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Abstract. A numerical scheme of higher-order approximation in space
for the single-phase multicomponent flow in porous media is presented.
The mathematical model consists of Darcy velocity, transport equations
for components of a mixture, pressure equation and associated relations
for physical quantities such as viscosity or density. The discrete problem
is obtained via discontinuous Galerkin method for the discretization of
transport equations with the combination of mixed-hybrid finite element
method for the discretization of Darcy velocity and pressure equation
both using higher-order approximation. Subsequent problem is solved
with the fully mass-conservative iterative IMPEC method. Numerical
experiments of 2D flow are carried out.

Keywords: Compositional flow · Mixed-hybrid finite element method ·
Discontinuous Galerkin method.

1 Introduction

The compositional modeling has many applications in various disciplines rang-
ing from petroleum engineering (oil recovery, CO2 sequestration) to geochemical
engineering (groundwater contamination, radioactive waste storage in the sub-
surface). Modeling of such phenoma is therefore of a great importance. In this
work we consider the single-phase flow of miscible and compressible multicom-
ponent fluids in porous media. We follow an approach of the previous works of
[6], [7], [12], [13] based on the combination of the mixed-hybrid finite element
(MHFEM) for the approximation of the pressure and velocity fields and discon-
tinuous Galerkin method (DG) for the approximation of transport equations.
Hoteit and Firoozabadi [7] and Moortgat, Sun and Firoozabadi [13] used a com-
bination of MHFEM for the pressure equation and higher-order DG method for
the transport equations. Although they used piecewise linear basis functions for
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the concentrations, they used only piecewise constant functions for the pressures
and RT0 (i.e. first-order) approximation for the velocity field. They also used a
different form of the pressure equation which seems to be more complicated than
the one used in [8]. In contrast to classical IMPEC schemes, used in the pre-
vious works and which are known to have a mass-conservation problem, Chen,
Fan and Sun [8] have rewritten the pressure equation with only one additional
paramater to be determined and proposed a new fully mass-conservative IMPEC
scheme where conservation of mass for all components holds true. So far only
the first-order approximation for pressure and velocity field has been utilized in
the models. In this work we show how to extend these ideas for the higher-order
framework. In contrast to previous works we apply higher order scheme not only
for the transport of the species but also for the pressure and the velocity fields.

2 Mathematical model

Consider single-phase compressible flow of fluid of nc components at constant
temperature T [K] in a bounded domain Ω ⊂ R2 with porosity φ [-]. In this
work we assume that the porosity does not depent on time, i.e. we have φ =
φ(x). Neglecting diffusion, the transport of the components is described by the
following equations

∂ (φci)

∂t
+∇ · (civ) = fi, i = 1, ..., nc, (1)

where ci [mol ·m−3] are molar concentrations of components, fi [mol ·m−3 · s−1]
are source/sink terms and v [m·s−1] is the velocity field described by the Darcy’s
law

v = −µ−1K (∇p− ρg) , (2)

where p [Pa], is the pressure field, µ [kg ·m−1 · s−1] is the dynamic viscosity, ρ
[kg ·m−3] is the density of fluid, K [m2] is the medium permeability tensor and
g [m · s−2] is the gravity acceleration vector. Equations (1) and (2) are coupled
with generally nonlinear dependencies

p = p(c1, ..., cnc , T ), µ = µ(c1, ..., cnc , T ), ρ = ρ(c1, ..., cnc). (3)

to be found in [11] or [15]. Using the chain rule ∂p
∂t =

∑nc
i=1

∂p
∂ci

∂ci
∂t and transport

equations (1), we derive an equation for the pressure field

φ
∂p

∂t
+

nc∑
i=1

θi [∇ · (civ)− fi] = 0, (4)
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where parameters θi = θi(c1, ..., cnc) are defined as θi =
(
∂p
∂ci

