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Abstract. We are currently seeing an increasing interest in using ma-
chine learning and image recognition methods to support routine human-
made processes in various application domains. In the paper, the results
of the conducted research on supporting the sewage network inspection
process with the use of machine learning on embedded devices are pre-
sented. We analyze several image recognition algorithms on real-world
data, and then we discuss the possibility of running these methods on
embedded hardware accelerators.

Keywords: IoT, machine learning, embedded devices

1 Introduction

Supporting processes and decision-making using machine vision and artificial in-
telligence is becoming more popular in many industries and everyday lives. Cars
that support the driver or cameras that suggest what settings to choose for the
current scenery become everyday life. One of the processes that can be improved
using the above techniques is a visual inspection of sewer networks. Every day,
the average operator inspects several hundred meters of sewage networks using
robots with installed cameras, where he constantly observes the acquired image
and provides information on the condition of pipes, damage present in the net-
work, and structural elements [3]. Long working hours and their monotony may
have a negative impact on the quality of the inspections carried out. According
to J. Dirksen et al. [2] on average, the operator ignores 25% of defects during the
inspection, so additional support by informing the operator in real-time about
automatically detected objects or status changes can improve the quality of the
work performed.

The inspection process can be supported by machine learning. Unfortunately,
the use of cloud computing services is usually not possible due to limited network
connectivity at the inspection site. The development of hardware accelerators for
launching artificial intelligence models has recently made it possible to use it on
embedded devices with limited resources that operators work with on a daily
basis. We have conducted research to analyse the possibility of using machine
vision methods to support the process of visual inspection of sewage networks
on embedded devices.
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This paper presents a comprehensive approach to the ML-based automatic
detection of defects and structural elements of sewage networks based on video
material analysis from the network inspection. The possibility of using the meth-
ods of classification, detection, and image segmentation was analyzed. The con-
sidered data set includes photos from different cameras; thus their quality and
resolution are varied. The photos are single frames showing defects or structural
elements, wherein the case of other works described in the literature was mostly
a large number of consecutive video frames. Finally, two image analysis meth-
ods were used - segmentation and classification for which performance studies
were carried out for many network architectures. The research was conducted
to analyze these algorithms’ execution time based on deep convolutional neural
networks on embedded devices using hardware accelerators.

The organization of the paper is as follows. The section 2 describes the related
work and section 3 discusses the research methodology. Sections 4 and 5 analyses
the machine learning methods for video processing. The section 6 describes the
evaluation, while section 7 concludes the paper.

2 Related work

The section presents issues related to the context of the research work. The
purpose of the sewage network inspection process is justified and the equipment
used for this purpose is discussed. The concept of observation is introduced, i.e.
a description of a damage, structural element or conditions inside a section of the
sewage network, which is an elementary component of the inspection description.

2.1 Pipe inspection process

The main method of inspection of sewer networks is video inspection using
CCTV cameras. It is performed periodically by companies providing such ser-
vices to assess the network’s quality and plan possible repairs. The horizontal
part of the network inspected is called a section and usually connects two wells
- vertical elements of the sewer pipes infrastructure.

The detail of the process and its steps differ depending on the standard in
force in a given country or region. Nevertheless, the main idea of the process is
common to all standards. For example, the standard described by MSCC4 [11]
defines the process carried out using a device equipped with a camera, selected
depending on the size of the pipe and the expected water filling inside. Small
cameras are used for the smallest pipes, pushed by a cable transmitting video ma-
terial (the so-called push camera). For larger pipes, controlled travelling robots
are used, optionally with a raised structure that allows the camera’s centring
in pipes of larger diameter. For pipes with an expected high level of water in-
side, floating robots are used (eg. Proteus Float Raft), and for the largest ones,
prototypes of flying drones are being developed.
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The nomenclature of observations may differ depending on the applicable
standard. Particular standards1 also differently define the degree of detail of the
description of a given observation, while the defects and structural elements that
are described by these observations are the same for all standards. Based on this,
a high-level part of the description of these observations can be distinguished,
which is common to all standards. Among the observations, we can distinguish
those corresponding to defects, structural elements and the conditions prevailing
inside.

