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Abstract. The paper contains an analysis of a three-level linearized
time integration scheme for Cahn-Hilliard equations. We start with a
rigorous mixed strong/variational formulation of the appropriate initial
boundary value problem taking into account the existence and unique-
ness of its solution. Next we pass to the definition of two time integra-
tion schemes: the Crank-Nicolson and a three-level linearized ones. Both
schemes are applied to the discrete version of Cahn-Hilliard equation
obtained through the Galerkin approximation in space. We prove that
the sequence of solutions of the mixed three level finite difference scheme
combined with the Galerkin approximation converges when the time step
length and the space approximation error decrease. We also recall the ver-
ification of the second order of this scheme and its unconditional stability
with respect to the time variable. A comparative scalability analysis of
parallel implementations of the schemes is also presented.

Keywords: isogeometric analysis · time-integration schemes · tumor
simulations · Cahn-Hilliard equations

1 Introduction

Cahn-Hilliard equations are widely used to describe the temporal evolution of
two phases of a system engaged in the phase transition, like a solidifying liquid.
It is a system of equations that can be reduced to one equation that is first order
in time and fourth order in space. When using the finite element method this
high spatial order requires the use of smooth spatial basis functions, like the
ones coming from the isogeometric analysis (IGA). And, in fact, IGA has been
successfully applied to the solution of Cahn-Hilliard equations, cf. [1,2]. On the
other hand, Cahn-Hilliard equations has been applied to model the tumor growth
as well, cf. [3, 4]. The complexity of such problems is significant because they
involve dynamic chemical and biological processes occurring in living tissues with
interactions between cellular and vascular levels. The Cahn-Hilliard equations
are applied to model interfaces between blood vessels and host tissue. There
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are already several models of the tumor evolution [5,6] utilizing the isogeometric
analysis concept. In this paper we follow on the approach utilizing Cahn-Hilliard
equations described in paper [6]. To solve numerically the equations we propose
an adaptation of the linearized three-level time integration scheme presented
in [7], that on one hand is implicit and on the other hand makes it possible to
use a direct solver at every time step. The approach presented in this paper is
an alternative to the one described in [2].

2 Strong and weak formulations of Cahn-Hilliard
equations

This section presents the strong and weak formulations for the Cahn-Hilliard
equations, based on [8]. As a strong one we consider the following Cauchy prob-
lem: Find u ∈ C1(0, T ;C4(Ω)) such that

ut = ∇ · (B(u)∇ (−γ∆u+ Ψ ′(u))) on ΩT = [0, T ]×Ω and

u(0, x) = u0(x) on Ω,
(1)

where Ω is an open subset of Rn, n = 2, 3 with smooth boundary, γ > 0 is
a positive constant. The scalar field u is the difference of the two fluid phase
concentrations. It belongs to u ∈ [−1, 1]. The non-negative B(u) ≥ 0 is the
diffusional mobility, and Ψ(u) is the homogeneous free energy. Following [8] we
introduce the Ginzburg-Landau free energy

E(u) =

∫
Ω

(γ
2
|∇u|2 + Ψ(u)

)
dx, (2)

that allows us to monitor the stability of the numerical simulation. Namely,
it is supposed to constantly decrease. Let us consider the following boundary
conditions

u = 0 in (0, T )× ΓD, ∂u
∂n = 0 on ΩT ,

n · (B(u)∇ (−γ∆u+ Ψ ′(u))) = 0 in (0, T )× (∂Ω \ ΓD),
(3)

for ΓD ⊂ ∂Ω with σ(ΓD) > 0. Next, following [8], we define

B(u) = 1− u2,

Ψ(u) =
θ

2
((1 + u) log(1 + u) + (1− u) log(1− u)) + 1− u2,

(4)

where θ = 1.5.
In order to pass to the weak formulation, let us define the following Hilbert

space

V =

{
v ∈ H2(Ω) : tr(v) = 0 on ΓD and

∂u

∂n
= 0 on Ω

}
(5)
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with the inner product inherited from H2(Ω), where tr is the ΓD-related trace
operator on H2(Ω). Next, following [1, 8] we introduce the space differential
operator A : H2(Ω)→ (H2(Ω))′, such that

