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Abstract. We conducted a numerical simulation of the free surface affected by 

the diving movement of an object such as a submarine. We have already proposed 

a computation method that combines the moving grid finite volume method and 

a surface height function method. In this case, the dive movement was expressed 

only as a traveling motion, not as a deformation. To express the deformation of 

a body underwater, the unstructured moving grid finite volume method and slid-

ing mesh approach are combined. The calculation method is expected to be suit-

able for a computation with high versatility. After the scheme was validated, it 

was put to practical use. The free surface affected by a submarine with a rotating 

screw moving underwater was computed using the proposed method. Owing to 

the computation being for a relatively shallow depth, a remarkable deformation 

of the free surface occurred. In addition, the movement of the submarine body 

had a more dominant effect than a screw rotation on changing the shape of the 

free water surface. 

Keywords: Free surface, Moving grid, Submarine. 

1 Introduction 

Studying how the shape of the free water surface is affected by the movement of 

submerged bodies is very useful and interesting from not only an engineering perspec-

tive but also a computational science perspective. For example, such studies could be 

carried out in the preliminary design of the shape and placement of wave activated 

power generators [1]. In addition, it would be useful for designing underwater explora-

tion submersibles [2]. Furthermore, a lot of basic research on interactions between the 

free surface and the motion of submerged objects have been reported [3]. Benusiglio et 

al. [4] investigated the drag and shape of waves caused by a moving small sphere under 

the water. But, as there are a lot of complicated flows with the free surface, from the 

perspectives on experimental equipment cost and flow reproducibility, the applied flow 

fields have had to be simple. In a previous study using numerical simulations, Kwag et 

al. [5] investigated the shape of the free surface when varying the distance between a 

three dimensional airfoil and the surface and when varying the attack angle of the airfoil 

to the surface. In addition, Moonesun et al. [6] compared computational results and 
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experimental results of the interaction between the free water surface and a submersible 

in rectilinear motion. However, the reproducibility of the motion itself and of the re-

sulting shapes upon modeling were limited. 

In general, computational methods for the interface can be classified into two broad 

categories: interface tracking methods [7] and interface capturing methods. In the in-

terface tracking method as represented by the Arbitrary Lagrangian-Eulerian method, 

an interface is expressed directly by moving and deforming a mesh according to the 

motion of the interface. On the other hand, in the interface capturing method repre-

sented by the Volume of Fluid method or the level set method, an interface is expressed 

indirectly using a function indicating the interface on a fixed mesh. The interface cap-

turing method is suitable for expressing a separation or large deformation of the inter-

face. Thus, it is often used to solve such interface problems. However, it is difficult to 

express the interface with a moving body, because it is not easy for the method to main-

tain the calculation accuracy for a flow around the moving body. For this reason, this 

study used the interface tracking method, in which it is relatively easy to maintain the 

calculation accuracy around an interface. The method is used together with the unstruc-

tured moving grid finite volume method [8, 9] and the moving computational domain 

method to avoid calculation failures. Furthermore, the combination of these methods 

permits removal of body movement restrictions and generation of flexible meshes. 

However, the method has not been applied to a flow around a body with a complicated 

motion such as an oscillatory heaving motion and rotational motion yet. Thus, in this 

paper, it was applied to a free surface affected by a submarine with a rotating screw 

moving underwater. 

2 Numerical Approach 

2.1 Governing equations 

The governing equations are composed of the following three-dimensional (3D) conti-

nuity equation and Navier-Stokes equation for incompressible flows written in conser-

vation law form. 
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Here, 𝐪 is a conservative quantity, 𝐄, 𝐅 and 𝐆  are inviscid flux vectors in the 𝑥, 𝑦, 𝑧 

directions, 𝐄𝐯 , 𝐅𝐯  and 𝐆𝐯  are viscous flux vectors,  𝐇𝒈  is a gravity flux vector, and 

𝑢, 𝑣, 𝑤 are velocity components in the 𝑥, 𝑦, 𝑧 directions respectively. 𝑝 is pressure, 𝑅𝑒 

is Reynolds number, 𝐹𝑟 is Froude number, while the 𝑥, 𝑦 and 𝑧 subscripts represent the 

differential in each direction. 

 

2.2 Numerical scheme 

The free surface and rotating object are expressed as a moving mesh using the moving 

grid finite volume method. The method estimates a control volume in the unified space-

time domain. So, to express 3D movement, the method uses a four-dimensional (4D) 

domain to satisfy a geometric conservation law as well as a physical conservation law. 

