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Abstract. In this paper, we present a numerical solution of a multi-
phase compressible Darcy’s flow of a multi-component mixture in a
porous medium. The mathematical model consists of mass conservation
equation of each component, extended Darcy’s law for each phase, and
an appropriate set of the initial and boundary conditions. The phase
split is computed using the phase equilibrium computation in the V TN -
specification (known as VTN-flash). The transport equations are solved
numerically using the mixed-hybrid finite element method and a novel
iterative IMPEC scheme [1]. We provide two examples showing the per-
formance of the numerical scheme.
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1 Introduction

The mathematical modeling of compositional flow in a porous medium is an im-
portant topic in chemical engineering and has many applications in the industry,
e.g., CO2 sequestration or enhanced oil recovery. The mathematical model has
to include a transport equation for each component in the mixture and a ther-
modynamical model describing the local equilibrium behavior.

In literature, two main approaches for solving the transport equations are
common. The first approach, known as IMPEC [2], solves the equations in two
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steps. First, the pressure equation is solved implicitly to get the pressure field.
Then, the concentrations of the first n−1 components are updated explicitly us-
ing the pressure from the previous step. The concentration of the last component
is updated using the previous ones, the total concentration, and the equation of
state. The conservation of mass holds for the n−1 components. However, for the
last n-th component, the conservation of mass does not hold [1]. Chen et al. [1]
presented a novel iterative IMPEC scheme where the conservation of mass of all
components is guaranteed. An alternative to the IMPEC approach is the one
of Young and Stephenson [3], where a method based on the Newton-Raphson
iterations is used.

Concerning the thermodynamical model, traditionally, the PTN approach
(constant pressure, temperature, and moles) [4, 5] is used to determine the com-
position of equilibrium phases. No matter how wide-spread the PTN -specification
is, the approach has some limitations [6, 7], e.g., the equilibrium state of the
system is not always determined uniquely. Alternatively, the V TN approach
(constant volume, temperature, and moles) [6, 8, 9] can be used to determine the
equilibrium state. Since most equations of state are given explicitly in pressure,
i.e., p = p(T, V,N1, . . . , Nn), the V TN -approach has some benefits, e.g., the in-
version of the equation of state does not have be performed, and the equilibrium
states are uniquely determined.

In this work, we are interested in modeling of the compositional flow with the
use of the phase equilibrium computation. One approach, is using the IMPEC
method with PTN approach, e.g., [10–12]. Alternatively, the V TN approach
can be used. In our previous work [7], we use a fully implicit scheme, which gives
the pressure field directly. However, this approach is computationally intensive.
Therefore, we are proposing an alternative method based on the IMPEC strategy
using the V TN -specification.

In this paper, we present a new numerical solution of the multi-phase com-
positional model. The solution is based on a novel iterative IMPEC scheme [1]
that was originally developed for the single-phase compositional flow. In this
paper, we extend this method to multi-phase problems. The stabilization of the
numerical scheme is ensured by an upwind technique. The chemical equilibrium
is computed locally on each finite element using the V TN -phase stability test-
ing and V TN -phase equilibrium computation. In this approach, the Helmholtz
free energy density of the system is minimized to obtain the equilibrium state.
We are using the Newton-Raphson method with line-search and the modified
Cholesky decomposition to find the minimum [8, 13].

The structure of this paper is as follows. In Section 2, the physical and math-
ematical model describing compressible multi-phase multi-component composi-
tional flow will be presented. In Section 3, the numerical solution will be given.
In Section 4, examples showing the performance will be presented. In Section 5,
the results are discussed, and some conclusions are drawn.
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2 Physical and Mathematical model

2.1 Physical model

In this paper, the studied system is a fixed porous medium filled with a multi-
component fluid. The porous medium in our interests are the hydrocarbon reser-
voirs. Based on the injection and the boundary condition, we study the flow of
this multi-component multi-phase fluid through the fixed porous medium.