)
cj 6=ci

as in [8]. Let

I ⊂ R be a time interval. The initial and boundary conditions are given by

ci(0,x) = c0i (x), x ∈ Ω, i = 1, ..., nc,

ci(t,x) = cDi (x), x ∈ Γc, t ∈ I, i = 1, ..., nc,

p(t,x) = pD(t,x), x ∈ Γp, t ∈ I,
v(t,x) · n(x) = vN (t,x), x ∈ Γv, t ∈ I,

(5)

where n is the outward unit normal vector to the boundary ∂Ω, Γp ∪ Γv = ∂Ω
and Γp∩Γv = ∅. Note that the initial pressure field is obtained from the equation
of state (3) by substituting c0i , i = 1, ..., nc. Further, we define the inflow part
of boundary Γc(t) = {x ∈ ∂Ω | v(t,x) · n(x) < 0} on which Dirichlet-type
conditions cDi must be prescribed. On Γc ∩ Γp the following constraint must be
satisfied pD = p(cD1 , ..., c

D
nc , T ). The source terms fi in (1) and (4) are usually

expressed via injection rate r [m3 · s−1] as fi = cinji r/V inj where cinji is the
amount of i-th component injected in some part of the domain with the volume
V inj . Similarly, Neumann boundary condition vN in (5) is often expressed as
vN = r/Ainj where Ainj is the area through which the mixture is injected.

3 Numerical model

A discrete form of the system of equations (1) - (3) and (4), (5) is obtained using
the mixed-hybrid finite element method for the Darcy’s law and the pressure
equation and discontinuous Galerkin method for the transport equations. We
consider a polygonal domain Ω ⊂ R2 covered with a conforming triangulation
Th. Let us denote by Eh the set of all edges in the triangulation Th. For the
K ∈ Th and E ∈ Eh we denoted |K| and |E| the measures of the element K and
edge E, respectively. The triangulation consists of nk triangle elements and ne
edges.

3.1 Discretization of Darcy’s law

The velocity field is approximated in the Raviart-Thomas space RT1(K) locally
on the element K ∈ Th as

vK(t,x) =

8∑
j=1

vK,j(t) wK,j(x), (6)

where RT1(K) = span {wK,j}8j=1 and vK,j are associated degrees o freedom.

The definition of the RT1(K) space is taken over from [3]. The basis {ŵj}8j=1 on

the reference element K̂ (see Figure 1) is obtained via the following moments

Nα
s (ŵj) =

∫
eα

(ŵj · nα) ps, ∀ps ∈ P1(eα), s = 1, 2, α = 1, 2, 3,

Mr(ŵj) =

∫
K̂

(ŵj · qr) , ∀qr ∈ [P0(K̂)]2, r = 1, 2,
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where P1(eα) = span{ps}2s=1 is the space of linear polynomials defined on the
edge eα of the reference element and [P0(K̂)]2 = span{qr}2r=1 is the space of
vector-valued constant polynomials. The discrete form of Darcy’s law is obtained
by multiplying (2) by a basis function wK,m, integrating over the element K and
using Green’s theorem

vK,m = µ−1K

(
3∑
j=1

8∑
l=1

[
αKm,l β

K
l,j

]
pK,j −

∑
E∈∂K

2∑
s=1

8∑
l=1

[
αKm,l χ

K,E
l,s

]
p̂E,s

+ρK

8∑
l=1

αKm,l γ
K
l

)
, m = 1, ..., 8,

(7)

where µK , ρK denote the mean values of viscosity and density over the element
K, respectively. In the derivation of (7) we used the following approximation of
the pressure and pressure trace on the element K and edge E

p(t,x)|K =

3∑
j=1

pK,j(t) ΦK,j(x), p(t,x)|E =

2∑
s=1

p̂E,s(t) ϕ
E
s (x), (8)

where P1(K) = span{ΦK,j}3j=1 and P1(E) = span{ϕEj }2j=1 are spaces of linear
polynomials defined on the element K and on the edge E, respectively. The
coefficients in (7) are given by

