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Abstract. Energy Management Systems are equipments that normally
perform the individual supervision of power controllable loads. With the
objective of reducing energy costs, those management decisions result
from algorithms that select how the different working periods of equip-
ment should be combined, taking into account the usage of the locally
generated renewable energy, electricity tariffs etc., while complying with
the restrictions imposed by users and electric circuits. Forecasting energy
usage, as described in this paper, allows to optimize the management be-
ing a major asset.
This paper proposes and compares three new meta-methods for forecasts
associated to real-valued time series, applied to the buildings energy
consumption case, namely: a meta-method which uses a single regressor
(called Sliding Regressor – SR), an ensemble of regressors with no mem-
ory of previous fittings (called Bagging Sliding Regressor – BSR), and
a warm-start bagging meta-method (called Warm-start Bagging Slid-
ing Regressor – WsBSR). The novelty of this framework is combination
of the meta-methods, warm-start ensembles and time series in a forecast
framework for energy consumption in buildings. Experimental tests done
over data from an hotel show that, the best accuracy is obtained using
the second method, though the last one has comparable results with less
computational requirements.

Keywords: Warm-Start Ensembles · Meta Ensembles · Decision Tree
Regressors · Energy Consumption Forecasting · Time Series

1 Introduction

In 2016, the European Union presented a package of measures with the aim of
providing a stable legislative framework to facilitate the transition process to re-
newable energy. In this context, Regulation (EU) 2018/1999 [12], required that
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all member states should prepare and submit to the European Commission, a
National Energy and Climate Plan (NECP), with a medium-term perspective
(Horizon 2021-2030). E.g., Portugal’s main goal in the NECP is to become neu-
tral in greenhouse gas emissions by 2050, which requires to comply with trajec-
tories that lead to a reduction in greenhouse gas emissions between 85 and 90 %
by 2050. To achieve this goal, the greatest reduction in emissions will have to be
achieved in the current decade, with decreases ranging between 45 and 55 %. One
of the several goals defined by Portugal in its NECP [14], was that until 2030, 80
% of the electric energy that is consumed, should come from renewable energy
sources. Such a high percentage of self-sufficiency cannot be achieved by solely
generating more energy. It also requires consuming less energy and adapting
the consumption pattern with the generation levels, based on Demand Response
(DR) measures. A reduction in consumption can either be accomplished using
deterministic or data-driven methods [10]. Deterministic methods are mainly
used in the project phase of new buildings, allowing the proper design of the
building structure and materials to be used. Data-driven methods are mostly
used in functional buildings, identifying the normal consumption levels in exist-
ing infrastructures, allowing the identification of its consumption targets, or the
definition of a set of levels for the evaluation of the consumption profile.

In terms of DR, Energy Management Systems (EMSs) [18,40] are the equip-
ment that normally performs the individual supervision of shiftable/power con-
trollable loads. Optimized management decisions result from algorithms that
select how the different working periods of equipment should be combined, ob-
serving the generated energy, energy tariffs etc., while complying with the re-
strictions imposed by users and electric circuits [24]. E.g., decisions can be made
using mathematical optimization, model predictive control or heuristic control,
with several methods requiring a look into the future, i.e., forecasting energy
generation and the building’s consumption, before deciding how loads should be
scheduled to work[6,23]. Similarly, the detection of anomalies can be exposed
if the real consumption deviates from the one that was forecasted, and many
situations exists in which minor changes in consumption can indicate a serious
problem. In any case, it might be important to have a human to judge alarms,
as unpredicted values can be normal due to naturally extraordinary events or
anomalous due to machine failure, malfunctioning of a sensor etc. So, either when
using DR or performing an assessment of the efficiency of buildings, a prediction
of the consumption is a tool to help decision makers in theirs tasks.

In this context, large service buildings, such as hotels, shopping centers, hos-
pitals, schools, offices, public buildings etc., have great variability in their con-
sumption of resources, such as energy or water. Their energy consumption values
depend on many variables (e.g., occupation, outside temperature, solar radiation,
appliances settings or building occupation) making it very difficult to predict
those values with precision. Having a human, for example a specialized engineer,
to analyze each of these situations is obviously unaffordable from a technical
and economic point of view. The solution is to develop an artificial intelligence
system, that can learn over time what is considered normal and detect what is
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abnormal for each building. Machine learning algorithms will make it possible to
combine different variables such as time of day, day of week, temperature, radia-
tion, occupation, and electricity consumption to predict the normal consumption
of the building and the respective expected deviation. Distinct methods can be
used to obtain this [37].

