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Abstract. A highly efficient multilevel adaptive Lagrange-Galerkin fi-
nite element method for unsteady incompressible viscous flows is pro-
posed in this work. The novel approach has several advantages including
(i) the convective part is handled by the modified method of charac-
teristics, (ii) the complex and irregular geometries are discretized using
the quadratic finite elements, and (iii) for more accuracy and efficiency a
multilevel adaptive L2-projection using quadrature rules is employed. An
error indicator based on the gradient of the velocity field is used in the
current study for the multilevel adaptation. Contrary to the h-adaptive,
p-adaptive and hp-adaptive finite element methods for incompressible
flows, the resulted linear system in our Lagrange-Galerkin finite element
method keeps the same fixed structure and size at each refinement in
the adaptation procedure. To evaluate the performance of the proposed
approach, we solve a coupled Burgers problem with known analytical
solution for errors quantification then, we solve an incompressible flow
past two circular cylinders to illustrate the performance of the multilevel
adaptive algorithm.

Keywords: Incompressible Navier-Stokes equations · Finite element method
· Lagrange-Galerkin method · L2-projection · Adaptive algorithm.

1 Introduction

Unsteady incompressible viscous flows use in their modelling the Navier-Stokes
equations with the property that the convective terms are distinctly more dom-
inant than the diffusive terms especially when the Reynolds numbers reach high
values. At high Reynolds numbers, the convective term is known to be a source of
computational difficulties and nonphysical oscillations. In addition, sharp fronts,
shocks, vortex shedding and boundary layers are among other difficulties that
most Eulerian finite element methods fail to resolve accurately. In general, Eu-
lerian finite element methods employ fixed meshes along with some upstream
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weightings in their formulations to stabilize the discretization. Examples of Eu-
lerian finite element methods include the Petrov-Galerkin, streamline diffusion,
discontinuous Galerkin methods and also many other methods of the high-order
reconstructions from computational fluid dynamics such as isogeometric analy-
sis, see for example [2, 1, 14, 22, 24, 6, 15]. However, the main drawback of these
methods for solving the convection-dominated problems is the stability condi-
tions which impose a severe restriction on the size of the time steps taken in the
numerical simulations. Lagrange-Galerkin finite element methods have the po-
tential to efficiently solve convection-dominated flow problems, see for example
[4, 9, 7, 23]. The main idea in these methods lies on reformulating the governing
equations in terms of the Lagrangian coordinates as defined by the particle tra-
jectories (or characteristics) associated with the problem under study. In this
case, the time derivative and the advection operator are combined in a total
directional derivative along the characteristics which can be integrated using
a semi-Lagrangian time stepping. In [18], an L2-projection on the finite ele-
ment space is used for the evaluation of solutions at the departure points. The
performance of the L2-projection Lagrange-Galerkin finite element method has
been assessed in [11, 10] for several convection-dominated problems and the in-
compressible Navier-Stokes equations at high Reynolds numbers. Comparisons
between the conventional and the L2-projection Lagrange-Galerkin finite el-
ement methods have also reported in these references and the L2-projection
has demonstrated higher accuracy and stronger stability than the conventional
method. However, for practical applications in the incompressible viscous flows,
these methods may become computationally very demanding due to the dense
quadratures required for the L2 projection.