α̃Km,j =

∫
K

wK,m ·K−1wK,j , βKm,j =

∫
K

ΦK,j (∇ ·wK,m) ,

χK,Em,s =

∫
E

ϕEs
(
wK,m · nKE

)
, γKm =

∫
K

g ·wK,m,

(9)

where the coefficients αKi,j are elements of the inverse matrix
(
α̃K
)−1

. In order
to compute integrals in (9) on the reference element we use the following affine
transformation of variables FK : K̂ → K and the transformation of the vector-
valued function which preserves normal components

FK(s, t) =

(
x1
y1

)
+ JFK

(
s
t

)
, JFK =

(
x2 − x1, x3 − x1
y2 − y1, y3 − y1

)
,

wK,m(x, y) =
1

|JFK |
JFK · ŵm(s, t), (s, t) = F−1K (x, y) ∈ K̂,

(10)

where (xi, yi), i = 1, 2, 3 are the coordinates of vertices of the physical element
K and |JFK | is the determinant of the matrix JFK . Continuity of the normal
component of the velocity field along the edges shared by neighboring elements
is enforced through the conditions [2]∑

K∈Th

〈v · nK , ϕE1 〉∂K = 0,
∑
K∈Th

〈v · nK , ϕE2 〉∂K = 0 ∀E ∈ Eh, (11)
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where 〈f, g〉∂K =
∫
∂K

fg. Denoting by
∑
K∈E the sum over adjacent elements

to the given edge E, continuity conditions (11) can be further simplified to∑
K∈E

vK,LI(K,E,s) χ
K,E
LI(K,E,s),s = 0, s = 1, 2, ∀E ∈ Eh, (12)

where LI(K,E, s) ∈ {1, 2, 3, 4, 5, 6} is the local index of the velocity degree of
freedom for s ∈ {1, 2} on the edge E with respect to the element K, see Figure 1.
As the degrees of freedom vK,7 and vK,8 are associated with basis functions wK,7

and wK,8, which have zero normal component along the boundary ∂K of the
element K, these do not play any role when enforcing the continuity constraint.
The discrete form of the boundary and initial conditions (5) reads as

p̂E,s = pDs |E , s = 1, 2, ∀E ⊂ Γp,
vK,LI(K,E,s) = vNs |E , s = 1, 2, ∀E ⊂ Γv, E ∈ ∂K.

(13)

The velocity can be eliminated substituting (7) into (12) and (13) resulting in
the system of linear algebraic equations for pressures p and pressure traces p̂

∑
K∈E

3∑
m=1

8∑
l=1

[
µ−1K χK,Er,j αKr,l βl,m

]
pK,m −

2∑
s=1

∑
K∈E

∑
F∈∂K

8∑
l=1

[
µ−1K χK,Er,j αKr,l χ

K,F
l,s

]
p̂F,s

= vNj |(E∩Γv) −
∑
K∈E

µ−1K ρK χK,Er,j

8∑
l=1

αKr,l γ
K
l , j = 1, 2, ∀E 6⊂ Γp,

p̂E,j = pDj |E , j = 1, 2, ∀E ⊂ Γp,
(14)

where r = LI(K,E, j).

Fig. 1. Reference element and degrees of freedom (left). Local indexing of the neigh-
boring triangles sharing an edge (right). For this setup values of indexing function are
LI(K,E, 1) = 1, LI(K,E, 2) = 4, LI(T,E, 1) = 3, LI(T,E, 2) = 6.
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3.2 Discretization of pressure and transport equations

In the discontinuous Galerkin discretization we use linear approximation of the
concentrations in the space P1(K)

ci(t,x)|K =

3∑
j=1

cK,i,j(t) ΦK,j(x). (15)

We recall that we assume φ = φ(x). Multiplying (1) by the basis function ΦK,m ∈
P1(K), integrating over the element K and using Green’s theorem, we derive a
discrete form of (1) for i = 1, ..., nc and m = 1, 2, 3

dcK,i,m
dt

=
1

φK

3∑
q=1

ηKm,q

FKi,q − 8∑
j=1

vK,j

[ ∑
E∈∂K

δK,Ei,q,j −
3∑
l=1

τKq,j,l cK,i,l

] , (16)

where the following definitions were used

η̃Km,j =

∫
K

ΦK,mΦK,j , δK,Ei,m,j =

∫
E

ĉK,i,E
(
wK,j · nKE

)
ΦK,m,

FKi,m =

∫
K

fi ΦK,m, τKm,j,l =

∫
K

ΦK,l (wK,j · ∇ΦK,m) .