This paper proposes and compares three new meta-methods for the forecast
associated to real-valued time series, namely, energy consumption in buildings.
With a short and a full memory variant, the meta-methods will be supported on
well known regression methods to implement a sliding window solution which
will forecast the energy consumption of an hotel at certain instants. The first
method, called Sliding Regressor – SR, is somehow a standard method which
uses a single regressor given as a parameter, being fitted with the latest data just
before forecasting is required. Similar in the fitting moment, the second method,
called Bagging Sliding Regressor – BSR, uses an ensemble of regressors with
no memory of previous fittings. The third method, called Warm-start Bagging
Sliding Regressor – WsBSR, also uses an ensemble of regressors, however, it
is distinct from the BSR by maintaining the previous regressors in memory.
Preserving the ensemble idea, the latter allows to fit less regressors, a step with
high computational cost, while using a broad number of regressors to make the
forecasts. The use of the WsBSR is therefore a possibility as it achieves slightly
worst results but with a fraction of the computational requirements. The paper’s
main contribution to the state of the art is the combination of the proposed
meta-methods, warm-start ensembles, and time series in a forecast framework
for energy consumption in buildings.

The remaining paper is structured as follow. Section 2 describes the problem
and presents a brief summary of the state of the art. The third section explains
the proposed methods. Experimental results are given in Sec. 4 and the last
section presents a conclusion and future work.

2 Preliminary considerations

This section describes the problem and presents a brief state of the art in the
resolution of forecasting real-valued time series problems.

2.1 Problem Description

Time series regression are methods for forecasting a future numeric value based
on historical responses. Time series regression can help to understand and predict
the behavior of dynamic systems from observed data, being commonly used for
modeling and forecasting economic, financial and biological systems [26].

This paper proposes a set of meta-methods to predict the energy consump-
tion of buildings. Independently of the number and type of parameters that
might differ significantly depending on the available data (e.g., the number and
type of sensors that equip the building), it is assumed that we are given a set
of NF dependent variables or features, (x1, x2, . . . , xNF

), and want to forecast
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an independent variable or target, y. Furthermore, for experimental purposes
but generalizable, it will be assumed that observations are indexed with a times-
tamp and the target will be the energy consumption of a building. For training
and fitting purpose, it is also assumed that observations will be made inside a
time window W = [ts, tf ], between the initial, ts, and final, tf , instants. Since
the observations are made in discrete instants, NO observations are assumed
in the interval W, at moments T = {ts = t1, t2, . . . , tf = tNO

} ⊂ W, being
Ω = {(Xt, yt) : t ∈ T } the set of observations, where Xt =

(
xt,1, xt,2, . . . , xt,Nf

)
are the features values and yt the corresponding target value. To simplify the
description, it is also assumed that observation are taken at regular intervals of
time, δ, i.e, T = {t1, t1 + δ, t1 + 2δ, . . . , t1 + (NO − 1)δ} ⊂ W.

In the training phase, methods will forecast future consumption from a
specific moment in time, tp, and the following setup and goals are consid-
ered: (a) Methods will forecast n consumptions with a granularity δ in the
period ∆tp = [tp + δ, tp + nδ], i.e., the methods will do forecasts for instants
Ftp = {tp+1, tp+2, . . . , tp+n} = {tp + δ, tp + 2δ, . . . , tp + nδ}. (b) During the tun-
ing phase, developers can adjust Ftp to known (future) values of the dependent
(e.g., temperature, occupation) and independent variables, included in the ob-
servation set Ω. This allows to use metrics to identify the best conjunction of
parameters (see Sec. 2.3). In the production phase, methods will be fed with
forecasted values for the independent variables and predict the dependent one.
(c) In the fitting and training phases, methods will have available a time window
of historical data, with timestamps in [tp− δW , tp]. Depending on the size of the
time window, i.e., the interval of data used to fit the regressors, two types of
methods can be considered, namely: the ones that use all historical data, called
full memory (FM) methods, and the ones which only use “recent” data, called
short memory (SM) methods. δW is a parameter which allows to define how long
should we go into the past. Obviously, the FM methods can be considered as a
sub case of the SM methods as δW can be as big as desired.