The objective of the present work is to develop a class of multilevel adaptive
Lagrange-Galerkin finite element methods for the numerical solution of incom-
pressible Navier-Stokes equations. The advantage of this approach is the use of
multiple quadratures in the L2-projection in the numerical solution. This yields
considerable efficiency gains to be made since the matrix in the linear system is
fixed and reused throughout the time stepping procedure. One other objective is
also to implement a multilevel adaptive algorithm for enrichments using the gra-
dient of the velocity field as an error indicator. In contrast to the gradient-based
h-adaptive finite element methods as those investigated in [3, 19, 14, 17, 1, 2], the
linear systems in the proposed Lagrange-Galerkin finite element method keep
the same structure and size at each adaptation step. Indeed, an initial coarse
mesh is needed for the gradient-based h-adaptive methods to compute a primary
solution for estimation of the gradient. This allows for error accumulations due
to the coarse mesh used in the approximation and the computational cost be-
comes prohibitive due to multiple interpolations between adaptive meshes. The
performance of the proposed method is assessed using several test problems for
incompressible viscous flows. For various parameters like the Reynolds numbers,
multilevel adaptation and mesh refinements, results of the adaptive Lagrange-
Galerkin finite element method are compared with those computed using the
fixed approach.
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This paper is organized as follows. In section 2 we present the formulation
of the Lagrange-Galerkin finite element method. This section includes the im-
plementation of the L2-projection procedure for the convection stage. Section 3
is devoted to the development of a multilevel adaptive Lagrange-Galerkin finite
element method. In this section we also discuss the criteria used for adaptation.
In section 4, we examine the numerical performance of the proposed method
using several examples of incompressible Navier-Stokes flows. Our new approach
is demonstrated to enjoy the expected efficiency as well as the accuracy. Con-
cluding remarks are summarized in section 5.

2 Enriched Lagrange-Galerkin finite element method

In the present study, we are concerned with solving the incompressible Navier-
Stokes equations reformulated in a dimensionless form as

∇ · u = 0,
(1)

Du

Dt
+∇p− 1

Re
∆u = f ,

where u = (u, v)> is the velocity field, p the pressure, f a source term, Re the
Reynolds number and D·

Dt the total derivative defined as

Du

Dt
:=

∂u

∂t
+ u · ∇u = 0, (2)

In order to solve the incompressible Navier-Stokes equations (1)-(2), the Lagrange-
Galerkin finite element method solves separately at each time step, the convective
part (2) then the Stokes equations (1). A quasi-uniform partition Ωh ⊂ Ω com-
posed of triangular elements Kk is considered for the finite element discretization.
The generated triangles are configured in such a manner, that there are no empty
spaces between two elements and that they do not overlap. It is well known that,
for such a problem the mixed Taylor-Hood finite elements P2-P1 is used for the
conforming finite element spaces. Furthermore, it has been shown that for this
mixed formulation the discrete velocity and pressure solutions satisfy the inf-sup
condition, see for instance [7]. For the time discretization, the time interval [0, T ]
is partitioned into a set of sub-intervals [tn, tn+1] with fixed length ∆t = tn+1−tn
for n ≥ 0. In the rest of this paper, the notation wnh := w(xh, tn) is used to de-
note the value of a given function w at time tn and the mesh point xh. Using
this notation, the solutions un(x) and pn(x) are formulated in their associated
finite element spaces as

unh(x) =

Mv∑
j=1

Un
j φj(x), pnh(x) =

Mp∑
l=1

Pnl ψl(x), (3)

where {φj}Mj=1 and {ψl}
Mp

l=1 are the set of the well known global nodal basis func-
tions of the velocity and the pressure, respectively. In (3), Mv and Mp represent
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the number of the grid points of the velocity and pressure, respectively. Hence,
the semi-Lagrangian solution of the convection problem (2) is formulated for all
mesh points xj , j = 1, · · · ,Mv as

Un+1
j = un+1(xj) = un(Xn

j ) =: Û
n

j , (4)

where Xn
j = X j(tn) is the departure point defined at time tn of a physical

particle that will attain the grid point xj at time tn+1. Here, X j(t) is the char-
acteristic curve associated to the equation (2) for the mesh point xj which is
the solution of the following backward ordinary differential equations

dX j(t)

dt
= u(X j(t), t), X j(tn+1) = xj , j = 1, . . . ,Mv. (5)