(17)

The coefficients ηKi,j are elements of the inverse matrix
(
η̃K
)−1

. Note that coeffi-
cients δ and F are time dependent. In (17) the quantity ĉK,i,E is the upwinded
value of the concentration ci on the edge E with respect to the element K and
velocity v.

A discrete version of the pressure equation (4) is derived in a similar manner
as the discrete transport equation with additional substitution of (7) into vK,j

dpK,m
dt

=

3∑
f=1

σKm,f pK,f +

2∑
s=1

∑
E∈∂K

λK,Em,s p̂E,s + ΓKm +ΣK
m , m = 1, 2, 3, (18)

where we used

σKm,f =
−1

φKµK

3∑
q=1

ηKm,q

8∑
j=1

8∑
l=1

αKl,j β
K
j,f

nc∑
i=1

θK,i ωK,i,q,j ,

λK,Em,s =
1

φKµK

3∑
q=1

ηKm,q

8∑
j=1

8∑
l=1

αKl,j χ
K,E
l,s

nc∑
i=1

θK,i ωK,i,q,j ,

ΓKm =
−ρK
φKµK

3∑
q=1

ηKm,q

8∑
j=1

8∑
l=1

αKl,j γ
K
l

nc∑
i=1

θK,i ωK,i,q,j ,

ΣK
m =

1

φK

3∑
q=1

ηKm,q

nc∑
i=1

θK,i F
K
i,q, ωK,i,q,j =

∑
F∈∂K

δK,Fi,q,j −
3∑
r=1

τKq,j,r cK,i,r

(19)

and by θK,i we denoted the mean value of the coefficient θi over the element K.
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3.3 Iterative IMPEC

For the solution of the given non-linear problem we use the fully mass-conservative
iterative IMPEC method proposed in [8]. We made the following change in the
algorithm. In this work the pressure is initialized using the EOS from the given
concentrations pn = p(cni=1,...,nc

) as opposed to [8], where the pressure pn is taken
as the solution pressure from the previous time step. This way, the error from
the discretization will not cumulate as the simulation goes on. Given a solution
(cn1 , ..., c

n
nc) at the n−th time level, to obtain pressure field and concentrations

at the (n+1)−th time level we proceed iteratively as follows.

1. Set l = 0 and pn+1,0 = pn = p(cn1 , ..., c
n
nc), c

n+1,0
i = cni , for i = 1, ..., nc. The

boundary values are evaluated at the (n+1)−th time level. Values of θn+1
i

are initially estimated using the EOS as θn+1,0
i = ∂p

∂ci
(cn1 , ..., c

n
nc).

2. Repeat

(a) Set l = l + 1.

(b) The following problem is solved with the MHFEM for pressures pn+1,l,
pressure traces p̂n+1,l and velocity vn+1,l (for details see below)

φ
pn+1,l − pn

∆t
+

nc∑
i=1

θn+1,l−1
i

[
∇ ·
(
cn+1,l−1
i vn+1,l

)
− fn+1

i

]
= 0,

vn+1,l = − 1

µn+1,l−1K
[
∇pn+1,l − ρn+1,l−1g

]
,

(20)

(c) Values of cn+1,l
i for i = 1, ..., nc are explicitly updated as (for details see

below)

φ
cn+1,l
i − cni

∆t
+∇ ·

(
cn+1,l−1
i vn+1,l

)
= fn+1

i . (21)

(d) A slope limiter for cn+1,l
i , i = 1, ..., nc, is applied.

(e) Parameters θn+1,l
i are updated using the difference formula

θn+1,l
i =

p(ξi)− p(ηi)
cn+1,l
i − cni

, (22)

where

ξi = (cn+1,l
1 , ..., cn+1,l

i−1 , cn+1,l
i , cni+1, ..., c

n
nc),

ηi = (cn+1,l
1 , ..., cn+1,l

i−1 , cni , c
n
i+1, ..., c

n
nc).