2.2 Transport equations

Consider a mixture of n components with a constant temperature T . The mass
balance equation for component i ∈ n̂ (the symbol n̂ represents a set of positive
integers not exceeding n) is

∂(φci)

∂t
+∇ · qi = fi, (1)

where φ [-] is the porosity, ci [mol m−3] is the molar concentration (density) of
the i-th component, qi [mol m−2 s−1] is the flux of the i-th component, and
fi [mol m−3 s−1] is the source/sink of the i-th component. For a multi-phase
system without diffusion, the flux qi can be expressed as

qi =

(
Π∑
α=1

cα,iuα

)
, (2)

where cα,i [mol m−3] is the concentration of the i-th component in phase α,
Π is the number of phases presented in the phase split, and uα [m s−1] is the
velocity of phase α. The relation between concentrations ci and cα,i is presented
in Section 2.4. The velocity of each phase is model using Darcy’s law

uα = −λαK (∇p− ραg) , (3)

where λα [kg−1 m s] is the mobility of phase α, K [m2] is the intrinsic perme-
ability tensor, p [Pa] is the pressure, ρα [kg m−3] is the mass density of phase
α, and g [m s−2] is the gravity acceleration. The mobility and the density are
calculated using

λα =
krα(Sα)

ηα (T, cα,1, . . . , cα,n)
, ρα =

n∑
i=1

cα,iMi, (4)

where krα [-] is the relative permeability, Sα [-] is the saturation, ηα [kg m−1

s−1] is the dynamic viscosity, and Mi [kg mol−1] is the molar weight of the i-th
component. In this work, we are using a linear model to compute the relative
permeability:

krα(Sα) = Sα. (5)
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The dynamic viscosity ηα is calculated using the Lohrenz, Bray and Clark
model [14]. The mathematical model has to be supplemented with an equation
which connects the concentrations and the pressure:

p = p(eq) (c1, . . . , cn) . (6)

Details are in Section 2.4. Using equation (6), the mass conservation (1), and
the chain rule

∂p

∂t
=

n∑
i=1

∂p(eq)

∂ci

∂ci
∂t
, (7)

the equation known-as pressure equation can be derived. In the V TN -formulation
the pressure equation reads as

φ
∂p

∂t
+

n∑
i=1

Θi(∇ · qi − fi) = 0, (8)

where Θi = ∂p(eq)

∂ci
.

2.3 Fluxes definition

In this section, we define fluxes needed for the description of the numerical
scheme. Let

qα,i = cα,iuα (9)

be the flux of the i-component of phase α. Then, the flux of phase α is

qα =

n∑
i=1

qα,i = cαuα, (10)

where cα =
∑n
i=1 cα,i is the total concentration of phase α. Lastly, the total flux

q is defined as

q =

Π∑
α=1

qα =

Π∑
α=1

cαuα, (11)

and the total velocity u as

u =

Π∑
α=1

uα. (12)

Inserting equation (3) into previous equation results in

u = −λK
(
∇p− ρ(avg)g

)
, (13)
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where the total mobility λ and the average density ρ(avg) are defined as

λ =

Π∑
α=1

λα, ρ(avg) =

∑Π
α=1 λαρα
λ

. (14)

As the tensor K is positive definite, its inversion exists, and the gradient ∇p
can be expressed from equation (13) as

∇p = −λ−1K−1u + ρ(avg)g. (15)

Inserting previous equation into Darcy’s law (3) results in

uα = λ−1λα

u−
Π∑
β=1

λβ(ρβ − ρα)Kg

 . (16)

Therefore, the flux of the i-th component in phase α is

qα,i = cα,iλ
−1λα

u−
Π∑
β=1

λβ(ρβ − ρα)Kg

 . (17)

2.4 Phase stability testing and phase equilibrium calculation

Depending on the mixture’s temperature and concentrations, the state can be
in one or more phases. The phase stability testing [6] and phase equilibrium
computation [8] is used to determine the number of phases and the composition
of each phase described by c1, . . . , cn and T . In the V TN -phase stability testing
the goal is to predict whether a given state is stable or if this state is unstable
and splitting will occur. The V TN -phase equilibrium computation is used to
determine the composition of the equilibrium state. The problem can be defined
as an optimization task minimizing the objective function

a(Π)
(
c(1), . . . , c(Π),S

)
=

Π∑
α=1

Sαa (cα,1, . . . , cα,n) (18)

subject to

Π∑
α=1

Sα = 1,

Π∑
α=1

Sαcα,i = c∗i , i ∈ n̂, (19)

where a is the Helmholtz free energy density (for details see, e.g., [15, 16]), S =

(S1, . . . , SΠ)
T

and c(α) = (cα,1, . . . , cα,n)
T

for α ∈ Π̂. The necessary equilibrium
conditions are [8]

p(cα,1, . . . , cα,n) = p(cβ,1, . . . , cβ,n), ∀α, β ∈ Π̂, α 6= β, (20)