To evaluate the solution of the equation (5) we use a second-order extrapolation
method based on the mid-point rule, details on these procedures can be found
in [21, 11, 9] among others. It is worth mentioning that, the evaluated departure
point Xn

j does not generally match with any of the mesh points. Consequently,

a search-locate algorithm is needed to allocate the mesh element K̂j where the
departure point Xn

j belongs, see for example [11, 8]. Thus, the finite element

solution Û
n

can be evaluated at the departure point Xn
j as

Û
n

j := un
(
Xn
j

)
=

N∑
i=1

un(x̂i)ϕi
(
Xn
hj

)
, (6)

where {ϕi}Ni=1 are the local shape functions defined on the host element K̂j , N is
the number of nodes which define the velocity mesh points, and {x̂i}Ni=1 are the

vertices of the element K̂j . Using the equations (4) and (6), the global solution
obtained suing the conventional Lagrange-Galerkin finite element method can
be expressed as

un+1(x) =

Mv∑
j=1

Û
n

j φj(x). (7)

Note that as in most numerical methods, the accuracy of the conventional semi-
Lagrangian finite element method depends on the computational mesh used in
the simulations. Moreover, it has been proved in [11] that if the computational
mesh is not sufficiently fine, the conventional semi-Lagrangian finite element
method fails to accurately resolve the sharp gradients generated by the convec-
tive terms. In the present work, we aim to introduce local enrichments using the
L2−projection to improve the accuracy of considered the semi-Lagrangian finite
element method without refining the meshes.

2.1 L2-projection for local enrichments

In the present section, we formulate the L2-projection presented in [10, 11] as
a local enrichment technique for the convection equation (2). Thus, the weak
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formulation can be achieved by multiplying equation (4) by the finite element
basis functions φi and integrating over the domain Ω as∫

Ω

un+1(x)φi(x)dx =

∫
Ω

un (Xn)φi(x) dx, i = 1, . . . ,M. (8)

The weak form (8) can be expressed in a matrix-vector form as

[M]
{
Un+1

}
= {rn} , (9)

where [M] is the Lagrange-Galerkin finite element mass matrix with entries
mij =

∫
Ω
φj(x)φi(x)dx, Un+1 the vector of the unknown nodal values of the

solution with entries Un+1
j , and rn the known right-hand side with entries rni

defined as

rni =

∫
Ω

un (Xn)φi(x) dx =

Ne∑
k=1

∫
Kk

un (Xn
h)φi(x) dx, (10)

where Ne is the total number of the mesh elements. The quadrature rule is used
to evaluate the integrals mi,j and ri as

mij ≈
Ne∑
k=1

Nk,Q∑
q=1

ωq,kφj(xq,k)φi(xq,k), ri ≈
Ne∑
k=1

Nk,Q∑
q=1

ωq,kÛ
n

q,kφi(xq,k) (11)

with xq,k are the quadrature points of the element Kk and ωq,k their associated
weights. Here, Xn

q,k are the departure points associated with xq,k computed
using (5), and Nk,Q is the total number of quadrature points in the element Kk.

Hence, Û
n

q,k = unh(Xn
q,k) is the solution evaluated at the departure point Xn

q,k

which can be evaluated according to (6) as

Û
n

q,k =

N∑
i=1

unh(x̂i)ϕi(Xn
q,k). (12)

The approximations in (11) can be enriched by adjusting the number of quadra-
ture points Nk,Q either globally in the entire mesh or locally at each element
in the computational domain. In the current work, the Dunavant quadrature
rules studied in [5] are used. A distribution of Dunavant quadrature points is
illustrated in Figure 1 for Nk,Q = 6, 12, 25, 52 and 70.