〈A(u), w〉 =
∫
Ω

(γ∆u∇ · (B(u)∇w) + (BΨ ′′)(u)∇u · ∇w) dx,

∀w ∈ H2(Ω).
(6)

We also introduce the simple dualizing operator τ : H1(Ω) → (H1(Ω))′ such
that

〈u,w〉 =

∫
Ω

u · w dx, ∀w ∈ H1(Ω). (7)

and the time-derivative operator ·t : C1(0, T ;H1(Ω))→ C(0, T ; (H1(Ω))′)

〈ut(t), w〉 =

〈
∂u

∂t
(t), w

〉
, ∀w ∈ H1(Ω), ∀t ∈ [0, T ]. (8)

Then, we are able to introduce the second variational equation preserving the
classical, Frechet derivative with respect to the time variable: We seek for u ∈
C1(0, T ;V ) such that

〈ut(t), w〉+ 〈A(u(t)), w〉 = 0 ∀w ∈ V, ∀t ∈ [0, T ] and

u(0, x) = u0(x) a.e. on Ω.
(9)

The above weak formulation of Cahn-Hilliard equation with boundary conditions
(3) can be rewritten in a brief, dual form

ut(t) +A(u(t)) = 0, u(0) = u0. (10)

3 Semi-discrete Galerkin formulation

Let us introduce the sequence of approximation finite dimensional spaces {Xn},
such, that Xn1

⊂ Xn2
⊂ V, ∀n2 > n1, moreover

⋃
nXn = V in the strong topol-

ogy induced from H2(Ω). The sequence {Xn} can be obtained in particular by
using the Finite Element Method for creating the base for the first subspace Xn0

,
and the proper adaptive policy for obtaining the consecutive spaces Xm,m > n0

(see e.g. [9]).
Now, we are able to introduce the sequence of Galerkin problems with a

continuous time leading to find un ∈ C1(0, T ;Xn) so, that

(un)t(t) +A(un(t)) = 0, un(0) = u0. (11)

For the sake of simplicity we assume that u0 ∈
⋂
nXn. As far as we use the same

notation for the time derivative and A operators as in (10), they are now the
restrictions of operators used there to the space C1(0, T ;Xn).
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4 Finite difference schemes

In order to solve approximately the semi-discrete Galerkin equation (11) in the
particular space C1(0, T ;Xn) we can apply a finite-difference scheme along the
time variable t ∈ [0, T ]. Because explicit schemes, like Euler, are unstable in
the case of Cahn-Hilliard equation, in the sequel we will consider only implicit
schemes.

We introduce a mesh in the time domain Sτ = {iτ ; i = 0, . . . ,K} ⊂ [0, T ],
where Kτ = T and τ stands for the length of the time step. Let g ∈ C(0, T ;Xn)
be an arbitrary function. We will denote by gτ = g|Sτ the restriction of g to the
mesh Sτ , so that giτ = g(tτ) ∈ Xn, i = 0, . . . ,K and gτ = {giτ} ∈ (Xn)K+1.

Let us consider the following Crank-Nicolson integration scheme for the semi-
continous variatonal formulations of the Cahn-Hilliard equation (11):

We are looking for unτ : Sτ → Xn such that〈
ui+1
nτ −u

i
nτ

τ , w
〉

+ 1
2 〈A(ui+1

nτ ) +A(uinτ ), w〉 = 0,

u0nτ = u0, ∀w ∈ Xn, i = 0, . . . ,K.
(12)

This scheme is unconditionally stable with respect to the time step τ . Unfortu-
nately, the price for this property is very high, because it requires solving non-
linear variational equation at each time step. It is also worth noticing that the
Crank-Nicolson scheme can be extended to the so-called generalized α-scheme
presented in [10], where the time integration step can be adapted.