2.2 Forecasting Time Series Methods

In many energy efficient situations, the data obtained from water consumption,
electricity, outdoor temperature, occupation or solar radiation, refer to the same
time and place are characterized as multimodal data in the field of Machine
Learning. In many of these cases, it is difficult to determine how these different
types of data relate or how one modality relates to another. Distinct methods
have been defined to perform the prediction of consumption. Globally these
methods can be classified in time series versus non-time series techniques.

Time series techniques analyse the data, recorded over equal intervals of
time, extracting statistical information and other characteristics from it. Time
series solutions can be classified in univariate versus multivariate methods. It
is considered an univariate time series if there is a single sequence of values in
an observation, while if exists multiple sequences of values in an observation,
we have a multivariate time series. Several methods specified for univariate time
series analysis were used in energy prediction, for instance the Autoregressive
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Integrated Moving Average (ARIMA) [37], Case-Based Reasoning [22], Support
Vector Machines (SVM) [8,25], Artificial Neural Networks (ANN) [13,20], Grey
prediction models [9], Moving Average [16,32], Exponential Smoothing [5] or
Fuzzy Time Series [19,29].

Energy consumption normally vary according to other variables like date-
time, outside/inside temperatures, humidity, solar radiation and building occu-
pancy. When several time series variables are evaluated together, multivariate
time series should be used. Some of the models used in multivariate analysis
include the Vector Auto-Regressive [7] method, the vector ARIMA [35], Vec-
tor Autoregressive Moving Average [17] and the Bayesian Vector Autoregres-
sion [15]. While all these models have been used in predictions, some have not
been used in energy consumption forecast.

Besides time series methods, other methods have also been used in energy
prediction. These include Regression Analysis [33], Decision Trees [34], and k-
Nearest Neighbours (KNN) algorithms [36]. For instance, in [34] a comparison is
made between Regression Analysis, Decision Trees and Neural Networks when
predicting electricity energy consumption. In [36] the KNN method was applied
to the prediction of energy consumption in residential buildings.

Many studies have emphasized the superior performance of Ensemble and Hy-
brid models [28], as for instance [1,38], which led to the development of different
solutions in energy [4,31]. For instance, in [31] an evolutionary multi-objective
ensemble learning solution was tested for the prediction of Electricity Consump-
tion, in [4] an ensemble learning framework was created for anomaly detection
in energy consumption of buildings, and in [11] a stacking ensemble learning was
proposed for short-term prediction of energy consumption. In [21] the authors
compared ANN and SVM with an Hybrid Method that combines both, con-
cluding the later achieves the best accuracy. A survey of time series prediction
applications using SVM is presented in [30]. A tree-based ensemble method with
warm-start gradient for short-term load forecasting is proposed in [39].

Nevertheless, to the best of the authors’ knowledge, no meta-method frame-
work which combines bagging, warm-start, and forecasting of energy time series
was ever proposed.

2.3 Scoring Methods

To compare the different models, some metrics must be calculated. These met-
rics measure the distance between the prediction of the model and the real
observations [2]. In regression this might be relatively straightforward as we are
comparing real numbers, but several metrics are available, each one with different
strengths. Considering a set of observation O = {(Xt, yt) : t ∈ {1, 2, . . . ,m}} ⊂
Ω and a function predM associated to model M , that predicts yt given Xt,
ŷt = predM (Xt), it is possible to define several performance metrics. For in-
stance, MAE = 1

m

∑m
t=1 |yt − ŷt| defines the Mean Absolute Error, MSE =

1
m

∑m
t=1 (yt − ŷt)2

the Mean Square Error, MAPE = 1
m

∑m
t=1 |yt − ŷt|/|yt| the

Mean Absolute Percentage Error, and R2 = 1 −
∑m
t=1 |yt − ŷt|/

∑m
t=1 |yt − ȳt|,

where ȳt = 1
m

∑m
t=1 yt, defines the Coefficient of Determination score.
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Algorithm 1 Forecasting with the Sliding Regressor method – SR

Require: Forecasting instant (tp); Unfitted regressor (R); Set of observations (Ω);
Size of the training window (δW ); Set of features values (X = {Xt : t ∈ Ftp}).