µi(cα,1, . . . , cα,n) = µi(cβ,1, . . . , cβ,n), ∀α, β ∈ Π̂, α 6= β,∀i ∈ n̂, (21)
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where µi is the chemical potential of the i-th component. If the state is in one
phase (Π = 1), the equilibrium pressure p(eq) (6) is given by the equation of
state

p(eq)(c1, . . . , cn) = p(EOS)(c1, . . . , cn). (22)

In this work, we use the Peng-Robinson equation of state [17] in the following
form

p(EOS) (c1, . . . , cn) =

∑n
i=1 ciRT

1−
∑n
i=1 bici

−
∑n
i,j=1 aijcicj

1 + 2
∑n
i=1 bici − (

∑n
i=1 bici)

2 , (23)

where aij , bi are parameters. See [15, 17] for details. On the other hand, if the
equilibrium state is in Π > 1 phases, the equilibrium pressure p(eq) is given by

p(eq) (c1, . . . , cn) = p(EOS) (cα,1, . . . , cα,n) , (24)

for an arbitrary α ∈ Π̂ since the pressures of each phase in the phase equilibrium
are equal (see equation (20)).

2.5 Initial and boundary conditions

Now, let us summarize the equations and define the initial and boundary con-
ditions. Let Ω ⊂ Rd is a bounded domain and J is a time interval. In J × Ω ,
we solve equations (1) and (8) for p = p(t,x) and ci = ci(t,x), i ∈ n̂. The fluxes
qi are given by equation (2), and the velocities uα are computed using Darcy’s
law (3). The composition of the multi-phase state is determined by solving the
optimization problem given by (18) and (19). The mathematical model has to be
equipped with initial conditions and an appropriate set of boundary conditions.
The initial conditions read as

ci(0,x) = c
(ini)
i , ∀x ∈ Ω, ∀i ∈ n̂, (25)

p(0,x) = p(eq)
(
c
(ini)
1 , . . . , c(ini)

n

)
, ∀x ∈ Ω. (26)

Moreover, we impose the following boundary conditions

p(t,x) = p(D)(t,x),x ∈ Γp, t ∈ J, (27)

qi(t,x) · n(x) = 0,x ∈ Γq, t ∈ J, (28)

where n is the unit outward normal vector to the boundary ∂Ω, Γp ∪ Γq = ∂Ω,
and Γp ∩ Γq = ∅.

3 Numerical solution

In this work, we assume that the computation domain Ω is a 2D rectangular

domain. We use a triangulation τΩ =
{
Ki; i ∈ N̂el

}
, where NEl is the number

of elements. Moreover, we denote NSi the number of sides.
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3.1 Disretization of Darcy’s law

On each element K ∈ τΩ , we shall approximate u in the lowest order Raviar-
Thomas space RT0(K) [18, 19]

u(t,x) =
∑
E∈∂K

uK,E(t)wK,E(x), (29)

where wK,E are the basis functions and uK,E is the velocity across the side E in
the outward direction with respect to K. Multiplying equation (15) with function
wK,E′ , integrating over element K ∈ τΩ , and using the Gauss-Ostrogradski
theorem results in the weak formulation of Darcy’s law

p̂K,E′ − pK = −λ−1
K

∑
E∈∂K

uK,E(t)

∫
K

(K−1wK,E) ·wK,E′dx (30)

+ρ
(avg)
K

∫
K

g ·wK,E′dx,

where we have denoted the average pressures on element K by pK , average traces
of the pressures on side E by p̂K,E , and the average density on element K by

ρ
(avg)
K . Denoting

BKE,E′ =

∫
K

(K−1wK,E) ·wK,E′dx, CKE′ =

∫
K

g ·wK,E′dx, (31)

equation (30) reads as∑
E∈∂K

uK,E(t)BKE,E′ = λK

(
pK − p̂K,E′ + ρ

(avg)
K CKE′

)
. (32)

This equation can be inverted and the velocities uK,E are expressed

uK,E(t) = λK

(
DK
E pK −

∑
E′∂K

(
BK
)−1

E,E′ p̂K,E′ + FKE ρ
(avg)
K

)
, (33)

where

DK
E =

∑
E′∈∂K

(
BK
)−1

E,E′ , FKE =
∑

E′∈∂K

(
BK
)−1

E,E′ C
K
E′ . (34)