Let us assume now that we additionally know a solution u(−1) ∈ Xn to
(11) at the time instance −τ . In other words, we have double initial conditions
u−1nτ = u(−1), u

0
nτ = u0 ∈ Xn. We may then define the following three-level

linearized integration scheme:

We are looking for unτ : {−τ} ∪ Sτ → Xn such that〈
ui+2
nτ −u

i
nτ

2τ , w
〉

+
〈

1
2 DA|ui+1

nτ
(ui+2
nτ + uinτ − 2ui+1

nτ ) +A(ui+1
nτ ), w

〉
= 0,

u−1nτ = u(−1), u
0
nτ = u0, ∀w ∈ Xn, i = −1, 0, 1, . . . ,K.

(13)

In contrast to the Crank-Nicolson scheme, we can compute the next-step
solution ui+2

nτ by solving linear equation, instead of the nonlinear one, which is
usually much more cheaper. The double initial conditions does not cause any
problem because if the single initial condition u(−1) ∈ Xn is given, then u0 ∈ Xn

can be approximated using, e.g., a single step of the Crank-Nicolson scheme (12).
Now, let us denote by {ηi}, i = 1, ..., n, n < +∞ an arbitrary basis in

Xn convenient for solving (11). The solution unτ of both mixed schemes can
be represented as a sequence of real vectors {αj}, j = 1, . . . ,K, so that
αj ∈ Rn, ujnτ =

∑n
i=1 α

j
iηi. Moreover, the basis vectors ηi, i = 1, . . . , n will

be used as test functions w ∈ Xn. The details of solving equations resulting
from both schemes can be found in many books and papers (see e.g. [9]).
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The scheme (13) becomes a sequence of linear systems with the n×n matrices
(1+τMj), j = 1, . . . ,K, where 1 is the Gram matrix and Mj denotes the matrix
associated with the differential DA|uj−1nτ , both computed with respect to the
selected basis in Xn.

Finally, the simulation of cancer growth by Cahn-Hilliard equation using
the proposed three-level linearized scheme will follow the simple algorithm (see
Listing 1).

1 BEGIN
2 Choose the space Xn ⊂ V and i t s b a s i s

{ηi}, i = 1, . . . , n ;
3 Choose the i n i t i a l time step τ ;
4 Compute i n i t i a l cond i t i on u(−1) ∈ Xn by p r o j e c t i n g

u(0) on Xn ;
5 Compute u0 ∈ Xn from equat ion (12) ;
6 FOR j = 1, . . . ,K
7 Compute ujnτ ∈ Xn from equat ion (13) ;
8 ENDFOR
9 IF the s o l u t i o n i s u n s a t i s f a c t o r y

10 SWITCH // perform 1 , 2 , or both
11 (1) Decrease the time step τ ;
12 (2) Improve the space Xn accord ing some

adaptat ion r u l e ( s ee [9]) ;
13 ENDSWITCH
14 GOTO 4 ;
15 ENDIF
16 END

Listing 1: The algorithm implementing three-level finite-difference scheme (13)
for Cahn-Hilliard equation.

The linearized three-level scheme can be also reformulated in a way similar to
the generalized α-scheme [10], so we can adjust the time integration step adap-
tively. We can utilize either direct or iterative linear solvers for the computations
in every time step.

5 Mathematical properties of the linearized three level
scheme

Two important asymptotic features of the mixed Galerkin/three-level linearized
scheme (13) were studied.

Observation 1 If both B and Ψ ′′ are positive constants functions (B ≡ b > 0
and Ψ ′′ ≡ c > 0), then Problem (11) has the unique solution in C1(0, T ;Xn) for
any u0 and n and the sequence of Galerkin solutions to (11) converges to the
solution of (10), i.e. ‖un − u‖C(0,T ;L2(Ω)) for n→ +∞.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_14

https://dx.doi.org/10.1007/978-3-030-77980-1_14


6

The above observation follows immediately from the Observation 4 in Appendix.

Observation 2 Let us assume, that the time network is regular, i.e. S = {t−1 =
−τ, t1 = 0, t2 = τ, . . . , tKτ = Kτ = T} and we know u(−τ) and u(0) = u0 being
the values of the exact solution to (10) for all τ ; Tl > τ > 0, for some positive
constant Tl > 0. If moreover the assumptions of Observation 1 hold, then:

1. Three-level linearized scheme (13) applied for the semi-discrete Galerkin for-
mulation of the Cahn-Hilliard equation (11) has the unique solution uinτ for
each time step i = −1, 0, 1, . . . ,K.