As the discretization of the method, Eq. (2) is separated into a velocity vector term and 

a pressure vector term as shown in Eq. (4). 

 

 𝐄̂ = 𝐄 − 𝐏𝟏 , 𝐅̂ = 𝐅 − 𝐏𝟐 , 𝐆 = 𝐆 − 𝐏𝟑                                           (4) 

 

where, 
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Eq. (2) can be rewritten as follows by using the above equations. 
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The equation is separated into Eq. (7) and (8) in order to perform the fractional step 

method. 
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Eq. (7) is integrated over the control volume in the unified space-time domain and can 

be written as 
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The equation is rewritten in terms of a divergence integral over a volume 𝑉Ω in the 4D 

domain. 

 

∫ [(
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
,

𝜕

𝜕𝑡
) {(𝐄̂ −

1

𝑅𝑒
𝐄𝒗) , (𝐅̂ −

1

𝑅𝑒
𝐅𝒗) , (𝐆 −

1

𝑅𝑒
𝐆𝒗) , 𝐪}]

 

Ω
𝑑Ω = 𝑉Ω𝐇𝒈     (10) 

 

Using Gauss' theorem, the equation can be written as  
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Finally, the discretization for the governing equation is as follows. 

 

𝐪𝑛+1(𝑛𝑡)6 + 𝐪𝑛(𝑛𝑡)5 + ∑ [𝐪𝑛+1/2𝑛𝑡 + 𝚽𝑛+1/2 − 𝚿𝑛+1/2]
𝑙

=4
𝑙=1 𝑉Ω𝐇𝒈         (13) 

 

where, 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧, and 𝑛𝑡 are normal unit vectors in the x, y, z and t directions, respec-

tively, and 𝚽 and 𝚿 are as follows. 

 

𝚽 = 𝐄̂𝑛𝑥 + 𝐅̂𝑛𝑦 + 𝐆𝑛𝑧                                               (14) 

 

𝚿 =
1

𝑅𝑒
(𝐄𝒗𝑛𝑥 + 𝐅𝒗𝑛𝑦 + 𝐆𝒗𝑛𝑧)                                               (15) 

 

The pressure equation (8) is discretized as 

 

(𝐪𝑛+1 − 𝐪∗)(𝑛𝑡)6 + ∑ (𝐏̃𝟏𝑛𝑥 + 𝐏̃𝟐𝑛𝑦 + 𝐏̃𝟑𝑛𝑧)
𝑙

=4
𝑙=1 0                        (16) 

 

Equations (13) and (16) are iteratively solved using the lower-upper symmetric-Gauss-

Seidel (LU-SGS) method [10] and using the bi-conjugate gradient stabilized (Bi-

CGSTAB) method [11], respectively. Here, the convective flux vectors are evaluated 

with the second-order upwind difference scheme. The viscous-flux and pressure vectors 

are evaluated with the central difference scheme. 

3 Application to Submarine with Rotating Screw 

3.1 Sliding mesh approach 

A sliding mesh approach [12] was used to express the rotating screw in the simulation 

around a submarine. Here, the embedded sub computational domain rotates in the main 

domain. So far, we have used this approach only for compressible flows. Here, we de-

vise an efficient approach for an incompressible flow.  
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The sliding approach, which divides up the computational domain and slides its 

boundary, is a moving grid method. The physical values between domains are interpo-

lated through the boundary surface. The sliding surface is dealt with as a moving bound-

ary. To satisfy the geometric conservation law on the moving boundary, a conservative 

quantity 𝐪𝐠𝐡𝐨𝐬𝐭 𝒊 is obtained as a boundary condition. A schematic diagram of the slid-

ing surface is shown in Figure 1, and Eq. (17) defines 𝐪𝐠𝐡𝐨𝐬𝐭 𝒊 using the overlapping 

area Sij. 

 
Fig. 1  Schematic diagram of sliding surface. 