1: D ← select data from Ω with timestamp in [tp − δW , tp].
2: Fit the regressor R using D.
3: return {(t, predR(Xt)) : Xt ∈ X} . Predict target using regressor R

3 Proposed Methods

This section presents the three proposed meta-methods, namely: Sliding Regres-
sor, Bagging Sliding Regressor, and Warm-start Bagging Sliding Regressor. The
objective was to build a method independent framework, combining bagging and
warm-start, for the forecasting of energy consumption time series.

3.1 Sliding Regressor method – SR

The Sliding Regressor (SR) meta-method, in its broad sense, is a traditional
regression method that fits a model using given data and a mandatory parame-
terized regressor (e.g., Decision Tree regressor or Lasso regressor) [2]. The name
was chosen thinking that the method will use a sliding time window when applied
to the forecast of time series. Two variants can be considered: the full memory
method (SR-FM) will use all available data to train the model, while the short
memory model (SR-SM) will use a interval of data (the size is a parameter of
the method) previous to the instance in time when predictions/forecasts are to
be made.

In operation phase, given an initial instant tp from which predictions are
to be made, the SR method will forget any previous fits and refit the regres-
sor using data in the interval [tp − δW , tp] (as previously stated, δW is a pa-
rameter which allows to define how long should we look in the past for data).
Then, the fitted method will forecast the consumption in a set of future instants,
Ftp = {t′1, t′2, . . . , t′n}. To make the forecast, the fitted model needs the values of
the features in those instants X = {Xt : t ∈ Ftp}. In this case, features might be
known in advance or be forecasted themselves. For instance, it will be necessary
to forecast the temperature or occupation of the building for the next predicting
period (if those are features to be considered). Algorithm 1 sketches the proce-
dure. This method was implemented in order to have a base line for the methods
proposed in the next sections (Sec. 3.2 and 3.3).

3.2 Bagging Sliding Regressor method – BSR

The Bagging Sliding Regressor (BSR) method extends the SR method by using
a bag/ensemble of estimators. On other words, instead of using a single regressor
at every prediction instant, tp, the BSR fits Np regressors and for each forecast
returns the mean value of the predictions forecasted by each of those regressors.
Like the SR, the BSR method has full memory (BSR-FM) and short memory
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Algorithm 2 Forecasting with the Bagging Sliding Regressor method – BSR

Require: Forecasting instant (tp); Unfitted regressor (R); Set of observations (Ω);
Size of the training window (δW ); Set of features values (X = {Xt : t ∈ Ftp}); Size
of the bag of regressors (Np); Percentage of data use to fit regressors (p).

1: R← ∅ . Bag of regressors
2: for i ∈ {1, 2, . . . , Np} do
3: D ← randomly select p% of data from Ω with timestamp in [tp − δW , tp].
4: Ri ← clone of regressor R
5: Fit regressor Ri using D
6: R← R∪ {Ri}
7: end for
8: return

{(
t, 1

Np

∑
R∈R predR(Xt)

)
: Xt ∈ X

}

(BSR-SM) variants, which are implemented using parameter δW . Furthermore,
the BSR method is parameterized by the percentage/fraction of data, p, used to
fit each of the regressors. If p < 1 the regressors will be fitted with distinct sets
of data, as data is selected before each of the regressors is fitted. Algorithm 2
sketches the procedure. Although the method can be used in continuous oper-
ation, it can also be applied with full potential in any fixed moment in time
(becoming a traditional ensemble method), since it is independent of previous
fits, which differs from the following method.

3.3 Warm-Start Bagging Sliding Regressor method – WsBSR

The Warm-Start Bagging Sliding Regressor (WsBSR) considers that the sys-
tem is fitted in a continuous operation. On other words, a bag of regressors R is
maintained and amplified in regular periods, which can coincide with the forecast
moments. So, when forecast are to be made, Nr new regressors are fitted, either
in full or short memory (WsBSR–FM or WsBSR–SM) variants, and those re-
gressors are added to an existing bag of regressors. Then, to make a forecast, Np
regressors are selected from the bag using their ages as weights (younger models
have higher probability of being chosen) obtaining R′ ⊂ R. Finally, the forecast
value is the mean value of the individual predictions, 1

Np

∑
R∈R′ predR(Xt), for

some set of feature values Xt. Algorithm 3 sketches the procedure.
This section proposed three meta-methods that computational complexity.