2. The sequence of solutions {unτ} to the mixed Galerkin/three-level linearized
scheme of solving Cahn-Hilliard equation converges to the solution u of the
exact variational formulation (10), i.e.

lim
n→+∞,τ→0

‖unτ − u‖τ = 0,

where ‖u‖τ = max{‖u(iτ)‖L2(Ω) , i = 1, 2, . . . ,K}.

The above observation is the simple issue of the Observation 5 in Appendix.

It is worth to notice, that the three-level linearized scheme (13) is un-
conditionally stable with respect to the time step τ , because its convergence
was proven without any assumed dependencies between the time and space
(Galerkin) approximations.

Moreover, it can be proven, that the three-level linearized scheme (13) applied
for the approximate, semi-discrete (11) variational formulations of Cahn-Hilliard
equations is of the second order with respect to the time step τ (see [11]).

6 Scalability analysis

Most approaches to the Cahn-Hilliard equation, including Crank-Nicolson inte-
gration schemes (12), result in a sequence of nonlinear algebraic systems. The
presented linearized three-level scheme results in a sequence of linear systems,
thus its dominating part of computational cost at each time step (namely mul-
tifrontal solver applied for solving the linear system) is comparable to the cost
of solving a linear variational elliptic problem with a linear operator. Paper [5]
describes such a particular case using a L2-projection scheme. Both cases (L2

projection equation for elliptic problem and one step linearized three level scheme
for Cahn-Hilliard) possess exactly the same matrix size and structure, thus the
same computational cost. All computations for both cases presented in this pa-
per were performed with IGA-FEM [12], which utilizes B-Spline basis functions
for the approximation in space domain.

The first goal we try to obtain by numerical experiments is the analysis of
software scalability obtained by implementing both schemes (12) and (13). To
analyze scalability of the entire scheme it is enough to analyze scalability in a
single step, because in each step the most expensive part (i.e., the multifrontal
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solver execution) is repeated in the same manner and possess almost identical
computational cost. In case of scaling Crank-Nicolson scheme computation, only
one Newton iteration of solving nonlinear algebraic system was included. The
experiment observes the course of computational time regression with respect to
increasing processor count.

In order to make computations more convenient in PetIGA interface, each of
variational equations (12) and (13) was reformulated to equivalent form: from
the single fourth order PDEs (or H2 weak formulation) down to the system of
two second order PDEs (or a system of two H1 weak problems).

The computations were performed on a distributed-memory Linux clus-
ter. One processor per node is utilized, up to 256 STAMPEDE Linux cluster
nodes. The PETSC interface [13–15] delivers multiple solvers including MUMPS
[16–18], SuperLU [19,20] and PaSTiX [21]. All of benchmarks presented in this
paper were performed on a L2 projection problem coded in PetIGA [22] interface
(an IGA-FEM overlay to PETSC). The interface and solvers control execution
in concurrent environment. The aim was to examine and compare scalability and
computational cost of different combinations of schemes and solvers (implemen-
tations).

Tests were executed for the number of processors increasing from 1 to 256.
Various types of B-Spline basis functions [12] resulted in various global regularity
utilized. Quartics C3 used for the first formulation are compared with quadratics
C0 used for the second formulation, over the mesh with 128× 128 elements, see
Figure 1. Octics C7 used for the first formulation are compared with quartics
C0 used for the second formulation, over the mesh with 256 × 256 elements,
see Figure 2. It can be noted that for both cases, the MUMPS solver for the
second formulation (for C0 basis) outperforms all the other solvers with increased
number of processors.

Preliminary results are presented in Figure 3. The software implementing
three-level linearized scheme scales in the same manner as Crank-Nicolson for
all tested multi-frontal solvers. Moreover it can be noted that higher continuity
B-Spline basis functions tend to compute faster for the same mesh sizes.