Now, we will use continuity assumptions. If side E is not on the boundary, then,

uK′,E + uK,E = 0, (35)

p̂K,E = p̂K′,E =: p̂E , (36)

where K ′ ∩K = E. If side E is on the boundary, then

p̂K,E = p
(D)
E , for E ∈ Γp, (37)

uK,E = 0, for E ∈ Γq. (38)
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Therefore, in equation (33), the velocities uK,E(t) can be eliminated and the
only unknowns are pK , p̂E . If E 6∈ ∂Ω, equation (35) implies

0 =
∑
K⊃E

λK

(
DK
E pK −

∑
E′∈∂K

(
BK
)−1

E,E′ p̂E′ + FKE ρ
(avg)
K

)
. (39)

On the other hand, if E ∈ ∂Ω, then

p̂E = p
(D)
E , if E ∈ Γp, (40)

−λKDK
E pK +

∑
E′∈∂K

λK
(
BK
)−1

E,E′ p̂E′ = λKF
K
E ρ

(avg)
K , if E ∈ Γq. (41)

Previous equations (39)–(41) form a system of linear equation for the unknowns
p̂E , pK :

R1p + R2p̂ = L1, (42)

where R1 ∈ RNSi,NEl , R2 ∈ RNSi,NSi , L1 ∈ RNSi .

3.2 Discretization of pressure equation

Integrating the pressure equation (8) over an element K ∈ τΩ , and using the
divergence theorem results in

0 = φK |K|
dpK
dt

+

n∑
i=1

Θi
∑
E∈∂K

qi,K,E −
n∑
i=1

Θi

∫
K

fidx (43)

Using qi,K,E =
∑Π
α=1 qα,i,K,E , equation (17), and the backwards Euler scheme,

the previous equation can be approximated by

0 = φK |K|
pm+1
K − pmK
∆t

−
n∑
i=1

Θm+1
i

∫
K

fm+1
i dx + pm+1

K Xm+1
K

+
∑

E′∈∂K

p̂m+1
E′ Y m+1

E′ + Zm+1
K ,

(44)

where

XK =

n∑
i=1

∑
E∈∂K

Π(K)∑
α=1

Θicα,i,Kλα,KD
K
E (45)

YE′ =

n∑
i=1

∑
E∈∂K

Π(K)∑
α=1

−Θicα,i,Kλα,K (BK)
−1
E,E′ , (46)

;ZK =

n∑
i=1

∑
E∈∂K

Π(K)∑
α=1

λ−1
K Θicα,i,Kλα,K

(
λKF

K
E ρ

avg
K

−
Π(K)∑
β=1

λβ,K(ρβ,K − ρα,K)FKE

)
,

(47)
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where cα,i,K is the average concentration of the i-th component in phase α on
element K. Equation (44) forms a system of linear equation for the unknown
pm+1
K and p̂m+1

E′

R3p + R4p̂ = L2, (48)

where R3 ∈ RNEl,NEl , R4 ∈ RNEl,NSi , and L2 ∈ RNEl . To conclude, combining
equations (42) and (48) gives final system for the pressure field(

R3 R4

R1 R2

)(
p
p̂

)
=

(
L2

L1

)
. (49)

The matrix R3 is diagonal, therefore, its inversion R−1
3 is readily available.

Multiplying equation (48) with R−1
3 gives

p = R−1
3 L2 −R−1

3 R4p̂ (50)

Therefore, the unknowns p can be eliminated from the system (49), and only
the pressure traces p̂ are computed using

(R2 −R1R
−1
3 R4)p̂ = L1 −R1R

−1
3 L2. (51)

In this work, we use the C++ numerical library Armadillo [20, 21] to solve system
(51). Having the pressure traces p̂, the pressures p and consequently, the discrete
velocities uK,E are computed using equations (50) and (33), respectively.

3.3 Solution of transport equations

Having the pressure field, the concentrations are updated using the explicit finite-
volume method. Integrating equation (1) over K ∈ τΩ , using the divergence
theorem, and the Euler scheme results with an approximation of equation (1):

cm+1
i,K = cmi,K +

∆t

φ|K|

(
|K|fmi,K −

∑
E∈∂K

qmi,K,E

)
, (52)

where ci,K and fi,K are the average concentration and source/sink of the i-th
component on element K, respectively. The fluxes qi,K,E are calculated using
the upwind scheme

qi,K,E =


∑
α∈Π̂+(K,E)

qα,i,K,E −
∑
β∈Π̂+(K,E)

qβ,i,K′,E , ∀E 6∈ ∂Ω,∑
α∈Π̂+(K,E)

qα,i,K,E , ∀E ∈ Γp,
0, ∀E ∈ Γq.