Computation of p(·) in the nominator (22) is based on the EOS.
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(f) Iteration stops when max{Ep, Ec, Eθ} < δ where

Ep =
‖pn+1,l − pn+1,l−1‖2L2(Ω)

‖pn+1,l‖2L2(Ω)

,

Ec =

nc∑
i=1

‖cn+1,l
i − cn+1,l−1

i ‖2L2(Ω)

‖cn+1,l
i ‖2L2(Ω)

,

Eθ =

nc∑
i=1

‖θn+1,l
i − θn+1,l−1

i ‖2L2(Ω)

‖θn+1,l
i ‖2L2(Ω)

.

(23)

If the criterion is met we then set pn+1 = pn+1,l, vn+1 = vn+1,l and
cn+1
i = cn+1,l

i for i = 1, ..., nc. Otherwise we go back to step (a).

We now describe the step 2 of the algorithm in more details. In (b), as the
pressures pn+1,l can be eliminated, the system is solved for pressure traces p̂n+1,l

only by means of the equations (14) and (18) with the time discretization as in
(20). The underlying system of linear equations for pressure traces p̂n+1,l have
the followig form

pn+1,l + D−1H1 p̂
n+1,l
1 + D−1H2 p̂

n+1,l
2 = D−1G,

R1 p
n+1,l −M1,1 p̂

n+1,l
1 −M1,2 p̂

n+1,l
2 = V1,

R2 p
n+1,l −M2,1 p̂

n+1,l
1 −M2,2 p̂

n+1,l
2 = V2,

(24)

from which the elimination of the pressures is apparent. The matrices in (24)
can be deduced from (14) and (18), see e.g. [6]. The velocity field vn+1,l is then
computed according to (6) by evaluating (7). The mean values of µn+1,l−1 and

ρn+1,l−1 are computed at (cn+1,l−1
1 , ..., cn+1,l−1

nc ). In (c), the semi-discrete equa-
tion (16) is used with the time discretization as in (21). Such time discretization

leads to an explicit scheme for cn+1,l
K,i , because only cn+1,l−1

K,i are present. Upwind

values ĉn+1,l−1
K,i,E in (20) and (21) are evaluated as follows

ĉn+1,l−1
K,i,E (x) =


cn+1,l−1
K,i (x), vn+1,l−1

K · nKE (x) ≥ 0, x ∈ E
cn+1,l−1
T,i (x), vn+1,l−1

K · nKE (x) < 0, x ∈ E /∈ ∂Ω,
cD,n+1
i (x), vn+1,l−1

K · nKE (x) < 0, x ∈ E ⊂ Γc.
(25)

Note that concentrations cn+1,l−1
K,i or cn+1,l−1

T,i are computed using (15) on the
elements K or T , respectively. Evaluation of the difference formula in (e) is
discussed in the section 4.4. For slope limiting procedure in (d), we refer the
reader to [9]. We note that the choice of the slope limiter greatly affects the
convergence behavior of the iterative IMPEC algorithm.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_16

https://dx.doi.org/10.1007/978-3-030-77980-1_16


Modeling of the Single-Phase Multicomponent Flow in Porous Media 9

Fig. 2. Structure of the computational meshes for Example 1 (left), Example 2 (middle)
and Example 3 (right).

4 Numerical examples

4.1 Example 1

Example 1 serves to verify higher-order approximation of the numerical scheme
with the use of experimental order of convergence (EOC) analysis. Let us con-
sider the following problem

∂c

∂t
+∇ · (cv) = 0, v = −2∇p, (26)

with the equation of state of the form p(c) = c and initial and boundary condition

c(t0,x) = B2(t0,x), x ∈ Ω,
p(t,x) = B2(t,x), x ∈ Γp, t ∈ (t0, t1),

v(t,x) · n(x) = 0, x ∈ Γv, t ∈ (t0, t1),

(27)

where Ω = [0, 40]× [0, 40] m2, t0 = 7500s, t1 = 45000s. Function Bm = Bm(t,x)
is the well-known Barenblatt solution given by

