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Abstract. The procedures of non-destructive inspection (NDI) are em-
ployed by the aerospace industry to reduce operational costs and the risk
of catastrophe. The success of deep learning (DL) in numerous engineer-
ing applications encouraged us to check the usefulness of autonomous DL
models also in this field. Particularly, in the inspection of the fuselage
surface and search for corrosion defects. Herein, we present the tests of
employing convolutional neural network (CNN) architectures in detect-
ing small spots of corrosion on the fuselage surface and rivets. We use a
unique and difficult dataset consisting of 1.3 × 104 images (640 × 480)
of various fuselage parts from several aircraft types, brands, and ser-
vice life. The images come from the non-invasive DAIS (D-Sight Air-
craft Inspection System) inspection system, which can be treated as an
analog image enhancement device. We demonstrate that our novel DL
ensembling scheme, i.e., multi-teacher/single-student knowledge distilla-
tion architecture, allows for 100% detection of the images representing
the ”moderate corrosion” class on the test set. Simultaneously, we show
that the proposed ensemble classifier, when used for the whole dataset
with images representing various stages of corrosion, yields significant
improvement in the classification accuracy in comparison to the baseline
single ResNet50 neural network. Our work is the contribution to a rela-
tively new discussion of deep learning applications in the fast inspection
of the full surface of an aircraft fuselage but not only its fragments.

Keywords: aircraft maintenance, deep learning, ensemble learning, knowl-
edge distillation, fuselage corrosion detection, DAIS system

1 Introduction

Corrosion, fatigue, and corrosion-fatigue cracking are the most common types
of structural problems experienced in the aerospace industry. To ensure flight
safety of aircraft structures, it is necessary to have regular maintenance by using
visual methods of non-destructive inspection (NDI) [16]. Traditionally, visual
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inspections are conducted by human operators that scan the aircraft fuselage
looking for corrosion, cracks, and incidental damage. However, this is a costly
and time-consuming procedure apt to be subjected to human mistakes caused
by mental fatigue and boredom.

In the last decade, various image processing algorithms have been applied
in the field of aircraft inspection [18]. However, these algorithms work well only
in controlled environments. They often fail in more complex real-world scenar-
ios due to noisy and complex backgrounds. Therefore, used together with the
classical machine learning models, fine-tuned image processing techniques are
strongly biased by the type of datasets considered.

The success of deep learning in many domains of science and engineering,
particularly, the efficacy of various convolutional neural network (CNN) archi-
tectures in producing amazingly accurate data models for images (in terms of
classification, object recognition, semantic segmentation and others) encouraged
us to test this technology as an autonomous support for the inspection system of
wide-area surface of the aircraft fuselage. The data for our research come from
the imaging acquisition system DAIS (D-Sight Aircraft Inspection System) [11]
widely used by the Polish air force and collected by the Air Force Institute of
Technology (AFIT). DAIS images are able to enhance the hidden corrosion spots
invisible to the naked eye in similar lighting conditions.

To decrease the costs simultaneously increasing the reliability of this time-
consuming procedure, herein we propose to support it by the autonomous system
based on advanced neural network architectures. From application point of view,
the main target of this research is to improve and partially automate aircraft
fuselage inspections. Additionally, the research aspect of this work, not directly
related to the domain of aircraft inspection, is the use of knowledge distilla-
tion as an ensemble learning aggregation mechanism. We can summarize our
contributions as follows:

1. We have tested several CNN architectures on DAIS images and estimate
their various degree of usefulness in recognition of corroded fuselage rivets.

2. To solve the problems with high data inhomogeneity - data coming from
many types of airships of various ages, very typical ones in many inspec-
tion/fault detection systems - we propose using the ensemble learning con-
cept to increase generality and to deal with overfitting. Moreover, we modi-
fied the knowledge distillation framework [10], to allow its aggregation from
the whole multi− teacher ensemble into only one student model.

3. We have developed a novel method for mimicking ensemble output by the
knowledge distillation employing a multi-teacher/single-student network. This
type of knowledge distillation allows training a single CNN of a similar accu-
racy as the CNN ensemble but requiring more modest resources (i.e. storage
size and shorter response time). The experiments show on the test data that
it yields superior accuracy among other tested CNNs architectures.