Next section will experimentally try to conclude on the utility of using one over
the others

4 Data and Experiments

For the experimental setup it was used data collected in the Alto da Colina
hotel. The Alto da Colina hotel [3] is a 4-star aparthotel located in Albufeira,
in the south of Portugal. It is comprised of 174 apartments and contains several
facilities, including four outdoor and one indoor swimming pools, a football field,
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Algorithm 3 Forecasting with the Warm-Start Bagging Sliding Regressor
method – WsBSR
Require: Forecasting instant (tp); Unfitted regressor (R); Set of observations (Ω);

Size of the training window (δW ); Set of features values (X = {Xt : t ∈ Ftp});
List of already fitted regressors ordered by age (R = [R1, R2, . . . , Rk]); Number of
regressors to fit (Nr); Number of regressors to use in the predictions (Np, Np ≥ Nr);
Percentage of data use to fit regressors (p).

1: for i ∈ {1, 2, . . . , Nr} do
2: D ← randomly select p% of data from Ω with timestamp in [tp − δW , tp].
3: Ri ← clone of regressor R.
4: Fit regressor Ri using D and append the new model to R.
5: end for
6: R′ ← Select Np models from R using their ages as weights (younger models have

higher probability of being chosen).

7: return
{(
t, 1

Np

∑
R∈R′ predR(Xt)

)
: Xt ∈ X

}

tennis court, gymnasium, a small water park for children and several bars and
restaurants, most of these, relying in electric supply. The only exception is the
water heating system, that relies in a combination between solar panels (108
Solar Thermal panels) and gas, through two propane boilers.

Data was collected every 15 minutes between January 1st and October 30th,
2017, with the exception of some periods where the system failed to collect
some of the features, being those observations discarded. After cleaning up the
data, 23.854 observations were considered with the following features: hour, wind
velocity, exterior temperature, number of registered guests, weekday and energy
consumption. Fig. 1 shows the daily mean consumption (left axis) and number
of guests (right axis) for the period in analysis. Although we don’t have data
after October (the hotel closes in the Autumn), it is observable that the hotel
suffers from a estival effect with its higher consumption in the summer months.

4.1 Experimental setup

For experimental purposes, it was decided to have a daily based forecast with the
following setup and goals. To analyse the methods it was decided to run them
for the full period of known data (January 1st to October 30th, 2017). More
precisely, at midnight the method will predict the consumption for the following
day or days, defined by a δT parameter. In the first phase, it was decided to set
δT = 1 which, given the gaps in the data acquired, corresponds to 237 predicted
days. Since each day has 96 readings (made each 15 minutes), the forecast was
made for those known values, allowing us to score our predictions (see Sec. 2.3).
Regressor will have available a time window of data defined by δW (depending
on its size, it is used the full or the short memory methods). Finally, the chosen
metrics are applied to the forecasts. Algorithm 4 summarizes the procedure.

The proposed methods are meta-regressors since they require a regressor
to make forecasts. In this experimental setup, it was decided to use Decision
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Fig. 1. Variation of the daily consumption and number of guests in the analyzed period
(top); Variation in the weather conditions (mean exterior temperature, in oC, and mean
wind velocity, in km/h) related with the number of guests (bottom).

Tree (DT) Regressors [2,34] for its precision and simplicity. This was a thought
decision although it is known that these methods are not adequate for extrapo-
lation, which might be the case whenever higher or lower values of consumption
are reached. So, it was used the DT implementation in Scikit-learn [27] with two
parameterizations: (a) maximum depth – with nodes expanded until all leaves
are pure and (b) limited depth – with a maximum depth of 5 and minimum
number of samples required to split an internal node equal to 10. Furthermore,
before applying the methods it was also decided to analyse two transformation to
the data, namely: polynomial features with degree, pd ∈ {1, 2, 3}, and the scaling
of the features to specific ranges, I = {None, [−1, 1], [0, 1], [0, 100]}, where None
means no transformation. Other parameters are summarized in Tab. 1. Finally,
experiments were run on a Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz with
16Mb or RAM and the Kubuntu 20.10 operating system.