2.2 Machine learning methods used in the inspection process

J.B. Haurum and T.B. Moeslund [5] analyzed the results of publications on
the automation of visual inspection of sewage networks from the last 25 years.
Initial work is based on image analysis using methods such as morphological
operations [16], oriented gradient histogram (HOG) [4], and support vector ma-
chines (SVM ) [8]. Some of them deal with the subject of segmentation of some
classes (e.g. cracks) using classical methods of image segmentation.

Along with the development of convolutional networks, subsequent works in-
dicate their use for image analysis, initially using classification, object detection,
and segmentation. The authors point out the problem of comparing works by
differentiating the data set, the number of classes and considered metrics. For
this reason, it is difficult to determine the best solution at a given moment, there-
fore, in the following part, selected works using deep neural networks describing
the latest solutions from 2017-2020 will be analyzed.

M. Wang and J.C.P Cheng [17] proposed a solution based on the detection of
observations in photos using the Faster R-CNN model. Their dataset included
photos containing 4 classes of observations. A year later, the same authors [18]
propose usage of the proprietary network architecture called DilaSeg for semantic
segmentation of three classes of observations. The dataset contains the extracted
video frames and segmentation masks for each of the photos. This publication
shows an increase in efficiency and a decrease in inference time compared to
the FCN-8s architecture. The authors point out that the cost of computation is
rarely taken into account in the work so far, and this is a key factor that should
be taken into account when implementing a solution for embedded devices.

D. Meijer et al. [9] propose a solution that uses image classification and de-
tects 12 different classes of observations. The dataset contains photos taken with
the same camera from 30 various inspections, 0.8% of these photos show defects.
The publication uses the proprietary convolutional network architecture, the au-
thors have shown that it achieves higher efficiency than the previous solutions.
The emphasis was placed on the validation of the solution. It was proposed to
introduce new metrics so that it was possible to assess the measure of possi-
ble performance improvement in real scenarios in addition to the classification
effectiveness.

1 For example, the Polish standard PNEN13508 or the American NASSCO PACP-6
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Q.Xie et al. [19] proposed using a two-level hierarchical deep convolutional
network for the classification of sewage network defects. The first binary level
distinguishes between images representing all the considered defects from those
without defects, and the second distinguishes between the considered defects.
Both models share the network structure in addition to the last output layer,
and the network architecture itself is a proprietary solution containing 3 convo-
lutional layers, 3 of max-pooling type and 3 fully connected. The dataset con-
sists of photos with 16 types of defects, while only the 6 most common ones
were selected for training the model. The presented network results were better
than the knowledge transfer using popular pre-trained models such as VGG-16,
Inception-V3, and Resnet.

Kunzel et al. [6] describe the solution of semantic segmentation of a full scan
of a network segment made with the 360◦ camera. The image is considered a high-
quality image made of multiple 360◦ photos showing the entire tube unfolded
onto a flat area. Successive clippings of this photo are transferred to the model.
The network structure is based on FRRN [12] architecture. The dataset is a scan
of 111 pipes with a length of 4.6 km, 6 classes of observation were considered.

The solution presented by Yin et al. [20] uses the YOLOv3 model to detect
objects. The dataset contains photos with 6 classes of observation. The authors
indicate that this solution is able to analyze video in real-time and surpasses
previous solutions both in terms of detection efficiency and execution time. The
emphasis was also placed on validating the entire video material’s solution, not
just on individual frames.

Table 1: Comparison of image analysis methods in the problem of observation
detection.

Paper
Classic methods Methods using neural networks

Morphological
operations

HOG SVM Classification
Object

detection
Semantic

segmentation

[4] X X X

[8] X X

[16] X

[17] X

[18] X

[9] X

[19] X

[6] X

[20] X

The methods used in selected works have been collected in the Tab. 1. Cur-
rently, no works have been found that would deal with the topic of implementing
such a solution for embedded devices. The hardware platform is omitted in the
works, it is mentioned that a PC, supercomputer or cloud services were used.
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The emphasis is on algorithms, not the possibility of their implementation on
the target platform.

3 Methodology

The research work aims to verify the feasibility of implementing a solution for the
automatic detection of observations in sewage networks based on video material
for embedded devices. The methodology of the research is shown in Fig. 1.