(53)

where Π̂+(K,E) =
{
α ∈ Π̂(K); qα,i,K,E > 0

}
for E ∈ ∂K and

qα,i,K,E = cα,i,Kλ
−1
K λα,K

uK,E − Π(K)∑
β=1

λβ,K (ρβ − ρα)FK,E

 , (54)

where uK,E is given by equation (33).
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3.4 Algorithm for one time step ∆t

Now, we present the full numerical algorithm. This iterative IMPEC algorithm
is based on numerical scheme presented in [1]. Having solution on time-level tm,
the solution on time level tm+1 is computed using the following algorithm.

1. Set l = 0 and pm+1,0
K = pmK , c

m+1,0
i.K = cmi,K , Θm+1,0

i,K = ∂p(eq)

∂ci

(
cm1,K , . . . , c

m
n,K

)
for K ∈ τΩ , i ∈ n̂.

2. Set l = l + 1.

3. On each element K ∈ τΩ , compute cm+1,l−1
α,i,K and Sm+1,l−1

α,K by solving the
phase equilibrium computation given by equations (18)–(19) with initial con-

centration cm+1,l−1
1,K , . . . , cm+1,l−1

n,K . In this work, we are using numerical so-
lution presented in [13].

4. On each element K ∈ τΩ , update λm+1,l−1
K and ρ

(avg),m+1,l−1
K using equa-

tions (4) and (14) with values cm+1,l−1
α,i,K and Sn+1,l−1

α,K computed in the pre-
vious step.

5. Find pm+1,l
K and um+1,l

K,E by solving system (49) with the concentrations

cm+1,l−1
α,i,K , coefficients Θm+1,l−1

i,K , total mobility λm+1,l−1
K , and average den-

sity ρ
(avg),m+1,l−1
K .

6. On each element K ∈ τΩ , for all i ∈ n̂ update cm+1,l
i,K explicitly by

cm+1,l
i,K = cmi,K +

∆t

φ|K|

(
|K|fmi,K −

∑
E∈∂K

qm+1,l−1
i,K,E

)
, (55)

where the flux qm+1,l−1
i,K,E is evaluated using the velocity um+1,l

K,E and concen-

trations cm+1,l−1
α,i,K .

7. On each element K ∈ τΩ , for all i ∈ n̂ update Θm+1,l
i,K by

Θm+1,l
i,K =

p(eq)(c(1))− p(eq)(c(2))

cm+1,l
i,K − cmi,K

, (56)

where

c(1) =
(
cm+1,l
1,K , . . . , cm+1,l

i,K , cmi+1,K , . . . , c
m
n,K

)T
, (57)

c(2) =
(
cm+1,l
1,K , . . . , cm+1,l

i−1,K , c
m
i,K , . . . , c

m
n,K

)T
. (58)

To compute the pressures, the phase equilibrium computation is used to
determine the number of phases and the equilibrium pressure.

8. Check convergence. If the convergence criteria are met, set

pm+1
K = pm+1,l

K , cm+1
i,K = cm+1,l

i,K , ∀K ∈ τΩ ,∀i ∈ n̂, (59)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_13

https://dx.doi.org/10.1007/978-3-030-77980-1_13


Multi-phase compressible compositional simulations with flash computation 11

and terminate the Algorithm. Otherwise, go to step 2. In this work, we
terminate the algorithm if the maximum number of iterations lmax is reached
or the criterion

max


∥∥pm+1,l − pm+1,l−1

∥∥
‖pm+1,l‖

,

n∑
i=1

∥∥∥cm+1,l
i − cm+1,l−1

i

∥∥∥∥∥∥cm+1,l
i

∥∥∥ ,

n∑
i=1

∥∥∥Θm+1,l
i −Θm+1,l−1

i

∥∥∥∥∥∥Θm+1,l
i

∥∥∥
 < ε,

(60)

is fullfilled. In previous equation ‖·‖ is the L2(Ω) norm and ε is a given
tolerance.

