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Abstract. This paper presents an index calculus method for elliptic
curves over prime fields using quantum annealing. The relation searching
step is transformed into the QUBO (Quadratic Unconstrained Boolean
Optimization) problem, which may be efficiently solved using quantum
annealing, for example, on a D-Wave computer. Unfortunately, it is hard
to estimate the complexity of solving the given QUBO problem using
quantum annealing. Using Leap hybrid sampler on the D-Wave Leap
cloud, we could break ECDLP for the 8-bit prime field. The most power-
ful general-purpose quantum computers nowadays would break ECDLP
at most for a 6-bit prime using Shor’s algorithm. In presented approach,
the Semaev method of construction of decomposition base is used, where

the decomposition base has a form B =
{
x : 0 ≤ x ≤ p

1
m

}
, with m being

a fixed integer.

Keywords: Cryptanalysis · index calculus on elliptic curves · quantum
annealing · QUBO · D-Wave.

1 Introduction

Quantum computing is a significant branch of modern cryptology. As was pre-
sented in the introduction, several quantum algorithms support the cryptanalysis
of public-key schemes. In the last few years, notable progress in this field has been
established. The two approaches of quantum computing for cryptography are the
most popular nowadays. The first one is an approach using quantum annealing,
which is used in D-Wave computers. The second one is the general-purpose quan-
tum computing approach. The first approach has limited applications, where
mainly QUBO and Ising problems may be solved using such quantum comput-
ers. On the other hand, several cryptographical problems may be translated to
the QUBO problem, for example, integer factorization. The quantum factoriza-
tion record belonged to the D-Wave computer for some time, where Dridi and
Alghassi [3] factorized integer 200, 099. This result was later beaten by Jiang et
al. [6], where 376, 289 was factorized, and by Wang et al. [11], where they factor-
ized 20-bit integer 1, 028, 171. Furthermore, general-purpose quantum computers
have limited resources. The most potent Intel, IBM, and Google quantum com-
puters have 49, 53, and 72 qubits, respectively [5], [10], [4]. Resources of general
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quantum computers are nowadays too small to solve real-world cryptography
problems.

This paper shows how to transform the relation searching step for the index
calculus method on elliptic curves into the optimization problem. The relation
searching problem is transformed into the QUBO (Quadratic Unconstrained
Boolean Optimization) problem, where constraints are exchanged by penalties
added to the objective function.

Even though Shor’s quantum algorithm for factorization, discrete logarithm
problem, and elliptic curves discrete logarithm problem is known to be efficient
(it works in polynomial time), present quantum computers (even the most pow-
erful) can solve ECDLP defined on at most 6-bit prime field Fp. Using the index
calculus method and transformation of relations searching step to the QUBO
problem, we solved the biggest ECDLP problem using the quantum method
nowadays. Using Leap hybrid sampler on the D-Wave Leap cloud, we broke
ECDLP for elliptic curve defined over 8-bit prime field Fp, where p = 251.

2 Index calculus method on elliptic curves using quantum
annealing

2.1 Index calculus and summation polynomials

One of the most interesitng index calculus method on elliptic curve was firstly
described by Semaev in [9], where he introduced summation polynomials. The
summation polynomials have been defined there for elliptic curve in short Weier-
strass form E/Fp : y2 = x3+Ax+B. Semaev summation polynomials have roots,
when curve points sum to O. The 2-nd Semaev polynomial is given by

f3(x1, x2) = x1 − x2. (1)

Using elementary methods it is also possible to find 3-rd Seamev polynomial as

f3(x1, x2, x3) = x22x
2
3 − 2x1x2x

2
3 + x21x

2
3 − 2x1x

2
2x3 − 2x21x2x3

−2Ax2x3 − 2Ax1x3 − 4Bx3 + x21x
2
2 − 2Ax1x2 − 4Bx2 − 4Bx1 +A2.

