 

𝐿. Static utilization is generated for each resource based on a random variable 𝑃𝑜 of 

occupancy probability with a normal. System-wide global-load parameter defines a 

standard deviation for 𝑃𝑜 and is used to set an average global utilization for the whole 
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computing environment. Thus, for example, when global load = 0.05, about 68% of 

the resources on average have global occupancy probability 𝑃𝑜

𝑟𝑗
< 0.05. More de-

tailed study of a static resources’ allocation problem under global utilization uncer-

tainties was provided in [14]. 

 

Fig. 4. An example of static and dynamic load generated for system resources. 

Dynamic job-based utilization uncertainty is generated based on a preliminary job-

flow scheduling simulation. For each resource, a list of single-node jobs is generated 

with random jobs submit times, lengths, start time and finish time uncertainty estima-

tions. The jobs are ordered by their submit time and are scheduled in advance starting 

either at the submit time, or after the previous job is finished. During this scheduling, 

a chain of the resource allocation, occupation and release events is generated for each 

job. Corresponding expected times and standard deviations are defined by the job 

length and uncertainty parameters. More details regarding the simulated job-flow 

properties provided in Section 3.1. A total length of jobs generated for each resource 

is determined by a system wide job-load parameter. For example, when job-load = 

0.1, a total length of locally generated jobs constitutes nearly 10% of the considered 

scheduling interval 𝐿. 

Fig. 1 shows a single resource utilization schedule with global and dynamic utiliza-

tion events generated based on the procedures described above.  Fig. 4 shows an ex-

ample of global and dynamic utilization uncertainties generated for a subset of the 

system resources in simulator [14]. 

4.2 Dynamic Resources Allocation 

To solve the dynamic resources allocation problem for a parallel job, it is necessary to 

consider the available resources’ schedule and utilization events which change over 
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time Thus, the scheduling problem requires allocation of a set of suitable resources 

not at some static moment 𝑡𝑘, but during a given time interval.  

Since the computational complexity and working time of the algorithms under con-

sideration increase in proportion to the size of the considered scheduling interval, the 

following parameters of the scheduling problem were chosen to minimize the simula-

tion time. It is required to maximize the probability of simultaneous availability of 6 

concurrently available nodes to perform a job with a volume of 200 computational 

units on a time interval [0; 800] in a computing environment that includes 64 hetero-

geneous computational nodes. Initial load of computational nodes with global events 

global load = 0.05. The dynamic load of the computing system changed during the 

simulation within the limits of job-load ∈ [0; 1]. 
The obtained results indicating the availability of the resources selected by the 

Knapsack (Section 3.3) and GreedyJnt (Section 3.4) algorithms depending on the 

dynamic load job-load values, are presented in Fig. 5. To obtain these results, more 

than 10,000 independent scenarios of scheduling and resources allocation were per-

formed by each of the considered algorithms. 

It should be noted that with job-load = 0 the advantage of the Knapsack algorithm 

is about 9%, and the probability of simultaneous availability of the selected resources 

is 0.96 for Knapsack and 0.87 for GreedyJnt. 

 

Fig. 5. Simulation results: 𝑃𝑎
𝑤 resources availability obtained by Knapsack and GreedyJnt 

algorithms depending on the resources utilization level. 

With an increase in the dynamic load of the system (job-load > 0), the highest 

achievable probability 𝑃𝑎
𝑤 of simultaneous resource availability, as expected, sensibly 

monotonically decreases. The local maximum at job-load = 0.9 is explained by the 

fact that under conditions of extra high dynamic load, the number of experiments in 

which it was possible to find six concurrently available resources, turned out to be 

statistically insignificant (about 10 results). At the same time, when the value of job-

load = 1 (full initial utilization of the system) was reached, a suitable set of resources 

(𝑃𝑎
𝑤 = 0) was not found in any of the experiments at any time instant 𝑡𝑘 ∈ [0; 800]. 
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Also, Knapsack provided a higher availability probability 𝑃𝑎
𝑤 of the required set of 

resources at all the considered values of the dynamic load (job-load <1) in compari-

son to GreedyJnt. However, the relative advantage decreases from about 9% to almost 

0% as the job-load increases. This decrease in relative efficiency is explained by a 

decrease in the dimensionality and variability of problem (2) with an increase of the 

resources load. For example, when job-load = 0 all 64 resources are available at every 

instant with a probability of at least 0.95 (due to global-load = 0.05). Then as the job-

load increases, many resources fall out of consideration due to a high probability of 

being utilized by other jobs (see Fig. 4). Thus, for large job-load values, the static 

algorithms often solved the degenerated problem of selecting a set of 6 concurrently 

available resources from 6 resources in the system that remained unloaded. 