Bm(t,x) = max

{
0, t−α

(
Λ− α(m− 1)

2dm

|x|2

t2α/d

) 1
m−1

}
. (28)

In (28) we choose d = 2, m = 2, α = (m − 1 + 2/d)−1 = 1/2 and Λ = 1. We
further define the Dirichlet and Neumann boundaries as

Γp = { (x, 40) ∪ (40, y) | x ∈ (0, 40), y ∈ (0, 40) } ,
Γv = { (0, y) ∪ (x, 0) | y ∈ (0, 40), x ∈ (0, 40) } .

(29)

The EOC and errors are included in the Table 1. The computational mesh is
parametrized with a parameter h ∈ N as nk = 2×4h×4h (structured triangular
mesh). We choose ∆t ∼ h−2 so that the error from the time discretization does
not interfere with the space discretization. The error is computed by interpo-
lating (28) into the basis of P1(K) for each K ∈ Th. Tolerance for the stopping
criterion (23) is chosen as δ = 1.49× 10−12.
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Table 1. Experimental order of convergence and errors at time t1 for Example 1.

h ∆t ||Eh||L1 EOC1 ||Eh||L2 EOC2 ||Eh||L∞ EOC∞

4 18.75 5.2228× 10−3 1.3792× 10−4 3.6610× 10−6

8 4.6875 1.1837× 10−3 2.1415 3.1263× 10−5 2.1413 8.6644× 10−7 2.0791

16 1.1719 2.9109× 10−4 2.0238 7.6769× 10−6 2.0258 2.1072× 10−7 2.0398

32 2.9297× 10−1 7.3970× 10−5 1.9764 1.9481× 10−6 1.9785 5.1956× 10−8 2.0199

64 7.3242× 10−2 1.7480× 10−5 2.0812 4.6140× 10−7 2.0780 1.2901× 10−8 2.0099

128 1.8311× 10−2 5.2721× 10−6 1.7293 1.3844× 10−7 1.7368 3.2146× 10−9 2.0047

4.2 Example 2

In Example 2, we will try to reproduce numerical results in [15]. Let us consider
a reservoir Ω = [0, 50] × [0, 50] m2 with porosity φ = 0.2 and permeability
K = 10−14I m2 at initial pressure p = 5 × 106 Pa and temperature T = 397 K
in a horizontal position with g = (0, 0) m/s2 or vertical position with g =
(0,−9.81) m/s2 initially filled with propane. In the corner {(x, y)| 0 ≤ x ≤
1.25, 0 ≤ y ≤ 1.25−x} pure methane with concentration (molar density) cinj =
42.2896 mol/m3 is injected with the injection rate r = 3.90625 × 10−4 m3/s.
Mixture of propane and methane is produced on the boundary {(x, 50)| 48.75 ≤
x ≤ 50}∪{(50, y)| 48.75 ≤ y ≤ 50} where pressure p = 5×106 Pa is maintained.
The rest of the boundary is impermeable, i.e. zero Neumann condition vN = 0 is
imposed. Relevant data for the Peng-Robinson EOS are taken over from [15] and
listed in Table 2. The binary inetraction coefficient of the methane-propane is
k12 = 0.0365. The mesh consists of 2×40×40 triangular elements. The time step
is chosen constant ∆t = 6000s for both horizontal and vertical case. Tolerance
for the stopping criterion (23) is chosen as δ = 1.49× 10−7.

Fig. 3. Contours of methane from Example 2 with g = (0, 0) at the time t = 6× 106s
(left), t = 24× 106s (middle) and t = 48× 106s (right).

4.3 Example 3

In Example 3, we will try to reproduce numerical results of the Example 6.5 in
[8]. Let us consider a reservoir Ω = [0, 50]× [0, 50] m2 with porosity φ = 0.2 and
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Fig. 4. Contours of methane from Example 2 with g = (0,−9.81) at the time t =
6× 106s (left), t = 12× 106s (middle) and t = 21.6× 106s (right).