Identification of the best technique for 
locating observations in an image - 
segmentation vs object detection

Evaluation of the selected location 
technique depending on the architecture of 

the neural network

Evaluation of the classification technique 
depending on the selected neural network 

architecture

Model conversion for 
embedded devices

Evaluation of the execution time of models 
on target platforms

Model quality evaluation

Fig. 1: The course of subsequent stages of research

The dataset used in the research had over 20,000 photos. It contained two
types of annotations - polygon coordinates defining the position for 22 classes
(examples in Fig. 2) and classification labels for 5 classes (some examples are
presented in Fig. 3).

Classes containing location information in the form of polygon coordinates
have been grouped into nine more general classes because of their visual similar-
ity. The assignment and the number of classes obtained in this way are presented
in the Tab. 2. Due to the conditions inside the pipes, the picture quality is mostly
poor. Many of them are fuzzy and out of focus, yet still contain human-readable
information.

4 Selection of neural network architecture for the
classification problem

The neural network architectures examined in this work were selected based on
their effectiveness on the ImageNet dataset. Additionally, the number of model
parameters was also taken into account, which translates into its complexity.
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(a) Photo example with annota-
tions: water and defective cross
joint

(b) Photo example with anno-
tations: defective transverse joint
and axial cracks without disconti-
nuity

(c) An example of a photo with
annotations: water, joint, built-in
connection and attached sediments

Fig. 2: Examples of data set visualization with annotations in the form of polygon
coordinates defining objects’ location. Light blue is the color of water, light green
is the defective transverse joint, the dark blue is the added joint, the red is the
axial fracture without breaking the continuity, the pink is the joint, and the
green is the sticky sediment.

(a) Example of a photo with a right
deviation label (same as for other
deviations)

(b) Example of a photo with a de-
formation label

Fig. 3: Examples of photos from the dataset with classification labels
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Table 2: The form and number of grouped classes with annotations in the form
of polygon coordinates defining the location of objects

Grouped class The class in the original dataset Count

fracture

axial fracture without discontinuity

5523

spiral fracture without breaking the continuity
round fracture without breaking the continuity

axial fracture with discontinuity
spiral fracture with discontinuity
round crack with discontinuity

break break 717

missing wall fragments missing wall fragments 776

roots
independent, fine roots

2224pile roots
complex mass of the roots

accumulation of material
attached settlements

6562postponed settlements
other obstacles

faulty joint
defective longitudinal joint

2946defective cross joint
defective angle joint

joint joint 10062

connection
original connection

2175built-in connection
incoming connection

water water 13656

Therefore, the size and time of inference execution are important for implemen-
tation on embedded devices with limited resources. The most diverse models
were selected from the available in the Keras module of the Tensorflow library
- InceptionResNetV2 [10], Xception [1] and MobileNetV2 [15].

The averaged values of the metrics obtained for the trained networks are
presented in the Tab. 3. The value of the F1 metric for the analyzed models is
similar, but the MobileNetV2 has the smallest network size, thus it will be used
in further experiments as the architecture of choice for the image classification
problem.

Table 3: Average metric values of the trained classification models.

Model F1 Recall Precision

InceptionResNetV2 0.80 0.78 0.81

Xception 0.79 0.74 0.85

MobileNetV2 0.81 0.78 0.84
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5 Selection of the technique for locating the observations

This section describes the course and results of the research carried out in or-
der to choose the technique of locating the observations on the photos. Two
classes of solutions were considered - methods of object detection and semantic
segmentation.

In the case of object detection, the possibility of running the learned model on
embedded devices was taken into account. The lightweight architecture YOLOv2
(You Only Look Once) [13] was selected for the study for the object detection
problem. In the case of semantic segmentation, the architectures and frameworks
were selected from the segmentation-models package, which implements selected
networks using the Tensorflow library. The following network architectures were
examined - U-Net [14] and FPN [7]. They were used with encoders - ResNet101,
EfficientNetB3 and MobileNet-V2. Among the architectures compared, better
results were obtained using the FPN network, so in further experiments it will
be used as the chosen architecture for the problem of semantic segmentation.

Table 4: Quality scores after converting the results from the models: FPN and
YOLOv2.

