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Abstract. Quantum obfuscation means encrypting the functionality of
circuits or functions by quantum mechanics. It works as a form of quan-
tum computation to improve the security and confidentiality of quantum
programs. Although some quantum encryption schemes have been dis-
cussed, any quantum asymmetric scheme based on quantum obfuscation
is not still proposed. In this paper, we construct an asymmetric encryp-
tion scheme based on quantum point function, which applies the advan-
tages of quantum obfuscation to quantum public-key encryption. As a
start of the study on applications of quantum obfuscation to asymmetric
encryption, our work will be helpful in the future quantum obfuscation
theory and will therefore promote the development of quantum compu-
tation.

Keywords: Quantum computation · Quantum asymmetric encryption
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1 Introduction

Quantum computation combines ideas of classical information theory, computer
science, and quantum physics [1]. It introduces some quantum concepts including
quantum information, quantum algorithms and quantum error correction, etc.
Among the existing quantum algorithms, quantum obfuscation, which mean-
s encrypting the functionality of circuits or functions by quantum mechanics,
is an emergent branch to improve the security and confidentiality of quantum
information. It is developed from the concept of classical obfuscation.

Classical obfuscation drives from code obfuscation in software engineering. It
means reorganizing and processing the released program so that the processed
code has the same function as previous one. In 2001, Barak et al. [2] first intro-
duced the concept of obfuscation into cryptography and formally defined three
properties of obfuscation. In 2004, Lynn et al. [3] put forward the first positive re-
sult of obfuscation and gave several provable schemes of point obfuscation based
on complex access control under the random oracle model. In 2005, Goldwasser
et al. [4] proved that obfuscation with auxiliary input cannot be realized no mat-
ter whether the auxiliary input is independent of obfuscation programs. In 2014,
Alagic et al. [5] proposed a quantum obfuscator based on quantum topological
computation. In 2016, Alagic et al. [6] formally put forward the definition of
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quantum obfuscation which is a form of quantum computation to protect quan-
tum circuits. In 2019, Shang et al. [7,8] initiated the obfuscatibility of quantum
point function and proposed the indistinguishability(IND)-secure quantum sym-
metric encryption scheme based on point obfuscation.

In this paper, we construct an asymmetric encryption scheme based on quan-
tum point obfuscation. We combine the advantages of quantum obfuscation with
asymmetric encryption to achieve indistinguishability security. Here, quantum
point function is just an instantiation of quantum obfuscation. Asymmetric en-
cryption schemes of other quantum functions still remain widely open.

2 Related Works

Definition 1 If there exists (O, δ) in a QPT algorithm of indistinguishability
obfuscation, then the following three conditions hold:

1. Functional equivalence: the obfuscation result O(C) is interpreted as δO(C),
which holds the same functionality as the input circuit C:

∥δO(C) − C∥ ≤ negl(n). (1)

2. Polynomial slowdown: the length of the obfuscator O(C) must be limited to
polynomial qubits, which refers to

∥O(C)∥ = poly(n). (2)

3. Indistinguishability: for any ρn ∈ Rn, σn ∈ Sn, there are three types of
indistinguishability:
– Perfect indistinguishability: ρn = σn.
– Statistical indistinguishability: ∥ρn − σn∥ ≤ negl(n).
– Computational indistinguishability: for any QPT interpreter δ, ∥δρn −

δσn∥ ≤ negl(n).

Among the formula above, the interpreter δ(C) refers to a compiler inter-
preting the functionality of the circuit C from O(C).

Definition 2 A quantum point function Uα,β with a general output is

Uα,β : |x, 0n⟩ 7→ |x, Pα,β(x)⟩. (3)

where α ∈ {0, 1}n, β ∈ {0, 1}n\0n, and Pα,β is a classical point function with a
multi-bit output working as

Pα,β(x) =

{
β if x = α
0n otherwise

. (4)

By means of constructive proof, Shang et al. [7,8] demonstrated the obfus-
catability of the quantum point function with a general output.
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3 Quantum Asymmetric Encryption Scheme

3.1 Basic Idea

Quantum asymmetric encryption scheme based on quantum obfuscation can be
constructed as follows. Firstly, we implement operation of qubit rotation and
measurement before we obtain a quantum state. Then we interact the quantum
state with the obfuscated quantum point function to get the qubit |0⟩ or |1⟩. We
consequently encrypt the coefficients of the quantum state of point obfuscation
by the asymmetric encryption algorithm.