3 Multilevel adaptive enrichments

In many incompressible viscous flows, the solution involves sharp gradients, lo-
calized eddies and shear layers specially when the Reynolds number attends high
values. To accurately resolve these flow features, the enriched Lagrange-Galerkin
finite element method introduced in section 2 may require very fine meshes and
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Fig. 1. A schematic distribution of quadrature points used in the L2-projection method
for global and local enrichments.

high number of quadrature points particularly in regions where the solution gra-
dients become very high. In the present work, to avoid uniform enrichment in the
entire computational mesh, we propose an adaptive local enrichment to speed up
the algorithm. The main idea of this adaptive technique is to refine the number
of quadrature points Nk,Q in mesh elements where the solution gradient attends
high values and unrefine otherwise according to a given criterion. In practice, to
perform this adaptation one needs an error estimator or error indicator along
with a given tolerance to adapt the quadrature accordingly. Gradient-based es-
timators have been widely used in the literature in h-adaptive finite element
methods for incompressible Navier-Stokes equations, see for example [3, 19, 14,
17, 1, 2, 20, 22]. However, most of gradient-based h-adaptive algorithms employ
an initial coarse mesh to compute a primary solution for estimating the gradi-
ent. As a consequence, error accumulation occurs due to the coarse mesh used in
the approximation and computational cost becomes prohibitive due to multiple
interpolations between adaptive meshes. In [3], the gradient of the velocity field
is used as indicator for mesh adaptation to study vortex shedding in incompress-
ible flows. The results presented demonstrate that this adaptation procedure for
dynamic refinement and unrefinement is fully operational. Here, we use similar
techniques and the normalized gradient of the velocity is employed as an adap-
tation criterion for the local enrichment of each element in the computational
domain as

Errn+1 (Kk) =

∥∥∇un+1
Kk

∥∥
Ne

max
j=1

∥∥∥∇un+1
Kj

∥∥∥ , (13)

where un+1
Kk

is the solution on element Kk at time tn+1 and
∥∥∇un+1

Kk

∥∥ is the

L2-norm of the gradient of un+1
Kk

defined as

∥∥∇un+1
Kk

∥∥ =

(∫
Kk

∇un+1 · ∇un+1 dx +

∫
Kk

∇vn+1 · ∇vn+1 dx

) 1
2

. (14)

Using the finite element discretization on the element Kk the velocity gradient
(14) can be reformulated as∥∥∇un+1

Kk

∥∥ =
((

Un+1
Kk

)>
SKk

Un+1
Kk

+
(
V n+1
Kk

)>
SKk

V n+1
Kk

) 1
2

. (15)
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Algorithm 1: Multilevel adaptive Lagrange-Galerkin algorithm

1 Require: {εm}m=0,1,...,4;
2 while tn+1 ≤ T do
3 Assuming that the approximated solution Un is known;
4 foreach element Kk do
5 Compute the error indicator Errn+1 (Kk) using (13);
6 foreach m = 0, 1, 2, 3 do
7 if εm ≤ Errn+1 (Kk) ≤ εm+1 then
8 Nk,Q = Nk,qm ;
9 end

10 end

11 end
12 Generate the quadrature pair (xq,k, ωq,k), q = 1, . . . , Nk,Q;
13 Evaluate the L2-projection mass matrix [M] using left part of (11);
14 foreach element Kk do
15 foreach quadrature point xq,k, q = 1, . . . , Nk,Q do
16 Calculate the departure point Xn

k,q;

17 Search for the element K̂q,k where Xn
q,k resides;

18 Compute the value of Ûn
q,k using the equation (12);

19 end

20 end
21 Compute the element right-hand side rni using equation (11);
22 Assemble the vector rn;
23 Solve the resulted linear system (9);

24 Update the solution un+1
h at time tn+1 using equation (7);

25 end

where Un+1
Kk

= (Un+1
1 , . . . , Un+1

N )>, V n+1
Kk

= (V n+1
1 , . . . , V n+1

N )>, and SKk
is

the elementary stiffness matrix evaluated at the element Kk. It should be noted
that the adaptation criterion (13) is a gradient-based error indicator which is
evaluated at time tn+1 from the known solutions at time tn due to the backward
property of the modified method of characteristics. Normalization of the error
indicator is used to keep its values bounded in the interval [0, 1].