Score
Semantic segmentation Object detection

FPN
+

MobileNetV2

FPN
+

EfficientNetB3

FPN
+

ResNet101
YOLOv2

Precision 0.59 0.63 0.69 0.89

Recall 0.89 0.89 0.89 0.22

F1 0.71 0.74 0.71 0.35

In order to select the localization technique, the results obtained for semantic
segmentation and object detection were compared. The results are presented in
the Tab. 4. In the comparison, networks that perform semantic segmentation
fared much better. Therefore, in further experiments, only semantic segmenta-
tion will be considered as a localization technique.

6 Implementation of trained models on embedded devices

This section presents the results of experiments with three hardware accelerators:
Intel NCS22 (fig. 4a), Google Coral3 (fig.4b), Nvidia Jetson Nano4 (fig.4c). The
neural network architectures selected in the previous sections were used to train
models that need to be converted to run them with hardware accelerators. Both
the metrics of the models after the conversion operation and their execution time

2 https://movidius.github.io/ncsdk/
3 https://coral.ai/products/
4 https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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were examined. The tools used and the target numerical representation of the
models’ quantized weights for individual accelerators have been collected in the
Tab. 5. The versions of the tools used are presented in the Tab. 6.

(a) Intel NCS2 accel-
erator connected via
USB

(b) Google Coral de-
velopment kit

(c) Nvidia Jetson
development kit

Fig. 4: Hardware accelerators used in research

Table 5: The tools used for model conversion and the target numerical represen-
tation of the quantized model weights for individual hardware accelerators.

Accelerator Tools used
Representation of
quantized weights

Google Coral
Tensorflow Lite Converter

+
Edge TPU Compiler

INT8

Nvidia Jetson Nano Nvidia TensorRT FP16

Intel NCS2 Intel OpenVINO FP16

Table 6: Versions of the tools used to convert the models.

Tool Version

Tensorflow Lite Converter 2.2

Edge TPU Compiler 14.1.317412892

Nvidia TensorRT 7.0

Intel OpenVINO 2020.3.194

The values of the studied models’ metrics before and after conversion are
presented in the Tab. 7 for segmentation and in Tab. 8 for classification. No
metric values for FPN are given with EfficientNetB3 scaffold after converting
to Google Coral because the compilation of the model to an executable form with
Edge TPU could not be performed due to an internal compiler error. In the case
of semantic segmentation, the values of the Intersection-over-Union (IOU) metric
was also calculated as the area of overlap divided by the area of union between
the predicted segmentation and the original data.
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Table 7: Metrics of semantic segmentation models before and after conversion
to executable form on individual hardware accelerators.

Model Accelerator IOU F1 Recall Precision

FPN + ResNet101

- 0.55 0.77 0.88 0.69
Coral 0.18 0.61 0.53 0.73

Jetson Nano 0.55 0.78 0.88 0.70
NCS2 0.55 0.78 0.88 0.70

FPN + EfficientNetB3

- 0.55 0.74 0.89 0.63
Coral - - - -

Jetson Nano 0.55 0.74 0.89 0.63
NCS2 0.52 0.71 0.90 0.59

FPN + MobileNetV2

- 0.48 0.71 0.89 0.59
Coral 0.48 0.72 0.84 0.63

Jetson Nano 0.48 0.71 0.89 0.59
NCS2 0.48 0.70 0.90 0.57

Table 8: Classification model metrics before and after conversion to executable
form on individual hardware accelerators.

Model Accelerator F1 Recall Precision

MobileNetV2

- 0.81 0.78 0.84
Coral 0.80 0.76 0.85

Jetson Nano 0.81 0.78 0.84
NCS2 0.81 0.78 0.83

Finally, the models were tested on the representative video showing a record-
ing of a complete inspection of a section of the sewage network. For each model,
the average analysis time of a single video frame from the test recording is cal-
culated using the formula:

t =

∑N
i=1 ti
N

, (1)

where N is the number of frames in the video and ti is the time to analyze ith
frame. The procedure was repeated for each tested hardware accelerator.

In the case of Google Coral and Nvidia Jetson, the trained models after con-
version were run on dedicated development kits, while Intel NCS2 was connected
to the Raspberry Pi 3B minicomputer. On each platform, the video was played
from a file using OpenCV. A comparison of resources available on all platforms
is presented in the Tab. 9.