The second goal of numerical experiments is to compare both schemes by
simulating benchmarks of single tumor growth. Both simulations performed for
8000 time steps present similar final images of tumor cell concentration. It can
be concluded that utilizing three-level linearized time integration scheme doesn’t
degrade the accuracy in comparison with state-of-the-art Crank-Nicolson time
integration scheme.

7 Conclusions

The theoretical results presented in this paper complete the formal analysis of the
mixed three-level linearized finite-difference-Galerkin numerical scheme applied
for solving the Cahn-Hiliard equation. We have obtained theorems guaranteeing
the existence and the uniqueness of solutions to the exact continuous/varia-
tional problem (8), (10) and its semi-discrete Galerkin version (11). We have
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Fig. 1: Comparison of scalability for quartics C3 used for the first formulation
with quadratics C0 used for the second formulation, over the mesh with 128×128
elements.
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Fig. 2: Comparison of scalability for octics C7 used for the first formulation
with quartics C0 used for the second formulation, over the mesh with 256× 256
elements.
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(a) Snapshot 1 (b) Snapshot 2

(c) Snapshot 3 (d) Snapshot 4

(e) Snapshot 5 (f) Snapshot 6

(g) Snapshot 7 (h) Snapshot 8

Fig. 3: Snapshots from the tumor growth simulations with the Cahn-Hilliard
equation.
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also shown the convergence of the solutions of (11) to the exact solution when
the Galerkin approximation error decays. Next, we have proved the convergence
of the solutions of three-level linearized scheme (13) when both space and time
approximations are improved (n → ∞, τ → 0) and that the scheme is uncon-
ditionally stable with respect to the time variable. Additionally, we refer to the
proof of the second order of (13) with respect to the time variable.

The scheme is flexible to incorporate different linear solvers and well dedi-
cated to particular B-Spline basis functions. The software implementing three-
level linearized scheme scales in the same manner as Crank-Nicolson for all tested
multi-frontal solvers. Moreover it can be noted that higher continuity B-Spline
basis functions tend to compute faster for the same mesh sizes. It can be also
observed, that for both cases, the MUMPS solver for the second formulation (for
C0 basis) outperforms all the other solvers with increased number of processors.

Both, theoretical and experimental results presented in this paper show, that
the proposed three level linearized time integration scheme is an advantageous
tool for solving initial boundary value problems for Cahn-Hiliard equations.
Theorems and observations proved that the scheme is as well conditioned as
Crank-Nicolson one, concerning convergence, stability and order. Numerical re-
sults show that utilizing three-level linearized time integration scheme doesn’t
degrade the accuracy in comparison with state-of-the-art time integration scheme
- Crank-Nicolson one.

The main advantage of the three-level integration scheme over Crank-
Nicolson is lower computational cost. It always requires only one linear system
to be solved within each time step. In case of non-linear Cahn-Hiliard equation
Crank-Nicolson scheme (12) may require solving multiple linear system within
each time step.

The effective numerical model of the Cahn-Hiliard equation is crucial for sim-
ulating tumor growth abd then is helpful by the medical diagnosis and therapy
of this group of heavy diseases.

The future work may involve incorporating the Cahn-Hilliard based models
with supermodeling approach [23–25].

Acknowledgement

The Authors are thankful for support from the funds assigned to AGH Univer-
sity of Science and Technology by the Polish Ministry of Science and Higher
Education.

Appendix: Convergence of the mixed 3-level linearized
scheme

In this section we prove the convergence of the 3-level scheme (13) . Crucial
properties of operator A are its continuity and coercivity, which are used to
prove the convergence of the numerical schema. They are formulated in the
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following way: there exist positive constants m and M and function ζ satisfying
ζ(s)→ +∞(s→ +∞) such that for every u, v ∈ V we have

‖A(u)−A(v)‖V ′ ≤M‖u− v‖V (14a)

〈A(u)−A(v), u− v〉V ′×V ≥ m‖u− v‖2V (14b)

〈A(u), u〉V ′×V ≥ ζ(‖u‖V ) ‖u‖V (14c)

A sample case when the above conditions hold is shown in the following obser-
vation.