Table 2. Peng-Robinson EOS paramaters for the Example 2.

component pci [Pa] Tci [K] Vci [m3mol−1] Mi [kg mol−1] ωi [-]

1 (methane) 4.58373 · 106 1.89743 · 102 9.897054 · 10−5 1.62077 · 10−2 1.14272 · 10−2

2 (propane) 4.248 · 106 3.6983 · 102 2.000001 · 10−4 4.40962 · 10−2 1.53 · 10−1

permeability distribution

K =

{
2000 mD× I, {(x, y)|x ∈ (12.5, 37.5), y ∈ (17.5, 18.75) ∪ (30, 31.25)}
10 mD× I, elsewhere,

at initial pressure p = 1.5 × 105 Pa and temperature T = 554.8 K initially
filled with propane. On the whole west boundary {(0, y)| 0 ≤ y ≤ 50} the
mixture of methane and ethane with total concentration (molar density) cinj =
32.527 mol/m3 is injected with the injection rate r = 3.17 × 10−6 m3/s. Molar
fractions of the injecting mixture are 0.8 for methane and 0.2 for the ethane.
The mixture is produced on the whole east boundary {(50, y)| 0 ≤ y ≤ 50}
where pressure p = 1.5 × 105 Pa is maintained. The rest of the boundary is
impermeable, i.e. zero Neumann condition vN = 0 is imposed. Relevant data
for the Peng-Robinson EOS are taken over from [5] and listed in Table 3. The
binary interaction coefficients are k12 = −0.0026 for the methane-ethane, k13 =
0.014 for the methane-propane and k23 = 0.011 for the ethane-propane. For the
viscosity, the Lee-Gonzalez model [10] is selected. The mesh and the convergence
criterion is the same as for Example 2.

4.4 Update of θ parameter

When computing parameters θi, we have to deal with special case cn+1,l
i → cni

for which the denominator in (22) approaches zero. In [8] this is treated in

the following perturbation manner. If |cn+1,l
i | < ε and |cn+1,l

i − cni | < ε, that

is cn+1,l
i and cni are both close to zero, we then set cn+1,l

i := cni + ε. Else if
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Fig. 5. Contours of propane from Example 3 at the time t = 17.4 × 106s (left), t =
52.2× 106s (middle) and t = 86.4× 106s (right).

Table 3. Peng-Robinson EOS paramaters for the Example 3.

component pci [Pa] Tci [K] Vci [m3kg−1] Mi [kg mol−1] ωi [-]

1 (methane) 4.604 · 106 1.9058 · 102 6.17284 · 10−3 1.62077 · 10−2 0.04348 · 10−1

2 (ethane) 4.880 · 106 3.0542 · 102 4.92611 · 10−3 3.070 · 10−2 1.0109 · 10−1

3 (propane) 4.250 · 106 3.6982 · 102 4.608295 · 10−3 4.40962 · 10−2 1.5788 · 10−1

|cn+1,l
i − cni | < ε|cn+1,l

i |, that is cn+1,l
i and cni are close to each other, we set

cn+1,l
i := cni + εcn+1,l

i . These perturbations are used for the parameter update

step only. When all the updates are done, the values of cn+1,l
i are reset to their

original values. The ε value is chosen as the square root of machine precision. In
this paper, we try to pursuit this problem with the use of

lim
cni→c

n+1,l
i

θn+1,l
i =

(
∂p

∂ci

)
(cn+1,l

1 , ..., cn+1,l
i−1 , cn+1,l

i , cni+1, ..., c
n
nc). (30)

In Figure 6 we compare both approaches by plotting the numbers of iterations
which are needed to converge at each time level in the step 2 of the iterative
IMPEC algorithm in Example 2. The tolerance for the stopping criterion (23) is
chosen as δ = 1.49 × 10−7. From the given comparison we concluded, that the
formula (30) can be utilized as well as the perturbation treatment given in [8]. If
we choose stronger tolerance for the stopping criterion (e.g. δ = 1.49×10−8), then
the iterative IMPEC algorithm would have trouble satisfying stopping criterion
for Eθ as can be seen in Figure 7. The problem is that even though concentrations
converge with respect to the stopping criterion, the error Eθ does not further
decrease.