Tab. 10 shows the average time of analysis of one frame using the analyzed
segmentation models, the Tab. 11 shows the classification model results. Missing
results for the FPN with EfficientNetB3 and platform Google Coral model are
due to the same build error when examining segmentation metrics. Also note-
worthy is the much longer execution time for segmentation models on Google
Coral, due to the fact that some of the operations performed within the model
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Table 9: Comparison of the available resources of the platforms on which the
experiments are performed.

Hardware platform CPU RAM

Google Coral Dev Board ARM Cortex-A53 4 x 1,8GHz 1GB LPDDR4

Nvidia Jetson Nano ARM Cortex-A57 4 x 1,43 GHz 4GB LPDDR4

Raspberry Pi 3B Broadcom BCM2837 4 x 1,2 GHz 1GB LPDDR2

cannot be compiled for execution on Edge TPU and are instead performed on
the CPU.

Table 10: Average time to analyze a single frame using trained segmentation
models on each platform.

Model Hardware platform Time [ms]

FPN + ResNet101
Google Coral Dev Board 4036

Nvidia Jetson Nano 234
Raspberry Pi 3B + Intel NCS2 415

FPN + EfficientNetB3
Google Coral Dev Board DNR

Nvidia Jetson Nano 264
Raspberry Pi 3B + Intel NCS2 480

FPN + MobileNetV2
Google Coral Dev Board 3954

Nvidia Jetson Nano 121
Raspberry Pi 3B + Intel NCS2 324

Table 11: Average time to analyze a single frame using a trained classification
model on each platform.

Model Hardware platform Time [ms]

MobileNetV2
Google Coral Dev Board 7.21

Nvidia Jetson Nano 95.42
Raspberry Pi 3B + Intel NCS2 44.65

For comparison, additional runtime tests were carried out on one of the plat-
forms without the use of acceleration, using only the CPU. For this purpose,
Nvidia Jetson was used due to the largest amount of RAM available. The exe-
cution time was converted into the number of frames that could be analyzed per
second - FPS (frames per second), and the results are presented in Fig. 5 and
Fig. 6 respectively for segmentation and classification models.
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Fig. 5: The number of frames per second that can be processed for the
segmentation models

Fig. 6: The number of frames per second that can be processed for the
classification model

7 Summary and future work

The values of the model metrics after conversion to the executable form with the
use of hardware accelerators and the obtained execution times indicate that it is
possible to implement the discussed solution on embedded devices, moreover, the
implementation would not be possible without the use of hardware acceleration,
as shown in the graphs in Fig. 5 and Fig. 6. Among the tested devices, only
Google Coral is not suitable for use for too long of the segmentation models. All
other configurations of models and accelerators have a total execution time of
less than 1s, which is the limit value, since the [20] assumption is made that the
observations are visible on the video material for at least one second.

Among the examined methods of locating objects in photos - object detection
and semantic segmentation, the use of segmentation gives better results. From
the investigated FPN and U-Net architectures, better results were obtained for
FPN. Despite the smallest size, the best of the studied architectures for the
classification problem turned out to be MobileNetV2.

Directions for further development are possible both in the context of the
detection mechanism and validation of the usability of the solution. This paper
does not deal with the aspect of calculating the water level, although water is
detected as one of the segmentation classes. A mask that is detected with fairly
high accuracy (metric IoU = 0.79 for FPN /ResNet101 ) can be used to calculate
the water level using conventional image analysis methods. In addition to the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_27

https://dx.doi.org/10.1007/978-3-030-77980-1_27


Supporting the process of inspection of sewer pipes... 13

water level detection, based on segmentation masks, it is possible to calculate
other observations’ parameters, such as the connection diameter.

Another aspect is the more detailed classification of the classes of observations
detected. The classes present in the original dataset have been grouped into more
general ones, so having the results of the grouped class segmentation, one can
cut out a part of the original photo limited by the segmentation mask for a given
class and forward it to smaller, more specialized classifiers that will refine the
detection results.

An important element that can be further developed is the extension of
validation of the solution and conducting experiments with camera operators.
Dividing them into two groups - with and without software support-and the
subsequent analysis of their work results will help answer the question of how
the generated prompts affect the quality and time of inspections.
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