Observation 3 Assume that both B and Ψ ′′ are positive constants (B ≡ b > 0
and Ψ ′′ ≡ c > 0). Then, conditions (14) hold.

Proof. This is in fact a linear case, i.e.

〈A(u), w〉 =

∫
Ω

(γb∆u∆w + bc∇u∇w) dx.

Therefore,

|〈A(u), w〉| ≤ γb‖∆u‖L2(Ω)‖∆w‖L2(Ω) + bc‖∇u‖L2(Ω;Rn)‖∇w‖L2(Ω;Rn),

which yields (14a) with, e.g., M = b(γ + c). Moreover,

〈A(u), u〉 =

∫
Ω

(
γb(∆u)2 + bc|∇u|2

)
dx

= γb‖∆u‖2L2(Ω) + bc‖∇u‖2L2(Ω;Rn),

which, together with an appropriate version of Poincaré inequality, gives us (14c).
Finally, in this case, it is easy to see that (14b) is a consequence of (14c).

Let assume now, that we know the solution to (10) in some interval [−Tl, 0]
for Tl > 0. We can introduce the time grids

Sτ = {iτ ; i = 1, 2, . . . ,K; τ < t0, Kτ = T}. (15)

The arbitrary function g : [−Tl, T ] → Xn((Xn)′) can be restricted to Sτ , then
we obtain the grid function gτ = {g−1τ = g(−τ), g0τ = g(0), g1τ = g(τ), g2τ =
g(2τ), . . . , gKτ = g(Kτ)}.

Let us denote by Vn and V ′n the vector spaces being the the restrictions of
C(−Tl, T ;Xn) and C(−Tl, T ;X ′n) to the network Sτ equipped with the norms:

‖gτ‖Kτ = max{
∥∥giτ∥∥H2(Ω)

, i = −1, 0, 1, 2, . . . ,K},

‖gτ‖′Kτ = max{
∥∥giτ∥∥H−2(Ω)

, i = −1, 0, 1, 2, . . . ,K},
(16)

respectively.
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We are ready now to define the time grid operator Rτ : Vn → V ′n as the
collection of coordinate operators

(Rτ (gτ ))i =
gi+1
τ − giτ

2τ
+A(giτ ) +

1

2
DA|gi+1

τ
(gi+2
τ − 2giτ + gi−1τ ) (17)

associated with the three-level linearized scheme (13). The mixed Galerkin three-
level linearized scheme discrete problem can be formulated as follows:
Let us assume, that the exact solution u of (10) is well-known and continuous
with respect to the time variable on the interval [−Tl, 0] and moreover ∀t ∈
[−Tl, 0] u(t) ∈

⋂
nXn. We are looking for unτ ∈ Vn that satisfies

Rτ (unτ ) = 0 and u−1nτ = u(−τ), u0nτ = u0. (18)

Notice, that for the sake of simplicity the notation of the operator Rτ is poly-
morphic in the same way as the notation of A here, i.e. denote the families of
operators for all n.

Solving nonlinear parabolic variational equations of type (10) by using mixed
Galerkin 3-leveled linearized schema was intensively studied in papers [26, 27].
Observation 3 states the fact that operator A satisfies the assumptions of The-
orems 1 and 2 from paper [27]. In particular, Theorem 1 in [27] implies that:

Observation 4 Under the assumptions of Observation 3 the following state-
ments hold:

1. Problem (10) has the unique solution in L2(0, T ;V ) ∩ C(0, T ;L2(Ω))
for any u0.

2. Problem (11) has the unique solution in C1(0, T ;Xn) for any u0 and n.

3. ‖un − u‖C(0,T ;L2(Ω)) for n→ +∞.

Moreover, taking into account Theorem 2 in [27] we have:

Observation 5 The problem (18) has the unique solution for any u(−τ) and
u0, moreover

lim
n→+∞,τ→0

‖unτ − u‖τ = 0

where ‖u‖τ = max{‖u(iτ)‖L2(Ω) , i = 1, 2, . . . ,K}.
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