(2)

For any m ≥ 4 and m− 3 ≥ k ≥ 1, one can find fm (x1, . . . , xm) as

fm (x1, . . . , xm) = Res (fm−k (x1, . . . , xm−k−1, x) , fk+2 (xm−k, . . . , xm, x)) .
(3)

m+ 1-th Summation polynomialsfm+1(x1, . . . , xm, xR) is equal to zero iff there
exist y1, . . . , ym, for which every point of the form (xi, yi), where i = 1,m, lies
on an elliptic curve and their sum (x1, y1)+ · · ·+(xm, ym) is equal to (xR, yR) ∈
E(K). Point (xR, yR) is computed as [α]P + [β]Q for some randomly chosen α
and β. The roots of polynomial fm+1 should be found with a high probability if
xi is bounded by p

1
m .
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2.2 Transformation of relation searching problem into the QUBO
problem

Let us define the Semaev approach of relation searching

Problem 1 
fm+1(x1, . . . , xm, xR) = 0,

0 ≤ x1 ≤ p
1
m ,

. . .

0 ≤ xm ≤ p
1
m ,

(4)

where fm+1(x1, . . . , xm, xR) is m+ 1-th Semaev polynomial.

We consider an approach of Semaev of relations searching given by Problem
1. To formulate the QUBO problem, we have to have some function to minimize,
and we should not have any constraints. Problem 1 consists only of constraints.
So to transform, one needs to take the following steps.

1. At first, all variables need to be changed to binary form. If variable z is
from interval U = a, b, the easiest way is to find surjection g : 2l → U , where
z = g(z1, . . . zl) = a+

∑s−1
i=0 (2izi)+((b−a)+1−2s)zl, and l = blog2 (b− a)c.

This idea may be found in [2].
2. After transforming each of the variables, one has to make substitutions in

polynomial fm+1.
3. In the next step, we linearize the equation fm+1(x1, . . . , xm, xR) = 0, so

all monomials of the degree of bigger than 1 have to be substituted using
new variables xixj = uk. Additionally, these constraints also need to be
changed to the penalty to add it to the QUBO problem, but penalties will be
added later. Each penalty monomial of the form xixjxl will be constructed,
according to [6], in the following way xixjxl → ukxl = xluk + 2(xixj −
2uk(xi + xj) + 3uk).

4. In the next step, it is necessary to convert equation fm+1(x1, . . . , xm, xR) =
0, which is a modular equation, to equation over Z. To make such trans-
formation, it is necessary to write fm+1(x1, . . . , xm, xR) − vp = 0, where
v is some positive integer. One can bound v if he previously computes the
maximal value of fm+1 over Z. Let us assume that maximal value of fm+1

over Z is equal to fmax. Then v ≤ log2

⌊
fmax

p

⌋
+ 1. Of course, we should also

transform v into binary form, as presented in Step 1.
5. Finally, to use constraint that fm+1(x1, . . . , xm, xR) − vp = 0 in a mini-

mization problem, one has to use this constraint as a penalty, where the
right values of variables result in that such penalty is equal to 0, and the
penalty is bigger than 0 otherwise. So one needs to construct this penalty as
(fm+1(x1, . . . , xm, xR)− vp)2. Because fm+1(x1, . . . , xm, xR) was previously

linearized, in (fm+1(x1, . . . , xm, xR)− vp)2 only monomials of degree 2 may
exist. Moreover, now one can add penalties obtained during linearization in
the previous step. Each penalty is multiplied by a square of maximal co-
efficient appearing in fm+1(x1, . . . , xm, xR), to get a high probability that
minimal energy will be obtained only for a proper solution
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After making the steps above, one obtains the QUBO problem, which has to be
minimized.