Summing up, we demonstrate that proposed CNN architectures have sufficient
classification power to be considered as a valuable support in the wide-area
inspection of the aircraft fuselage.
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In the following section, we shortly present the main idea of the DAIS image
acquisition system and the dataset that is the subject of our study. Then we de-
scribe the methodology proposed, i.e., (1) the ensemble learning scheme and (2)
a new knowledge distillation variant based on the multi-teacher/single-student
approach. Next, we present a detailed description of the experiments and discuss
their results. Our approach and its results can be confronted with the state-of-
the-art DL applications in the aircraft inspection in the Related Work section.
Finally, we summarize the conclusions and suggest future research goals.

2 Methodology

To deal with overfitting problem, resulting from the relatively small number
of examples and the high complexity of our data set, we use ensemble learn-
ing. We trained several models whose aggregate predictions were more accurate
compared to a single model. On the other hand, the use of ensemble increases
computational complexity of our solution, which is also treated as a big disad-
vantage. To solve this problem, we use the knowledge distillation, transferring
the objective knowledge of the entire ensemble to the weights space of only one
model. Ensembling models of various types (e.g., formal mathematical models
and data models), usually lead to better results, i.e., better approximations,
predictions or classification accuracy [20]. However, this is not for free but at
the expense of the increase of model storage&time complexity. Therefore, the
high demand for computational resources required by big data models (such as
ensembled DNNs) is still a challenging problem.

The proposed methodology combines ensembling and knowledge distillation
approaches into a new multi-teacher/single-student approach. In the following
subsections, we present shortly its principles on the background of ensembling
and knowledge distillation techniques.

2.1 Ensemble learning

The main purpose of ensembling the models is to increase the accuracy of predic-
tions [20]. Especially, in the cases of very fine image details and high uncertainty
caused by inhomogeneity of data. This is just the case to be encountered in the
detection of corrosion on small fuselage rivets from very inhomogeneous data
coming from many types of airships of various ages. Thus, the data set consists
of many ”fuzzy” small subsets having a specific structure (fine graining) while we
are looking for common attributes of corrosion (coarse-graining) neglecting fine
structural details of data. Therefore, the ensembling of neural nets, each trained
on a different homogeneous part of the baseline data set, is an encouraging idea
to be applied in the diagnostic of aeronautical structures. The benefits of this
DNNs architecture in the context of the aircraft fuselage inspection is presented
in the seminal publication [18].

On the other hand, ensemble learning can increase the computational com-
plexity of the predictive model. In the classic implementation of ensembling of
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neural networks (e.g. bagging), each single sub-model is generated in an inde-
pendent training process. Consequently, N independent models increases the
computational complexity of the classifier N times both in the training and in-
ference phase. In general, however, it is not exactly the truth. The sub-nets can
be pre-trained in considerably shorter time than a single baseline model [3,6,22]
or the architecture of the sub-models can be much simpler than the baseline
model.

2.2 Knowledge distillation

The main idea behind the knowledge distillation is that the simpler student
model mimics the complex teacher model resulting with its better interpretation
or obtaining a simpler and competitive black box with similar or even superior
performance. In this way, the knowledge inscribed in the teacher model weights
is compressed and transferred into the parameter space of the student′s model.
This technique was popularized by Hinton et al. in [10]. In the standard training
process of a classifier, the loss function is closely related to the data labels. In
the case of knowledge distillation, the loss function has a second component
related to the distance between teacher and student output logits. More details
and variants of knowledge distillation are presented in the survey paper by Gou
et al. [7]. Versatility resulting from the concept of knowledge distillation comes
primarily from the lack of requirements for types of the teacher and student
models. This technique is most often used to compress machine learning models
based on neural networks whose architectures are very similar, differing only in
the number of layers and neurons and weights in each layer. On the other hand,
there are no formal requirements as to the type of ML model used. It is possible
to distill knowledge between machine learning models of completely different
structure, type and principle of operation. It is sufficient to ensure that both
models have the same output and input structure.