Hence, the multilevel adaptation procedure we propose in this study is per-
formed as follows: given a sequence of three real numbers {εm} such that 0 =
ε0 < ε1 < ε2 < ε3 < ε4 = 1. If an element Kk satisfies the condition

εm ≤ Errn+1 (Kk) ≤ εm+1, m = 0, 1, 2, 3,

then Kk is enriched with the quadrature rule (xk,q, wk,q) with q = 1, 2 . . . , Nk,qm .
Here, the values of {ε1, ε2, ε3} can be interpreted as tolerances to be set by the
user resulting into a three-level refining. Note that the number of levels m and
the values of tolerances {εm} in the above adaptive enriched Lagrange-Galerkin
finite element method are problem dependent and their discussions is postponed
for section 4 where numerical examples are discussed. The steps used in the
proposed adaptive enriched Lagrange-Galerkin finite element method for solving
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the convection stage are summarized in Algorithm 1. Note that other adaptive
criteria as those used in h-, p- and hp-adaptivity in [19, 14, 17, 1, 20] can also
be implemented in our algorithm without major conceptual modifications. A
posteriori error estimations as those developed in [6, 13] can also be adopted for
our enriched Lagrange-Galerkin finite element methods.

4 Numerical results

In this section we examine the accuracy of the new enriched Lagrange-Galerkin
finite element method introduced in the above sections using two examples of
incompressible flow problems. For the first example the analytical solution is
known, so that we can evaluate the relative L1-error and L2-error at time tn as

L1-error =

∫
Ω

∣∣unh − unexact
∣∣ dx∫

Ω

∣∣unexact∣∣ dx , L2-error =

(∫
Ω

∣∣unh − unexact
∣∣2 dx) 1

2

(∫
Ω

∣∣unexact∣∣2 dx) 1
2

,

where unexact and unh are respectively, the exact and numerical solutions at the
gridpoint xh and time tn. In all the computations reported in this section, the
resulting linear systems of algebraic equations are solved using the conjugate gra-
dient solver with incomplete Cholesky decomposition. In addition, all stopping
criteria for iterative solvers were set to 10−6, which is small enough to guarantee
that the algorithm truncation errors dominate the total numerical errors. All
the computations were performed on an Intel R© Core(TM) i7-7500U @ 2.70GHz
with 16 GB of RAM.

4.1 Viscous Burgers flow problem

To evaluate the accuracy of the proposed Lagrange-Galerkin finite element ap-
proach, the coupled viscous Burgers flow problem is considered. It should be
noted that, the coupled viscous Burgers system is a suitable form of the incom-
pressible Navier-Stokes equations. Thus, we solve the following system

Du

Dt
− 1

Re
∆u = 0, (16)

in the squared domain Ω = [0, 1]× [0, 1]. Initial and boundary conditions for this
example are obtained from the analytical solution studied in [12]

u(x, y, t) =
3

4
− 1

g(x, y, t)
, v(x, y, t) =

3

4
+

1

g(x, y, t)
, (17)

where

g(x, y, t) = 4

(
1 + exp

(
− (4x− 4y + t)Re

32

))
(18)
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Fig. 2. Cross-sections at the main diagonal y = 1 − x of the solution u obtained for
the viscous Burgers problem at time t = 2 and Re = 103 on a mesh with h = 1

64
using

Nk,Q = 12 (left) and Nk,Q = 52 (right).

Table 1. Results for viscous Burgers problem obtained by the fixed and adaptive
Lagrange-Galerkin finite element methods on a mesh with h = 1

128
using different

quadratures at time t = 2. The CPU times are given in seconds.