4.3 Time Scan Optimization 

The time and accuracy characteristics of the proposed time scan optimization proce-

dure (Section 3.5) were studied based on a resource’s allocation problem in compu-

ting environment with dynamically changing utilization level. Fig. 4 presents an ex-

ample of a utilization schedule generated for a few computational nodes in the simula-

tion environment [14]. 

To obtain reliable results, we performed more 1000 independent simulation scenar-

ios of resources allocation for a single parallel job. The computing environment con-

sisted of 64 heterogeneous computing nodes of varying cost and performance charac-

teristics with dynamically changing occupation function 𝑃𝑜(𝑡): job-load = 0.5, global-

load = 0.05. The job scheduling problem required allocation of six nodes for 200 units 

of time on the interval 𝐿 ∈ [0; 800]. The target optimization criterion 𝑃𝑎
𝑤 is a simulta-

neous availability of the selected resources. As an additional criterion, a total algo-

rithm working times was measured. 

The time scan optimization procedure described in Section 3.5 was implemented 

with a different number of the starting points: {1, 5, 10, 20, 50, 100}. 

Tab 1 shows the relative results in terms of working time (performance accelera-

tion) and accuracy in comparison with the full scan approach. 

Table 1. Algorithms’ efficiency comparison in terms of accuracy and performance (working 

time acceleration) relative to the Knapsack full time scan implementation 

Algorithm Optimization Accuracy Time Acceleration 

Full scan (Knapsack) 1 1 

1 starting point (Knapsack) 0,8 65 

5 starting points (Knapsack) 0,93 17 

10 starting points (Knapsack) 0,96 10,5 

20 starting points (Knapsack) 0,97 8,3 

50 starting points (Knapsack) 0,99 6,8 

100 starting points (Knapsack) 0,99 3,7 

Full scan (GreedyJnt) 0,953 143 
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As expected, with an increase in the number of starting points the accuracy of the 

approximate procedure tends to 1 (i.e., to the optimal solution obtained with a full 

scan search). Already with 50 starting points (on an interval of 801 points) the accura-

cy of the optimized solution reaches 99%, while the calculation time is accelerated by 

almost 7 times. 

On the other hand, full scan procedure with GreedyJnt algorithm achieves 95% ac-

curacy with a 143x speedup! Thus, it is advisable to apply Knapsack with this time 

scan optimization technique if it is necessary to achieve a high accuracy in the pres-

ence of the light computation time restrictions. In this case, it is possible to speed up 

the work time by about an order of magnitude. With tighter time constraints, addition-

al speedup can be achieved by using a greedy counterpart. In addition, the time scan 

optimization is applicable to GreedyJnt algorithm as well: for example, running 

GreedyJnt algorithm from 50 starting points allows you to speed up the computation 

time by 1000 times, while the solution accuracy will decrease only to 94%. 

5 Conclusion and Future Work 

In this work, we presented procedure for a reliable resources’ allocation in high per-

formance computing systems with heterogeneous hosts considering utilization uncer-

tainty. The uncertainties are formalized with probability functions as a natural way of 

statistical and machine learning predictions representation. The proposed solution 

uses an availability criterion to optimize resources allocation under static and dynamic 

utilization features. Knapsack-based and greedy algorithms were implemented and 

compared in a dynamic procedure performing optimized time scan over a specified 

scheduling interval. Both approaches were able to successfully optimize availability 

of the selected resources. 

We considered several types of static and dynamic job-based resources utilization 

events with different load levels. 