2.3 Multi-teacher/single-student network

In our approach, we assumed the lack of formal restrictions of knowledge distilla-
tion (comparing hidden layers activations requires consistency between teacher
and student architectures). We treat the entire ensemble (composed of sub-
nets trained on unique, randomly generated subsets of training dataset) as the
teacher model. As result, we can use knowledge distillation as an ensemble deci-
sion fusion scheme. The student model learns to mimic predictions of the whole
ensemble of the teacher sub-models.

There have been several studies that utilize knowledge distillation as ensem-
ble aggregation [2, 25]. However, there are a few important differences between
those and our approaches. The major modification assumes to transfer the deci-
sion about the aggregation of individual sub-models from the stage before knowl-
edge distillation to the student model itself. The main task of the student model
is not to imitate some aggregation of teachers′ outputs, e.g., averaging them, but
all individual teachers ”cooperate” during training synchronously developing a
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more sophisticated common response. We also decided not to include in the loss
function the factor representing the similarity between teacher and student in
internal NN layers. Our loss function forces only mimicking the teacher output
predictions by the student model. This approach gives more flexibility in terms
of knowledge distillation between models of a different type (similar architecture
is not required), which we plan to use in the future. The temperature parameter
T in softmax probabilities

Pi =
e

yi
T∑n

k=1 e
yk
T

(1)

is set to 1 what means the loss function utilizes unchanged softmax output.
We analyzed three variants of the multi-teacher/single-student architecture,

with different sub-models prediction-aggregation schemes.

1. Prediction averaging - Currently used approach [24] consists in averaging
the ensemble predictions before the teacher output is included in the student
loss function. The student model learns to mimic the average response of the
multi− techer ensemble (Fig. 1 upper).

2. Mimic of prediction geometric center - In the training process, the
output of the student model is compared with the predictions of all N
teachers individually. The student model learns to mimic predictions of sev-
eral teachers simultaneously. However, since bringing prediction too closely
to a single teacher output increases part of the loss function responsible for
mimicking other teachers, student model output settles in the geometric
center of all the teachers′ predictions (Fig. 1 center).

3. Independent mimicking of all the N teachers - In contrast to the
model presented above the student model does not produce a single output,
but N outputs - where N is equal to the number of teachers, each is char-
acterized by an independent set of trainable weights, see Fig. 1 lower. The
last layer or the last few layers may be separated. Each of these independent
outputs in the training process is compared with its assigned teacher out-
put. It should be noted that the convolution part responsible for the feature
extraction is common. However, the weights of the last layer (or last few
layers) responsible for classifications are specific to each teacher. This way,
the model does not learn to mimic the aggregation of all teacher‘s outputs
but actually generates N independent predictions linked to each teacher.

As shown in [24] there are many loss function definitions, different distance ma-
trices, distillation strategies et cetera. We decided to use hard ground true labels
and hard ensemble outputs, instead of light labels (in which the labels do not
have the entire probability assigned to one class, but it is partially ”fuzzified” to
other classes). We also used the Kullback-Leibler divergence (KLD) to determine
the distance between teacher and the student models. Below we present respec-
tive equations determining loss function for teacher − student models variants
described above.

Lossavg = α
D∑
i=1

ȳi · log( ȳi

ỹi
) − (1 − α) ·

D∑
i=1

yilog(ỹi) (2)
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Lossgeo = α 1
N

D∑
i=1

N∑
j=1

yij · log(
yij

ỹi
) − (1 − α) ·

D∑
i=1

yilog(ỹi) (3)

Lossind = 1
N

N∑
j=1

·(α
D∑
i=1

yij · log(
yij

ỹij
) − (1 − α) ·

D∑
i=1

yilog(ỹij)) (4)

,

where D is the student output size (number of classes), N is number of
teachers, ỹi is the i-th scalar value in the student model output, yi is the corre-
sponding target value, ȳi is the corresponding average of teachers model output,
yij is the corresponding j-th teacher output, and ỹij is the i-th scalar value in
j-th output of student model output (independent mimicking variant). The α
weight setting proportion between the expression associated with knowledge dis-
tillation (first sum in equations) and the standard loss function connected with
data ground truth (second sum), is the process controlling parameter, increas-
ing this parameter, increases student imitation loss in the total loss function.
Figure 1 demonstrates the block diagrams of all multi-teacher/single-student
networks described above in the order presented in the text.