 

𝐪𝐠𝐡𝐨𝐬𝐭 𝒊 =
∑ 𝐪𝒋𝑆𝑖𝑗𝑗∈𝑖

∑ 𝑆𝑖𝑗𝑗∈𝑖
                                       (17) 

 

3.2 Verification of sliding mesh approach 

A uniform flow on a sliding mesh was computed to verify the sliding mesh approach 

for an incompressible environment. Figure 2 shows the rotating embedded domain (Do-

main 2) set in the main domain (Domain 1), while Figure 3 shows the computational 

mesh, including the embedded rotating mesh in the main mesh and a horizontal cross 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Computational domain. 
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Fig. 3  Computational mesh (Left: whole mesh, Right: horizontal cross section). 

 

The mesh was generated using MEGG3D [13]. The total number of elements was 

153,301. A uniform flow (u = v = w = 1.0) was set as the initial condition. The velocities 

on all boundaries were fixed to be a uniform flow (u = v = w = 0). Regarding the other 

computational conditions, the angular velocity of the embedded domain was set to 1.0, 

and the Reynolds number was set to 100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  History of velocity error. 
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Figure 4 shows the history of the velocity error in the rotating embedded mesh sys-

tem. The error is defined in Eq. (18). Here, 𝑖𝑚𝑎𝑥  is the number of cell in the computa-

tional domain. The order of the error is 10-15, which indicates machine zero. Thus, the 

geometric conservation law is satisfied between the rotating embedded mesh and fixed 

main mesh. 

 

𝐸𝑟𝑟𝑜𝑟 = {(∑ (𝑢𝑖 − 1.0)2𝑖𝑚𝑎𝑥
𝑖=1 + ∑ (𝑣𝑖 − 1.0)2 + ∑ (𝑤𝑖 − 1.0)2𝑖𝑚𝑎𝑥

𝑖=1
𝑖𝑚𝑎𝑥
𝑖=1 )/(3 × 𝑖𝑚𝑎𝑥)}

1

2   (18) 

 

3.3 Submarine model 

A submarine with a rotating screw was chosen as a complicated shape and motion 

for study. A simplified model of the computation is shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

(a) Whole view                                          (b) Top view and side view 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 (c) Enlarged view of screw 

Fig. 5  Submarine model. 

 

Figure 6 shows the computational domain. The shape of the domain is like that of a 

bean cut in half along its broadest length. The top plane is the free water surface. The 

shape of the computational domain changes according to the motion of the free sur-

face caused by the movement of the submarine. The shapes of the boundaries other 

than the top plane are fixed. The submarine is placed at a depth of 1.0, as shown in 

Figure 6.  
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Cross-sections of mesh around the submarine and the whole computational domain 

are shown in Figure 7. The figure illustrates the fine mesh around the submarine and 

the screw.  

 

 

 

 

 

 

 

 

(a)  Shape of computational domain 

 

 

 

 

 

 

 

(b)  Side view and front view of computational domain 

Fig. 6  Computational domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)  Cross section of mesh around submarine 

 

 

 

 

 

 

 

 

(b)  Cross-section of mesh of whole domain 

Fig. 7  Cross-section of mesh of submarine and whole domain. 
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The meshes around the screw are shown in Figure 8. A cylindrical mesh around the 

screw is embedded in the whole mesh, and it is placed at the rear of the submarine. 

The cylindrical mesh can be rotated using the sliding mesh approach in accordance 

with the rotation of the screw. 

 

 

 

 

 

 

 

 

 

 

 

(a)  Submarine surface mesh and embedded mesh around the screw 

 

 

 

 

 

 

 

 

 

 

(b)  Embedded computational domain and mesh around the screw 

Fig. 8  Embedded mesh around the screw and placement for the submarine. 

 

3.4 Computation for translator movement 

The flow around the submarine for translator movement with a rotating screw was 

computed. The motion of the submarine was in a straight line keeping an initial depth 

of 1.0, as shown in Figure 9. The computational conditions are listed in Table 1. 

 

 

 

 

 

 

 

Fig. 9  Schematic diagram of translator movement. 
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Table 1. Computational conditions for translator movement.  
Total number of elements 1,158,625 

Reynolds number 𝑅𝑒 100 

Froude number 𝐹𝑟 2.0 

Time step ∆𝑡 0.001 

Acceleration 𝑎 0.2 (𝑡 ≤ 5.0) 

0 (𝑡 > 5.0) 

Initial conditions Velocity: 𝑢 = 𝑣 = 𝑤 = 0.0 

Pressure: Determined from height 

Boundary  

condition 

Free surface Velocity: Extrapolation 

Pressure: 𝑝 = 0.0 

 Forward Velocity: 𝑢 = 𝑣 = 𝑤 = 0.0 

Pressure: Determined from height 

 Submarine 

(with screw) 