Fixed Adaptive

Re Nk,Q L1-error L2-error CPU L1-error L2-error CPU

102

12 3.907E-04 4.534E-04 94.05 3.951E-04 4.480E-04 45.12

25 1.902E-04 2.108E-04 129.20 1.923E-04 2.182E-04 50.00

52 8.229E-05 9.317E-05 220.00 7.249E-05 0.978E-05 67.26

103

12 7.683E-04 8.651E-03 113.32 7.629E-04 8.628E-03 62.35

25 6.094E-04 5.089E-03 150.81 6.207E-04 5.145E-03 69.00

52 3.051E-04 2.254E-03 270.43 3.012E-04 2.234E-03 85.23

104

12 7.063E-03 4.120E-03 120.32 6.500E-03 3.939E-03 65.42

25 3.524E-03 2.834E-02 131.74 3.924E-03 2.998E-02 73.27

52 1.921E-03 1.939E-02 223.00 1.807E-03 1.865E-02 88.54

It is wroth mentioning that only results of the component u are presented in this
section, and the results of the component v are similar to those of u.

Cross-sections of the obtained results at the diagonal of equation y = 1 − x
are presented in Figure 2. These results are computed on a mesh with h = 1

64
for the Reynold number Re = 103 using two different numbers of quadratures
namely, Nk,Q = 6 and Nk,Q = 52. It can be shown from Figure 2 that by
increasing the number of quadrature points Nk,Q globally or locally in the con-
sidered mesh yields to an improve in the accuracy of the results calculated using
the proposed Lagrange-Galerkin finite element method with fixed or multilevel
adaptive projection. From the same figure it can be clearly shown that, the con-
ventional semi-Lagrangian finite element method suffers from an excessive nu-
merical diffusion while the proposed Lagrange-Galerkin finite element method
resolves successfully the shock.
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Fig. 3. Computational mesh used for the flow past two circular cylinders.

For the error quantification, a comparison between the proposed fixed and
adaptive Lagrange-Galerkin finite element approaches is also performed for this
example. The obtained L1-error, L2-error and CPU times are presented in table
1 using different numbers of quadrature points for Re = 100, Re = 1000 and
Re = 10000 at time t = 2. With reference to error norms and for all selected
numbers of quadrature points, both the fixed and adaptive approaches generate
similar results for all considered Reynolds numbers Re. Moreover, increasing the
number of quadrature points leads to a significant increase in the accuracy of
the studied approaches. In terms of CPU times, it is clear from Table 1 that the
CPU times of the adaptive method are lower than those of the fixed method.
For example, the CPU time of the adaptive approach is about 64%, 63% and
62% less than the CPU time of the fixed approach for Re = 100, 1000 and 104,
respectively. Note that this reduction in the CPU times becomes large using fine
meshes. As expected, the adaptive enriched method is more efficient than its
fixed counterpart.

4.2 Flow past two circular cylinders

To illustrate the performance of the proposed multilevel adaptive Lagrange-
Galerkin finite element method we solve the problem of a viscous flow past two
circular cylinders in a channel. A similar configuration is used in [16]. In our
computations, two circular cylinders with diameter D = 1 are immersed verti-
cally in a viscous incompressible flow entering the channel with a uniform velocity
u∞ = 1. The Reynolds number for this test case is defined as Re = Du∞/ν, with
ν is the kinematic viscosity. We perform computations with the mixed formula-
tion P2-P1 using the unstructured mesh composed of 4372 elements, 9063 velocity
nodes and 2345 pressure nodes, see figure 3. The main purpose of this problem is
to show the capability of the multilevel adaptive approach to accurately capture
these steep gradients and vortex shedding exhibit by the numerical solutions at
low computational costs. In our simulation, we consider single-level, two-level
and three-level adaptive procedure using ε1 = 0.065, ε2 = 0.17 and ε3 = 0.3.
Initially, the number of quadrature points is Nk,Q = 6 in each element and we
use Nk,Q = 70 for the single-level adaptive approach, (Nk,Q = 52, Nk,Q = 70) for
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the two-level adaptive approach and (Nk,Q = 12, Nk,Q = 52, Nk,Q = 70) for the
three-level adaptive approach. At time t = 35.7, the total number of quadrature
points used for fixed approach is 306040 whereas, the total number of quadrature
points used for the single-level, the two-level and the three-level approaches are
85066, 79245 and 65751, respectively.