Fig. 1. The schemes of the multi-teacher/single-student models employed in this paper:
prediction averaging model (upper), the model mimic of prediction geometric center
(middle), independent mimicking of all the N teachers (bottom).
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3 DAIS data

3.1 DAIS System

D-Sight [9, 13] is an optical double-pass retroreflection surface inspection tech-
nique created by Diffracto Ltd from Canada. It is a patented method of visualiz-
ing very small surface distortions outside the plane, such as dents and corrosion.
The D-Sight optical system consists of a retroreflective screen, camera, a light
source, and a tested fuselage fragment (Fig. 2). The light from a standard di-
vergent source is reflected off the sample. The surface of the sample must be
reflective. The reflected light is then shone onto a reflective screen, which con-
sists of many semi-silvered glass spheres (typical diameter 60 µm). This screen
tries to redirect all incident light rays at the same angle to the starting point of
reflection on the sample surface. However, the screen is not perfectly reflective
and actually returns a divergent cone of light rather than a single beam at the
same angle. It is this imperfection of the reflective screen that creates the D-
Sight effect. The light is reflected again by the sample and collected by a camera
slightly away from the light source.

DAIS system [5] uses this imaging technology for damage detection which are
not visible to the naked eye. Figure 2 presents the overview drawing containing
the principle of operation for the DAIS imaging system and a photo showing the
process of fuselage image acquisition.

The detection system of corrosion on the aircraft fuselage consists of many
modern non-invasive visual inspection techniques presented in [17] including also
a highly modernized, comparing to its original version, imaging tool based on
D-Sight methodology.

Fig. 2. Left: a scheme of DAIS imaging system operation, from [9] Right: the image
demonstrating the process of captioning aircraft images.
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3.2 Fuselage corrosion dataset

Thanks to the Air Force Institute of Technology (Warsaw, Poland), we got ac-
cess to data representing the images acquired by using D-Sight technology. We
received about 1.3 × 104 labeled images (640 × 480 pixels). The labels include
the testing year, the anonymous id of the aircraft, and the label representing the
extent of corrosion damage.

Figure 3 shows the data details, i.e., the frequency distribution of samples
according to the year of technical examination and an aircraft id. Sample images
from the DAIS system are also shown. We aim to classify the images according
to the strength of the identified damage. Due to the imbalanced data set, we
decided to consider this problem as a binary classification: “no damage” and
“damage detected”. The original images come in 640 × 480 resolution, however,
following the guidelines of the authors of the models used, we have reduced the
resolution to 320 × 240 - for training and inference speed up. The tests, carried
out while training the models at full resolution, showed a minimal decrease in
the classification accuracy [15].

Fig. 3. Left: Distribution of the image examples in DAIS dataset with machine id
and inspection year, Right: DAIS samples. Top: no corrosion, Center: light corrosion,
Bottom: moderate corrosion. Total number of examples in the data set by class: no
corrosion and no damage:6431, light corrosion:6040, moderate corrosion:578, strong
corrosion:0, minor damage:26. Histograms presents marginal distribution according to
machine ID and examination year dimension.

4 Results and discussion

4.1 Hardware and software setup

The computations were performed on the Prometheus supercomputer (288th on
top500 list (June 2020); HP Apollo 8000, Xeon E5-2680v3 12C 2.5GHz, Infini-
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band FDR, HPE Cyfronet Poland). We used just one node (Intel Xeon E5-2680
v3, 2.5 GHz) and two Nvidia V100 GPU accelerators on the cluster dedicated
to deep learning. In the computations We used TensorFlow framework [1].

4.2 Experiment description

Using previous analyzes, we have selected ResNet50 [8] as the baseline CNN
architecture. We show in the supplementary materials [15] that this architecture
produces the best and more stable results comparing to the others.