4.2 Computational Results

Considering the use of DT with maximum depth, Tab. 2 presents for each of
the three methods the 10 best R2 means (µR2) and corresponding standard
deviations (σR2) values, computed considering the 237 forecasted days (with
96 = 24 × 4 forecasts per day). Best results are achieved by BSR method with
the 10 higher mean R2 values standing between 0.884 and 0.900. The second
best method is WsBSR, followed by SR in third. Regarding parameters, it is
observable that using polynomial features with degree 2 seems to provide the
best results. The scaling to some interval does not show to have big influence
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Algorithm 4 Slide-fit-score Algorithm

Require: Set of observations (Ω) in the full time window (W = [ts, tf ]); Scoring
metric (φ); Full or short memory (FM or SM) parameter; Forecast period (δT );
Size of the training window (δW ).

1: Scores← ∅
2: s← ts
3: t← ts + δW . Defines a minimum set of data for the first fitting
4: while t ≤ tf do
5: Apply the chosen algorithm (see Sec. 3.1, 3.2 and 3.3) to obtain the forecasts,
Ŷ , for the following δT days.

6: Extract from Ω the real target values, Y , for the same period as before.
7: Scores← Scores ∪ φ(Y, Ŷ )
8: if Short memory then
9: s← s+ 1 . Moves s one day forward

10: end if
11: t← t+ 1 . Moves t one day forward
12: end while
13: return Scores

Table 1. Parameters used in the experimental phase (†– used in SR, ‡- used in BSR,
and * - used in WsBSR).

Parameter Values Observation

δW 7 number of days to fit in the short memory case†,‡,∗

δT 1 number of days to score†,‡,∗

p [0.1, 0.5, 1] percentage of data used to fit regressor‡,∗

pd [1, 2, 3] Polynomial feature transformation degree†,‡,∗

I [None, [-1, 1], [0, 1], [0, 100]] scaling ranges of the features values†,‡,∗

Np [5, 10, 50] number of regressors to make prediction‡,∗

Nr [1, 5, 10] number of new regressors to fit each time∗

as results are mixed. In terms of memory, the short memory variant looks to
provide the best results, as 20 of the 30 results presented were achieved using it.
Furthermore, for the tested values, it seems also advisable to use all (i.e., 100 %)
available data to fit the regressor in the short memory case and 50 % of it in the
full memory case. Referring to the number of regressors in the bagging methods,
in the BSR it looks like “the more the merrier” while in the WsBSR using a
large number of regressors in the predictions seems to be worse as, probably, this
obliges to use more older regressors. As a side note, to understand the magnitude
of the errors, the second best run of BSR (an unscaled case, with µR2 = 0.899)
had µMAE = 4.82 (σMAE = 3.1) and µMAPE = 0.04 (σMAPE = 0.02).

Table 3 presents the same metric values but now considering the use of DT
with limited depth of 5 and minimum number of samples required to split an
internal node equal to 10. As somehow expected, the value of R2 got worse but
the methods maintained the relative ranking between them. Again the usage
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Table 2. Top 10 R2 results for the case
of the DT with full depth.

Method µR2 σR2 pd I Memory p Np Nr

SR

0,771 0,288 2 [0, 100] SM
0,766 0,308 2 None SM
0,751 0,274 3 [-1, 1] SM
0,745 0,338 2 [-1, 1] SM
0,736 0,491 2 [0, 1] SM
0,714 0,516 2 [-1, 1] FM
0,690 0,460 3 [0, 100] SM
0,679 0,422 3 [0, 1] SM
0,676 0,678 2 [0, 100] FM
0,675 0,782 2 [0, 1] FM

BSR

0,900 0,141 2 [0, 100] SM 1 50
0,899 0,142 2 None SM 1 50
0,898 0,142 2 [0, 1] SM 1 50
0,897 0,143 2 [-1, 1] SM 1 50
0,893 0,163 2 [0, 100] FM 0.5 50
0,890 0,173 2 [0, 1] FM 0.5 50
0,890 0,178 2 [-1, 1] FM 0.5 50
0,887 0,184 2 None FM 0.5 50
0,885 0,155 2 [0, 100] SM 1 10
0,884 0,160 2 None SM 1 10

WsBSR

0,838 0,185 2 [0, 1] SM 1 10 5
0,833 0,174 2 None SM 1 10 5
0,833 0,174 2 [0, 100] SM 1 10 5
0,826 0,205 2 [-1, 1] SM 1 10 5
0,809 0,184 2 [0, 100] SM 0.5 10 5
0,804 0,221 2 [0, 1] SM 0.5 10 5
0,802 0,214 2 None SM 0.5 10 5
0,796 0,228 2 [0, 1] FM 0.5 10 5
0,795 0,277 2 None FM 0.5 10 5
0,793 0,263 2 [-1, 1] FM 0.5 10 5

Table 3. Top 10 R2 results for the case
of the DT with maximum depth of 5.