The distribution of quadrature points using the single-level, two-level and
three-level adaptive Lagrange-Galerkin finite element methods at four different
times t = 7, 4, 12.8, 17.4 and 35.7 and the vorticity snapshots obtained using
the three-level method are presented in Figure 4. In the distribution of quadra-
ture points, three different colors are used to identify the mesh element with
quadrature points for each level of adaptivity. Notice that the single-level and
two-level methods produce results similar to those of the three-level method
with different CPU time. For this reason, the vorticity results obtained using
the single-level and two-level approaches are not displayed in this figure. It can
be shown from Figure 4 that the flow past two cylinders exhibits areas with
large vorticity and vortex shedding. Consequentially, elements with high level of
adaptivity are generated in the mesh. Moreover, the proposed Lagrange-Galerkin
approach successfully captures the small complex structures of the flow and the
eddies over the cylinders. This is because the proposed approach adapts the
quadrature points where it is needed according to the used error indicator.

5 Concluding remarks

A multilevel adaptive Lagrange-Galerkin finite element method is developed in
this paper for efficiently solving the incompressible viscous flow problems on
unstructured meshes. The proposed method combines the modified method of
characteristics, the finite element method and an adaptive procedure based on
L2-projection using quadrature rules. Therefore, it benefits from the advantages
of all combined procedures to ensure the efficiency and the accuracy of the pro-
posed adaptive algorithm for incompressible viscous flows. Moreover, the con-
sidered multilevel adaptive algorithm increases the number of quadrature points
where it is needed according to an error indicator without refining the compu-
tational mesh during the time integration procedure. As a result and contrary
to other adaptive finite element methods, the resulted linear systems in the pro-
posed Lagrange-Galerkin finite element method preserve the same fixed structure
and size during the adaptation process. The gradient of the velocity is used as
feature-based error indicator for the proposed adaptation technique. We demon-
strate using several numerical test examples that the proposed algorithm can
capture the flow features on coarse meshes and with a significant reduction in
the computational requirement. Future work will concentrate on solving coupled
flow-transport and natural convection problems to simulate the transport and
dispersion of pollutant in seas. The extension of the proposed multilevel adap-
tive Lagrange-Galerkin finite element method for the incompressible viscous flow
problems in three space dimensions is also under consideration and results will
published in near future.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_18

https://dx.doi.org/10.1007/978-3-030-77980-1_18


Multilevel adaptive Lagrange-Galerkin methods 13

References

1. Ahrabi, B.R., Anderson, W.K., Newman III, J.C.: An adjoint-based hp-adaptive
stabilized finite-element method with shock capturing for turbulent flows. Comput.
Methods Appl. Mech. Engrg. 318, 1030–1065 (2017)

2. De Sampaio, P., Lyra, P.R.M., Morgan, K., Weatherill, N.P.: Petrov-Galerkin so-
lutions of the incompressible Navier-Stokes equations in primitive variables with
adaptive remeshing. Comput. Methods Appl. Mech. Engrg. 106(1-2), 143–178
(1993)

3. De Sampaio, P., Lyra, P.R.M., Morgan, K., Weatherill, N.P.: Petrov-Galerkin so-
lutions of the incompressible Navier-Stokes equations in primitive variables with
adaptive remeshing. Comput. Methods Appl. Mech. Engrg. 106(1-2), 143–178
(1993)

4. Douglas, Jr, J., Russell, T.F.: Numerical methods for convection-dominated diffu-
sion problems based on combining the method of characteristics with finite element
or finite difference procedures. SIAM Journal on Numerical Analysis 19(5), 871–
885 (1982)

5. Dunavant, D.: High degree efficient symmetrical gaussian quadrature rules for the
triangle. Int. J. Numer. Meth. Engng. 21(6), 1129–1148 (1985)

6. Durango, F., Novo, J.: A posteriori error estimations for mixed finite element
approximations to the Navier-Stokes equations based on Newton-type linearization.
J. Comp. Applied Math. 367, 112429 (2020)