ResNet50 training setup are as follows: ADAM optimizer [12], learning rate
= 0.001, batch size = 128, number of epochs = 150. The dataset was split
into training, validation, and test parts, based on the aircraft id. Samples from
machines with id between 1 and 30 were assigned to the training data set (10
534 examples), from id = between 31 and 34 were assigned to the validation
set (1463 examples) while samples from aircraft with id between 35 and 37
were assigned to the test set (1297 examples). Completely different physics of
acquiring images from the DAIS system compared to standard photography was
reason of resigning from use of transfer learning. Our experiments have shown
that use of pre-trained models does not improve the quality of classification on
DAIS data, we test models trained on ImageNet100 [4], and we achieve lower
classification accuracy.

The ensemble classifier consists of ResNet50 sub-nets (teachers) was trained
on different training subsets. We generated many ResNet50 sub-nets, each trained
on different, randomly generated subset of training data. The examples were
generated in such a way that the percentage of common examples for any two
selected subsets was the same. Thanks to this approach, we obtain the maxi-
mum diversity of generated data subsets. In the next step we applied knowledge
distillation to aggregated (trained) ensemble of teachers into a single student
model. We chose a number of sub-models N = 5 and coverage factor equal to
0.7 (defined as the size of the training subset relative to the entire training set).

4.3 Corrosion detection

We tested and compared three main approaches (based on ResNet50 architec-
ture) described in previous section in order to develop corrosion classifier. De-
pending on the threshold level, We can modify the trade-off between the number
of false negatives and false positives. Figure 4a shows precision and recall met-
rics depending on the threshold value. We define the threshold as the minimum
value of the probability of assigning a sample to the ”corrosion detected” class.
Images labeled as ”corrosion detected” came from several more specific classes
representing various degrees of material failure. We conducted the analysis for
these specific corrosion classes, comparing how the models dealt with samples
labeled as ”light corrosion” and ”moderate corrosion”. The results appeared to
be very promising. On the test set our models were able to recognize 100% ”mod-
erate corrosion” samples (with the appropriate threshold level). Unfortunately,
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the test set of examples with ”moderate corrosion” is limited to only 79 ex-
amples. On the other hand, from the application point of view, the detection of
stronger examples of corrosion is the most important and can be the positive test
for the usefulness and reliability of our detection algorithm. For safety reasons,
in the operation of the autonomous corrosion detection system, the detection
of stronger corrosion samples is crucial. It should also be remembered that the
whole data set was manually labeled by experts and this may be the reason for
the existence of some bias (incorrect markings for pairs ”no corrosion” - ”light
corrosion” ). Figure 4b demonstrates different recall curves for specific corrosion
levels.

Fig. 4. Left: Precision-recall characteristics for the models considered. The intersec-
tion of recall and precision lines is at the highest point for the student model. Right:
Precision-recall characteristic with separation for ”light” and ”moderate” corrosion
levels. The ”moderate corrosion” samples are much better recognized by the models.
We achieved 97.5%-100% detection of corrosion on this level.

To determine the appropriate threshold values for a fair comparison of the
various methods, we assessed them independently for each model. The maximum
classification accuracy achieved on the validation set was the selection criterion
for the thresholds. Then we calculated the remaining metrics on the test set.
For the thresholds selected in this way, the geometric student model achieves
detection of 100% ”moderate corrosion” class while the ensemble and single
models get 97.5%. It gives also superior results on the other metrics. The results
are collected in Table 1.

To visualize, which areas of analyzed images influence the decision on corro-
sion classification we use the Grad-CAM [21] method. The algorithm employs
the cumulative gradients calculated in back-propagation which are treated as
”weights” to explain network decisions. It can be seen that the greatest acti-
vations are generated on the riveting line (see Figure 5). As hidden corrosion
occurs on the rivets, so this behavior of the model shows a good level of data
understanding.
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Table 1. Accuracy, recall, precision and F1 score matrices obtained by tested classifiers.
Complexity* is expressed as a relative value, where 1 means complexity level of a single
ResNet50 base model

Used model Threshold Accuracy Recall Precision F1 Score Com*

Single 0.89 73.6% 73.96% 77.75% 75.81% 1
Ensemble 0.62 76.25% 74.81% 81.24% 77.89% 5
Averaging student 0.54 74.14% 69.63% 81.43% 75.07% 1
Geometric student distillation 0.47 76.63% 84.26% 76.39% 80.13% 1
Multi output student 0.51 74.3% 69.78% 81.6% 75.23% 1

Fig. 5. Grad-CAM activations for a single baseline model (left) and the ensemble
(right) model. The activation map for ensemble is much wider. From the explainability
point of machine learning models, we can determine that ensemble takes more factors
into account when generating predictions.