Velocity: Non-slip 

Pressure: Neumann 

 Sliding surface Sliding boundary condition 

 Others Velocity: Extrapolation 

Pressure: Determined from height 

 

Figures 10 and 11 show velocity contours in the x-dirction and z-direction in side-

view cross section. The ups and downs of the free water surface increase as time pro-

ceeds. In Figure 11, a negative velocity appears behind the submarine as an effect of 

the rotating screw. The heights of the free surfaces are shown in Figure 12. The height 

of the surface behind the submarine recovers after a drop. 

 

 

 

 

 

 

                        (a) t = 5.0                                                               (b) t = 10.0 

 

 

 

 

 

 

                       (c) t = 15.0                                                              (d) t = 20.0 

 

 

Fig. 10  x-direction velocity contours. 
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                        (a) t = 5.0                                                               (b) t = 10.0 

 

 

 

 

 

 

                       (c) t = 15.0                                                              (d) t = 20.0 

 

 

Fig. 11  z-direction velocity contours. 

 

 

 

 

 

 

 

 

 

(a) t = 10.0                                                               (b) t = 12.0 

 

 

 

 

 

 

 

 

 

(a) t = 14.0                                                               (b) t = 16.0 

 

 

Fig. 12 Height of free surface. 
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3.5 Computation for translator movement with rising motion 

In addition to the translator movement, the rising motion of the submarine was 

simulated. A schematic diagram of the motion is shown in Figure 13. The calculation 

conditions are listed in Table 2. 

 

 

 

 

 

 

Fig. 13  Schematic diagram of translator movement with rising motion. 

 

Table 2. Computational conditions for translator movement with rising motion.  
Total number of elements 1,158,625 

Reynolds number 𝑅𝑒 100 

Froude number 𝐹𝑟 2.0 

Time step ∆𝑡 0.001 

Acceleration 𝑎 0.2 (𝑡 ≤ 5.0) 

0 (𝑡 > 5.0) 

Initial conditions Velocity: 𝑢 = 𝑣 = 𝑤 = 0.0 

Pressure: Determined from height 

Submarine rise 𝑧 = A sin (𝜔𝑡 −
𝜋

2
)  (A = 0.2, 𝜔 =

𝜋

3.75
) 

(5.0 < 𝑡 ≤ 9.0) 

Boundary  

condition 

Free surface Velocity: Extrapolation 

Pressure: 𝑝 = 0.0 

 Forward Velocity: 𝑢 = 𝑣 = 𝑤 = 0.0 

Pressure: Determined from height 

 Submarine 

(with screw) 

Velocity: Non-slip 

Pressure: Neumann 

 Sliding  

surface 

Sliding boundary condition 

 Others Velocity: Extrapolation 

Pressure: Determined from height 

 

Figures 14 and 15 respectively show the velocity contours in the x-direction and z-

direction in the case of a rising submarine. The velocity contours are similar to the 

previous case. However, in the rising process at t = 7.0, the velocity in the z-direction 

increases around the submarine. Figure 16 shows top views of the free surface behind 

the submarine comparing the translator movement and rising motion. In the case of 

the rising motion, a deep drop in the free surface behind the submarine is clearly seen. 

Although the effect of the rotating screw itself might not great, it is obvious that the 

motion of the object under the water affects the movement of the free surface. Fur-

thermore, the simulation demonstrates the possibility of conducting useful compli-

cated computations with the free surface.  

Straight 
Straight 

Rise 
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Fig. 14  x-direction velocity contours. 
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Fig. 15  z-direction velocity contours. 
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Fig. 16  Top view of free surface behind the submarine. 

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_21

https://dx.doi.org/10.1007/978-3-030-77980-1_21


14 

4 Conclusions 

Flows around a submarine with a rotating screw under the water were computed. 

The flows included the free water surface. To solve such a complicated combination of 

flows, the unstructured moving grid finite volume method and the surface height func-

tion method were used. This combined computational method could capture the uni-

form flow on the rotating cylindrical sliding mesh. In this test, the geometric conserva-

tion law was satisfied. The method was then applied to free surface flows around a 

submarine with a rotating screw. The results demonstrated the potential of a valid com-

putation for a complicated flow field. 
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