5 Conclusions

In this work we have shown how to extend modeling of the multicomponent
compressible single-phase Darcy flow in porous media based on the combination
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Fig. 6. Number of iteration needed to converge at each time level using perturbation
(top) and limit (30) (bottom) approaches. Tolerance δ = 1.49× 10−7 is chosen.

Fig. 7. Error Eθ (top) and number of iteration needed to converge (bottom) at each
time level for the tolerance δ = 1.49 × 10−8. In the later stage of the simulation the
convergence criterion is not satisfied for many time steps as the Eθ does not decrease.

of MHFEM and DG methods to a higher-order approximation scheme. The main
extension is the use of the higher-order Raviart-Thomas space for the approx-
imation of the velocity field. The system of nonlinear algebraic equations for
concentration, pressure and velocity fields obtained by combining the MHFEM
and DG is solved with the fully mass-conservative iterative IMPEC scheme in
which the given equation of state is incorporated through the pressure equa-
tion with an additional nonlinear parameter. Three numerical experiments were
performed. The first example gave a proof of the expected second order ap-
proximation in space through the computation of EOC. The second and the
third examples were taken over from the literature to verify the correctness of
the code. In the second example the outcome was positive and we obtained the
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same results. In the third example we obtained different results from the orig-
inal authors. We believe that such outcome is only a consequence of different
interpretation of the source terms. In the experiments, the proposed derivative
approach was used in the update of the pressure equation parameters which
slightly improved the convergence of the method. In the future work, we would
like to improve the current model with the inclusion of a diffusive term in the
transport equations and with the higher-order time discretization.
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numérique, vol. 21, 581–604 (1987)

3. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer Series
in Computational Mathematics, vol. 15 (1991)

4. Boffi D., F.Brezzi, M. Fortin.: Mixed Finite Element Methods and Applications.
Springer Series in Computational Mathematics, vol. 44, Springer Science & Business
Media, (2013)

5. Firoozabadi A.: Thermodynamics of Hydrocarbon Reservoirs. McGraw-Hill Educa-
tion (1999)

6. Hoteit H., Firoozabadi A.: Multicomponent Fluid Flow by Discontinuous Galerkin
and Mixed Methods in Unfractured and Fractured Media, Water Resources Research
(2005). https://doi.org/10.1029/2005WR004339.

7. Hoteit H., Firoozabadi A.: Compositional Modeling By the Combined Discontinuous
Galerkin and Mixed Methods, Society of Petroleum Engineers (2006)

8. Chen H., Fan X., Sun S.: A Fully Mass-Conservative Iterative IMPEC Method for
Multicomponent Compressible Flow in Porous Media. Journal of Computational
and Applied Mathematics, vol. 362, 1–21 (2019)

9. Barth T., Jespersen D.: The design and application of upwind schemes on unstruc-
tured meshes, 27th Aerospace Sciences Meeting (1989)

10. Lee A. L., Gonzalez M. H., Eakin B. E.: The Viscosity of Natural Gases. Journal
of Petroleum Technology, vol. 18, 997–1000 (1966)

11. Lohrenz J., Bray B. G., Clark C. R.: Calculating Viscosities of Reservoir Fluids
From Their Compositions. Journal of Petroleum Technology, vol. 16, 1171–1176
(1964)

12. Moortgat J., Firoozabadi A.: Mixed-hybrid and Vertex-Discontinuous-Galerkin Fi-
nite Element Modeling of Multiphase Compositional Flow on 3D Unstructured
Grids. Journal Computational Physics, vol. 315, 476–500 (2016)

13. Moortgat J., Sun S., Firoozabadi A.: Compositional Modeling of Three-Phase Flow
With Gravity Using Higher-Order Finite Element Methods. Water Resources Re-
search, vol. 47 (2011). https://doi.org/10.1029/2010WR009801.
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