Additionally, we used t-SNE [14] data embedding method to visualize the
localization of samples from the test set in 2D space. The Single model and
the geometric student model were compared. The feature vectors are collected
from the output of the global max-pooling layer, which follows the last convolu-
tional layer. The resulting feature vector had 2048 dimensions. Figure 6 shows
this feature vector embedding into a 2D space for visualization purposes. It is
easy to observe a strong separation between the‘”moderate corrosion” and ”no
corrosion” classes. The ”light corrosion” class lies in the middle area and partly
overlaps ”no corrosion” class. This result coincides with the classification met-
rics achieved by the model for individual classes. Data points were normalized to
better cover plot canvas. We calculated Silhouette coefficient [19] (Single: .0015,
student: .0359) to quantitatively show that student produce better clustering
(higher coefficient score means better clusters class separation).

5 Related works

Very few works on aircraft fuselage inspection using modern DNN architectures
can be found in the literature. In [23] a deep learning-based framework is pro-
posed for automatic damage detection in aircraft engine borescope inspection.
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Fig. 6. DAIS samples embedding by using t-SNE. The Single model and the geometric
student model were compared, respectively

It utilizes the state-of-the-art NN model called Fully Convolutional Networks
(FCN) to identify and locate damages from borescope images. This framework
can successfully identify two major types of damages, namely cracks and burn,
and extract ROI regions on these images with high accuracy. In [16] the au-
thors present the system for crack detection on the aircraft fuselage based on
high-resolution drone images.

The similar, in spirit, work to that presented here is described in [18]. The
authors had a modest dataset consisting of images from a borescope inspec-
tion of aircraft propeller blade bores. Due to the limited size of the data, they
used the transfer learning by pre-training a convolutional neural network on the
large ImageNet, assuming that the low-order features will be the same for both
datasets. It is shown that the ensemble method improves inspection accuracy
over conventional single CNN. However, the borescope is designed to assist vi-
sual inspection of narrow, difficult-to-reach cavities but not to cover big areas
of aircraft fuselages. Thus, the data used in this system are completely different
from those considered in this paper. However, the success of the application of
CNN’s ensemble was the inspiration of our paper.

6 Conclusions and future work

In the research presented, we used the state-of-the-art machine learning models
to automate the task of corrosion detection on the aircraft fuselage. The images
we analyzed were taken from the DAIS imaging system, but we believe that this
methodology can be also applied with other visual inspection systems. One of
the problems we encountered in this study was the severely limited collection
of training data. Moreover, the domain of this data differed significantly from
popular image repositories, which meant that transfer learning cannot produce
satisfactory results. We have developed a method of aggregation and compres-
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sion of knowledge derived from several machine learning models. The proposed
variant of linking the student′s model loss function with the geometric center
of teachers ensemble outputs produced the best results in the context of cor-
rosion classification efficacy, giving F1 statistics equal to 80%, i.e., 4,4% more
than by employing the single baseline ResNet50 model. Moreover, the images of
the most corroded fuselage parts were recognized with 100% accuracy. Supple-
mentary material and the codes we used in our experiments are published here:
(https://github.com/ZuchniakK/DAISCorrosionDetection).

In the nearest future, we intend to expand our dataset, which will allow us to
generate more accurate models and perform better and more certain validation.
We also plan further work on the NN model compression and quantization to
enable its implementation directly in DAIS hardware. In the future we intend
to test our proposed multi-teacher ensembling framework on the other difficult
data sets such as medical images.

The Geometric student distillation method we proposed generated the best
performing models, but the differences are small. We believe that student gen-
eration methods can still be improved and will be the subject of our further
research.
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