4 Numerical results

In this section, we provide two numerical examples. In both examples, the com-
putation domainΩ is a square domain of size 50×50 meters with porosity φ = 0.2
and isotropic permeability K = k = 9.87 × 10−15 m2, i.e., 10 mD. Moreover,
we use a triangular mesh with 2× 20× 20 elements, i.e., total 400 elements are
used. The final time in both examples is tfinal = 150 days. The ε tolerance is set
to ε = 10−8, and the maximum number of inner iterations is set to lmax = 30.
For the computation, a computer with Intel(R) Core(TM) i7-8700 (3.20GHz)
processor was used.

4.1 Example 1: C1 injection

In the first example, we simulate the injection of methane (C1) into a horizontal
(i.e., no gravity) reservoir. The reservoir is initially filled with with a mixture
of 95 % propane and 5 % methane at a constant pressure p = 6.9 MPa and
temperature T = 311 K. The mixture with 95 % of the methane is injected
at the right bottom corner. The rate of the injection is 125.33 m2 per day at
atmospheric pressure and temperature 293 K. In Table 1, the parameters for the
Peng-Robinson equation of state are presented. The binary interaction coefficient
is δC1−C3

= 0.0365. The boundary of the domain is impermeable except for the
outflow corner where pressure p = 6.9 MPa is maintained. The time step was
set to ∆t = 3000 seconds. In Figure 1, the iso-lines of methane mole fraction at
different times are depicted. The values are from 0.05 to 0.95 with a step size
0.1. Moreover, in Figure 1, the two-phase region is depicted in the black color.
The total computation time was 2.5 hours.

4.2 Example 2: CO2 injection

In the second example, we simulate the injection of carbon dioxide (CO2) into
a vertical (i.e., with gravity) reservoir. The reservoir is initially filled with pure

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_13

https://dx.doi.org/10.1007/978-3-030-77980-1_13


12 T. Smejkal and J. Mikyška

propane at a constant pressure p = 5 MPa and temperature T = 311 K. The CO2

is injected at the right bottom corner. The rate of the injection is 125.33 m2 per
day at atmospheric pressure and temperature 293 K. In Table 1, the parameters
for the Peng-Robinson equation of state are presented. The binary interaction
coefficient is δC1−C3

= 0.15. The boundary of the domain is impermeable ex-
cept for the outflow corner where pressure p = 5 MPa is maintained. To reach
convergence, the time step had to be decreased to ∆t = 500 seconds and the
maximum number of iteration increased to lmax = 50. In Figure 2, the iso-lines
of carbon dioxide mole fraction at different times are depicted. The values are
from 0.05 to 0.95 with step size 0.1. Moreover, in Figure 2, the two-phase region
is depicted in the black color. The total computation time was approximately
24 hours.

component Tcrit [K] Pcrit [MPa] ω [-] M [g mol−1] Vcrit [m3 kg−1]

C1 190.56 4.599 0.011 16.0 6.10639 × 10−3

C3 369.83 4.248 0.153 44.096 4.53554 × 10−3

CO2 304.14 7.375 0.239 44.0 2.13589 × 10−3

Table 1. Component properties.

0.05

0.95

a) 25 days

0.05

0.95

b) 50 days

0.05

0.95

c) 75 days

0.05

0.95

d) 100 days

0.05

0.95

e) 125 days

0.05

0.95

f) 150 days

Fig. 1. The iso-lines of methane mole fraction in different times. The values are from
0.05 to 0.95 with step size 0.1. The two-phase area is depicted in the black color.
Example 1: C1 injection.
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0.95

a) 25 days

0.05

0.95

b) 50 days

0.05
0.95

c) 75 days

0.05

0.95

d) 100 days

0.05
0.95

e) 125 days

0.05

0.95

f) 150 days

Fig. 2. The iso-lines of carbon dioxide mole fraction in different times. The values are
from 0.05 to 0.95 with step size 0.1. The two-phase area is depicted in the black color.
Example 2: CO2 injection.

5 Conclusion

In this paper, we presented a new numerical solution of multi-phase composi-
tional flow in a porous medium. The numerical solution is based on mixed-hybrid
finite element method and a novel iterative IMPEC scheme. Unlike in tradition
solvers, the local thermodynamical behaviour is determined by the phase equilib-
rium computation in the V TN -specification. Using this specification, unpleasant
properties such as non-uniqueness of the equilibrium states are avoided. We pro-
vided two examples showing the performance of the numerical scheme. In the
second example, the time step has to be significantly decreased to reach conver-
gence. Investigation of this phenomenon is our current research.
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