The simulation study addressed two main criteria: optimization efficiency and al-

gorithms working time. Knapsack-based solution advantage over the greedy approach 

by the resources availability criterion at average reaches 5% but requires nearly 100 

times more time for the calculations. Considering a relatively high computation com-

plexity of the Knapsack-based solution, several optimization options were proposed to 

provide 99% accuracy 10 times faster or almost 94% accuracy 1000 times faster.  

In our further work, we will refine the resource utilization model to simulate dif-

ferent types of global and local utilization events closer to real systems. 

References 

1. Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B.: Profit-driven scheduling for cloud ser-

vices with data access awareness. J. of Parallel and Distributed Computing, 72(4), 591–

602 (2012) 

2. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya, R.: CloudSim: 

a toolkit for modeling and simulation of cloud computing environments and evaluation of 

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_41

https://dx.doi.org/10.1007/978-3-030-77980-1_41


14 

resource provisioning algorithms. J. Software: Practice and Experience, 41(1), 23-50 

(2011)  

3. Samimi, P., Teimouri, Y., Mukhtar M.: A combinatorial double auction resource allocation 

model in cloud computing. J. Information Sciences, 357(C), 201-216 (2016) 

4. Sample N., Keyani P., Wiederhold G.: Scheduling under uncertainty: planning for the 

ubiquitous Grid. In: Arbab F., Talcott C. (Eds.): Coordination Models and Languages. 

COORDINATION 2002. Lecture Notes in Computer Science, 2315, Springer, Berlin, 

Heidelberg, 300-316 (2002) 

5. Toporkov, V., Yemelyanov, D.: Optimization of resources selection for jobs scheduling in 

heterogeneous distributed computing environments. Lecture Notes in Computer Science, 

10861, Springer Verlag, 574–583 (2018) 

6. Toporkov, V., Yemelyanov, D., and Toporkova, A.: Coordinated global and private job-

flow scheduling in Grid virtual organizations. Simulation Modelling Practice and Theory, 

107, 102228 (2021) 

7. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In: Revised 

Papers from the 7th International Workshop on Job Scheduling Strategies for Parallel Pro-

cessing, JSSPP ’01, pp. 87-102 (2001) 

8. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predictions ra-

ther than user runtime estimates. IEEE Transactions on Parallel and Distributed Systems, 

18(6), 789 - 803 (2007) 

9. Tchernykh, A., Schwiegelsohn, U., El-ghazali, T., Babenko, M.: Towards understanding 

uncertainty in cloud computing with risks of confidentiality, integrity, and availability. J. 

Comput. Sci. 36 100581 (2019) 

10. Chaari, T., Chaabane, S., Aissani, N., and Trentesaux, D.: Scheduling under uncertainty: 

survey and research directions. 2014 International Conference on Advanced Logistics and 

Transport (ICALT), 229-234 (2014) 

11. Ramírez-Velarde, R., Tchernykh, A., Barba-Jimenez, C., Hirales-Carbajal, A., Nolazco-

Flores, J.: Adaptive resource allocation with job runtime uncertainty. J. of Grid Compu-

ting, 15(4), 415–434 (2017) 

12. Wu, C.W., Brown, K.N. and Beck, J.C.: Scheduling with uncertain durations: modeling 

beta-robust scheduling with constraints. J. Computers and Operations Research, 36 (8), 

2348-2356 (2009) 

13. Rood, B., Lewis, M.J.: Grid Resource Availability Prediction-Based Scheduling and Task 

Replication. J. Grid Computing, 7, 479-500 (2009) 

14. Toporkov, V., Yemelyanov, D.: Availability-based resources allocation algorithms in dis-

tributed computing. In: V. Voevodin and S. Sobolev (Eds.): RuSCDays 2020, CCIS 1331, 

Springer Nature Switzerland AG, 551-562 (2020) 

15. https://www.cse.huji.ac.il/labs/parallel/workload/ (2021) 

16. Feitelson, D.G.: Workload modeling for computer systems performance evaluation. New 

York: Cambridge university press, 501-540 (2015) 

 

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_41

https://www.cse.huji.ac.il/labs/parallel/workload/
https://dx.doi.org/10.1007/978-3-030-77980-1_41