Therefore, the number of variables in the QUBO problem is equal to

2
(⌊

log2 p
1
m

⌋
+ 1
)

+blog2 vc+1+ c, where c is the number of auxiliary variables

obtained during linearization.
Now we will estimate how many variables one needs to solve Problem 1 for

m = 2. Let us note that (after transformation to binary form) f3 is polynomial

of degree 4 of 2l boolean variables, where l =
⌊
log2 p

1
m

⌋
+ 1. It means that

(fm+1(x1, . . . , xm, xR)− vp)2 is polynomial of degree 8 of 2
(⌊

log2 p
1
m

⌋
+ 1
)

+

blog2 vc+ 1 variables. Let us try to estimate the maximal value of v. Let us note
that after transformation to boolean variables, in fm+1(x1, . . . , xm, xR) appear
all possible combinations of monomials, where is one monomial of degree 0, 2l
monomials of degree 1, 3l2 − 2l monomials of degree 2, 2l(l2 − l) monomials of
degree 3, and (l2 − l)2 monomials of degree 4. Summing up, we have (l2 − l)2 +
2l(l2 − l) + (3l2 − 2l) + 2l + 1 = l4 + 2l2 + 1 = (l2 + 1)2 monomials at most. It

means that vmax =
⌊
(l2+1)2(p−1)

p

⌋
<
(
l2 + 1

)2
.

For m = 2, if one wants to linearize polynomial
(fm+1(x1, . . . , xm, xR)− vp)2 (penalties should be stored and added later, but
there will not be necessary to obtain more auxiliary variables), then fm+1 will

consist of at most (l+ 1)2 variables. It means that (fm+1(x1, . . . , xm, xR)− vp)2
will require at most (l+ 1)2 +

⌊
log2 (l + 1)2

⌋
+ 1 variables, because v is equal to

at most vmax = (l + 1)2 and the bit length of v is equal to
⌊
log2 (l + 1)2

⌋
+ 1.

In the case of m ≥ 3, we can estimate the total number of variables in the
following way. At first, let us note that fm+1 is polynomial of m + 1 variables,
but in this case, the last variable (xR) is fixed, so it means that we have m
variables. For each variable in m + 1-th Semaev polynomial, this polynomial
is of degree 2m−1. As previously, let us denote the bit length of each variable
by l. Then, after transformation to binary form, fm+1 will consist of at most(∑2m−1

i=0 li
)m

monomials. If one wants to linearize this polynomial (penalties

should be stored and added later, but there will not be necessary to obtain

more auxiliary variables), then fm+1 will consist of at most s =
(∑2m−1

i=0 li
)m

variables. It means that (fm+1(x1, . . . , xm, xR)− vp)2 will require at most s +
blog2 sc+ 1 variables, because v is equal to at most s and the bit length of v is
equal to blog2 sc+ 1.

Lagrange coefficient in penalties is equal to 2 (Coeffmax)
2
, where Coeffmax

is the maximal coefficient of polynomial fm+1(x1, . . . , xm, xR). It is possible to
obtain a QUBO problem in such a form that a minimal solution is always
equal to 0, including offset. In such case, Lagrange coefficient of polynomial

fm+1(x1, . . . , xm, xR) should be equal to vmaxp <
(∑2m−1

i=0 li
)m

p. The disadvan-

tage of this method is that one obtains larger coefficients in the QUBO problem.
Therefore, it is harder to find the optimal solution because the minimal energy
gap will be proportionally smaller.
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Moreover, the QUBO problem may be (efficiently) solved on computers us-
ing quantum annealing like, for example, a D-Wave computer. An example of
applying the method presented above for an elliptic curve E/F13 : y2 = x3 +
2x+4, where #E(Fp) = 17 is presented in https://github.com/Michal-Wronski/
ECDLP-index-calculus-using-QUBO/blob/main/QUBO Example.pdf.