Method µR2 σR2 pd I Memory p Np Nr

SR

0,607 0,409 2 [] SM
0,577 0,477 2 [0, 1] SM
0,567 0,526 2 [-1, 1] SM
0,536 0,468 2 [0, 100] SM
0,519 0,461 3 [0, 1] SM
0,502 0,551 3 [0, 100] SM
0,492 0,478 3 None SM
0,422 1,593 3 [-1, 1] SM
0,351 0,751 2 [0, 1] FM
0,349 0,775 2 None FM

BSR

0,796 0,220 2 [] SM 1 50
0,795 0,223 2 [0, 100] SM 1 50
0,794 0,226 2 [-1, 1] SM 1 50
0,794 0,228 2 [0, 1] SM 1 50
0,767 0,264 2 [-1, 1] SM 1 10
0,767 0,266 2 [0, 100] SM 1 10
0,766 0,277 2 None SM 1 10
0,765 0,278 2 [0, 1] SM 1 10
0,763 0,295 2 [0, 1] SM 0.5 50
0,761 0,301 2 None SM 0.5 50

WsBSR

0,710 0,249 2 [] SM 1 10 5
0,709 0,272 2 [0, 100] SM 1 10 5
0,699 0,262 2 [0, 1] SM 1 10 5
0,691 0,286 2 [] SM 0.5 10 5
0,685 0,323 2 [0, 100] SM 0.5 10 5
0,682 0,353 2 [-1, 1] SM 1 10 5
0,680 0,275 2 [0, 1] SM 0.5 10 5
0,666 0,306 2 [-1, 1] SM 0.5 10 5
0,660 0,289 2 [0, 1] SM 1 50 10
0,652 0,307 2 [0, 100] FM 0.1 10 5

of polynomial features of degree two seems to be the more appropriate and
no definitive conclusion can be taken about the scaling of the features. The
short memory solution shows to be a better option, when compared with the
full memory one. Regarding the number of regressors to use in the ensemble
cases, results were not conclusive for BSR but, using 50 allowed to achieve the
best results. On the other hand, using only 10 regressors can be a good enough
forecast for a decision maker, saving considerable computational resources. For
the WsBSR method, a similar conclusion as previously can be taken, i.e., using
a larger number of regressors in the predictions seems to worsen the results
(probably for the obligation of using older regressors).

5 Conclusion and Future Work

Energy is one of the largest parcels in the operation of service buildings. The
possibility to forecast the energy consumption of unmovable loads, added up with
the fixed ones, gives decision makers the chance to plan ahead the positioning
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of the movable charges. These can be later optimized taking into consideration
many factors as energy production from renewable sources or energy prices.

In this paper, three meta-methods are analyzed to perform the referred fore-
cast. Established the regressor to be used with the meta-method (e.g., Decision
Tree regressor), the first (SR) can be seen as a traditional forecast method, while
the second (BSR) and third (WsBSR) use ensembles of regressors to make the
forecasts. The difference between them comes from the fact that the last uses a
warm-start procedure, adding new regressors when required, which are comple-
mented by the ones already fitted in the past. Over the elected parameters, the
BSR method has shown a better accuracy but with higher computational cost
in the fitting phase. The use of the WsBSR is therefore a possibility as it has
shown slightly worse results but with a fraction of the computational cost (in a
typical run, for similar set of parameters, WsBSR took approximately 25% of
the time required by BSR to run the full simulation).

In terms of future work, other methods besides the decision trees are to be
used. Furthermore, the usage of heterogeneous methods in the ensemble will
be tried, i.e., the usage of the same method but with different parameters and
also distinct methods. In this case, it is also intended that the selection of the
forecasting methods (which ones to fit and which ones to use in the forecast)
will be tuned on run time. Finally, integration of data assimilation techniques
also seem a very promising field of research.
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