7. El-Amrani, M., Seaid, M.: Convergence and stability of finite element modified
method of characteristics for the incompressible Navier-Stokes equations. Journal
of Numerical Mathematics 15(2), 101–135 (2007)

8. El-Amrani, M., Seaid, M.: Numerical simulation of natural and mixed convec-
tion flows by Galerkin-characteristic method. Int. J. Numer. Meth. Fluids. 53(12),
1819–1845 (2007)

9. El-Amrani, M., Seaid, M.: An essentially non-oscillatory semi-Lagrangian method
for tidal flow simulations. Int. J. Numer. Meth. Engng. 81(7), 805–834 (2010)

10. El-Amrani, M., Seaid, M.: An L2-projection for the Galerkin-characteristic solution
of incompressible flows. SIAM Journal on Scientific Computing 33(6), 3110–3131
(2011)

11. El-Amrani, M., Seaid, M.: A finite element semi-Lagrangian method with L2 in-
terpolation. Int. J. Numer. Meth. Engng. 90(12), 1485–1507 (2012)

12. Fletcher, C.A.: Generating exact solutions of the two-dimensional Burgers’ equa-
tions. Int. J. Numer. Meth. Fluids. 3(3), 213–216 (1983)

13. Khan, A., Kanschat, G.: A robust a posteriori error estimator for divergence-
conforming discontinuous Galerkin methods for the oseen equation. SIAM Journal
on Numerical Analysis 58(1), 492–518 (2020)

14. Min, C., Gibou, F.: A second order accurate projection method for the incom-
pressible Navier-Stokes equations on non-graded adaptive grids. J. Comp. Physics
219(2), 912–929 (2006)

15. Nielsen, P.N., Gersborg, A.R., Gravesen, J., Pedersen, N.L.: Discretizations in iso-
geometric analysis of Navier-Stokes flow. Comput. Methods Appl. Mech. Engrg.
200(45-46), 3242–3253 (2011)

16. Patel, C.G., Sarkar, S., K., S.S.: Mixed convective vertically upward flow past
side-by-side square cylinders at incidence. International Journal of Heat and Mass
Transfer 127, 927–947 (2018)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_18

https://dx.doi.org/10.1007/978-3-030-77980-1_18


14 A. Ouardghi, M. El-Amrani, M. Seaid

17. Patro, S.K., Selvam, R.P., Bosch, H.: Adaptive h-finite element modeling of wind
flow around bridges. Engineering Structures 48, 569–577 (2013)

18. Pironneau, O.: On the transport-diffusion algorithm and its applications to the
Navier-Stokes equations. Numerische Mathematik 38(3), 309–332 (1982)

19. Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equa-
tions in complex geometries. J. Comp. Physics 190(2), 572–600 (2003)

20. Selim, K., Logg, A., Larson, M.G.: An adaptive finite element splitting method for
the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg.
209, 54–65 (2012)

21. Temperton, C., Staniforth, A.: An efficient two-time-level Galerkin-characteristics
semi-implicit integration scheme. Quart. J. Roy. Meteor. Soc. 113, 1025–1039
(1987)

22. Wang, F., Ling, M., Han, W., Jing, F.: Adaptive discontinuous Galerkin methods
for solving an incompressible Stokes flow problem with slip boundary condition of
frictional type. J. Comp. Applied Math. 371, 112700 (2020)

23. Xiu, D., Karniadakis, G.: A semi-Lagrangian high-order method for Navier-Stokes
equations. Journal of computational physics 172(2), 658–684 (2001)

24. Zhao, L., Zhu, H., Mao, J., Zhang, H., Peng, D., Li, T.: A generalized simple
implicit interpolation scheme in CFD for non-conforming meshes. Computers &
Fluids 198, 104390 (2020)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_18

https://dx.doi.org/10.1007/978-3-030-77980-1_18