3 Experiments, results, and discussion

We analyzed an approach when the relation searching problem is transformed
into the QUBO problem. We did several experiments for different sizes of p.
In each experiment, we looked for a relationship for a given random point R.
We used Magma Computational Algebra System (http://magma.maths.usyd.
edu.au/magma/) for precomputations up to obtaining problems in the QUBO
form. We used the D-Wave Leap cloud (cloud.dwavesys.com/leap/), which allows
us to access the D-Wave computer remotely. Using this environment and D-
Wave hybrid Leap sampler, we found a discrete logarithm on the elliptic curve
E/Fp : y2 = x3 + Ax + B, over 8-bit prime p = 251, where A = 1, B = 4. The
curve E order is equal to #E(Fp) = 271, which is prime. The generator is equal
to P = (128, 44), and the resulting point is equal to Q = [k]P = (95, 73). We
used the previous section index calculus method applying the QUBO problem,
with m = 2, to find discrete logarithm logP Q = k = 157. It is, of course, a tiny
example. Still, one should note that according to [7] and [8], breaking ECDLP
for the elliptic curve over an 8-bit prime would require 75 and 88 logical qubits,
respectively, which is more than the biggest quantum computers nowadays have.

Using these estimations and number of variables, for m = 2, being not greater

than
(
l2 + 1

)2
+blog2

(
l2 + 1

)2c+1, we obtained that, using D-Wave, it would be
(optimistically) possible to break ECDLP for 23-bit prime at most, interpreting
our QUBO problem as dense (what seems to be more accurate in this case) and
for 64-bit prime at most, interpreting our QUBO problem as general. Let us note
that according to D-Wave Advantage documentation (https://www.dwavesys.
com/d-wave-two-system), the maximal number of variables for dense problems
is equal to 20, 000 and for general problems is equal to 1, 000, 0000. One should
also note that these are only theoretical expectations because the problem is
minimal energy gap, which is proportionally smaller while p is growing. It results
in that for larger p and larger m, the probability of obtaining minimal solution
instead of suboptimal decreases.

Figure 1 presents how many variables obtained the QUBO problem require,
depending on the bit length of p and given m. Let us note that for m = 3 and
m = 4, the number of variables grows very fast. Thus, solving ECDLP using the
index calculus method for these values of m (or larger) and D-Wave is impractical
nowadays.

Furthermore, the size of the QUBO problem for relation searching, however,
is polynomial to log2 p, but it grows very fast when m grows, and therefore, this
approach seems to be impractical for solving real problems.
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Fig. 1. Maximal total number of variables of QUBO problem for relation searching
for m = 2 using D-Wave.

4 Conclusion and further works

Searching for a single relation depends on the computational complexity of solv-
ing a given optimization problem. It is possible to transform the relation search-
ing problem into the QUBO problem. Solving the QUBO problem is exponential
using classical algorithms [1], but the complexity of solving the QUBO problem
using quantum annealing is unknown. Using the D-Wave Leap cloud, we broke
ECDLP for the 8-bit prime field. Moreover, it would be possible to use D-Wave
to break ECDLP for a maximally 23-bit prime field in a very optimistic case.
However, it is still a small size problem compared to classical computers. It
seems that it is far beyond the abilities of general-purpose quantum computers
available nowadays.

The efficiency of the approach using QUBO may be increased by applying
the following improvements:

– applying the different algorithm of quadratization of the polynomial
(fm+1(x1, . . . , xm, xR)− vp)2, which would result in less number of total
variables or smaller connectivity between variables,

– modifying a method of translation of relation searching step to the QUBO
problem to obtain the larger value of minimal energy gap and thus decreas-
ing the probability of obtaining suboptimal solution instead of the optimal
solution,
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– manual embedding of the given QUBO problem to the D-Wave Advantage
computer. Using D-Wave hybrid Leap sampler, one cannot control how the
problem is decomposed and if the solution is obtained classically or quan-
tumly. Moreover, automatic embedding may give improper solutions.

It seems that if improvements above would be possible to apply, the index cal-
culus method using QUBO would be much more efficient and could be solved
on D-Wave for larger fields. Summing up, this approach seems to have potential
and more research in this area should be done.
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