Definition 3 Single-qubit rotation is a one-way function with a quantum trap-
door. The qubit is located in the x-z plane of three-dimensional Bloch sphere. The
eigenstate |0⟩ is located in the positive half axis of z-axis and the eigenstate |1⟩
in the negative half. Single-qubit rotation is actually a rotation transformation
around y-axis. That is

γ̂ = i(|1⟩⟨0| − |0⟩⟨1|). (5)

The eigenstates are transformed into quantum superposition states on x-z
plane, and the sum probabilities of eigenstate |0⟩ and |1⟩ is 1 which can be
written as trigonometric function:

|φ⟩ = cos
α

2
|0⟩+ sin

α

2
|1⟩. (6)

Supposing γ̂ = i(|1⟩⟨0| − |0⟩⟨1|), we have

|φb (αk)⟩ = cos
bαk

2
|0⟩+ sin

bαk

2
|1⟩ = e

ibαkγ̂

2 |0⟩ = R (bαk) |0⟩. (7)

The first result |φbi,mi (αk)⟩i is transformed by the second rotation on the
basis of superposition state. When the output state |mi⟩ of quantum point ob-
fuscation is |0⟩, rotation about angle 0 is performed in Hilbert space. When the
|mi⟩ is |1⟩, rotation about angle π is performed. We can show the process with
the formula

|φbi,mi (αk)⟩i = R (miπ) |φbi (αk)⟩i . (8)

The previous result is inversely processed by qubit rotation shown in Fig. 1
and is subsequently measured after decryption. That is, if the information to
be encrypted is |0⟩, it will approach the positive half axis of z-axis with high
probability after rotation. If it is |1⟩, it will approach the negative half with high
probability. After measurement, we can get specific plaintext mi.

3.2 Scheme

Key generation Firstly, we randomly select an integer string b = (b1, b2, ···, bK)
of length K, a rotation angle αk = 2π

2k
= π

2k−1 where k is a positive integer, and

the eigenstate |0⟩⊗d of d qubits to generate the corresponding public and private
keys. Here we introduce a randomly generated 2(d+1) bits string s = {0, 1}2d+2
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Fig. 1. Two dimensional planes of second qubit rotation.

and another random string t = {0, 1}2d+2 of the same length which is only
known by sender (the public key holder). We define Ca,b as a classical one-way
trapdoor function and its trapdoor is u = (C−1

0,0 , C
−1
0,1 , · · · , C

−1
K,0, C

−1
K,1), where

C−1
a,b represents the inverse function of Ca,b. The algorithm based on function Ca,b

is easy to generate but difficult to inverse unless trapdoor u is used. Supposing
a = 0, 1, · · · ,K, the sender chooses Ca,0 or Ca,1 to encrypt the coefficients x or
y of the superposition quantum state output from quantum obfuscation.

The private key of the encryption scheme is divided into two parts: {k, b}
and u = (C−1

0,0 , C
−1
0,1 , · · · , C

−1
K,0, C

−1
K,1). The former is used to decrypt the quan-

tum obfuscated state so as to obtain the specific angle of the inverse rotation
operation while the latter is used to decrypt the quantum state after the second
rotation.

Encryption Alice wants to send Bob a multi-qubit string |m⟩ = | (m1,m2, · · · ,md)⟩.
Firstly, we need to compare d and K, if d > K, we need to extend the length
of K in the public key. For the ith qubit |mi⟩, we interact it with quantum
point function and obtain |0⟩ or |1⟩ after obfuscation. Then we implement qubit
rotation operation to get |φbi (αk)⟩i = R (biαk) |0⟩i and consequently imple-
ment qubit rotation operation for the second time to get qi = |φbi,mi (αk)⟩i =
R (miπ) |φbi (αk)⟩i. Finally, we encrypt the quantum superposition state result
qi = x|0⟩+ y|1⟩. The specific encryption steps are described as follows.
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The plaintext information to be encrypted is the coefficients of the superpo-
sition state q = qdqd−1 · · · q0 of (d + 1) qubits. For example, the coefficients of
the first qubit are encrypted by the sender as C0,t0 (x0) , C0,t1 (y0). In addition,
Alice also sends a function of string t = {0, 1}2d+2. For any a = 0, 1, · · · , d, the
use of Ca,0 (ta) or Ca,1 (ta) depends on the fact that whether sa is |0⟩ or |1⟩.
Thus we have

En(q) =
{
C0,t0 (x0) , C0,t1 (y0) , · · · , Cd,t2d (xd) , Cd,t2d+1

(yd) , F (t)
}
, (9)

F (t) = {C0,s0 (t0) , · · · , Cd,sd (td) , C0,sd+1
(td+1) , · · · , Cd,s2d+1

(t2d+1)}. (10)

In this way, Alice sends Bob the result
{∣∣φb(PK) (αk)

⟩
, En(q)

}
.

Decryption Bob receives the ciphertext from Alice. Firstly, we get the quan-
tum state |φbi (αk)⟩i corresponding to each qubit |mi⟩ with the private key sk =
{k, b}. Thus we obtain the angle of the first qubit rotation operation. As we have
defined above, the trapdoor of the abstract function is u = (C−1

0,0 , C
−1
0,1 , · · · , C

−1
k,0, C

−1
k,0).

Next, we utilize the trapdoor in the public key to get the coefficients of q =
qdqd−1 · · · q0. We know qi = |φbi,mi (αk)⟩i = R (miπ) |φbi (αk)⟩i, so we have

F−1(t) = {C−1
0,s0

(t0) , · · · , C−1
d,sd

(td) , C
−1
1,s+2 (td+2) , · · · , C−1

d,s2d+1
(t2d+1)}, (11)

Dn(q) = {C−1
0,t0

(x0) , C
−1
0,t1

(y1) , · · · , C−1
d,t2d

(xd) , C
−1
d,t2d+1

(yd) , F
−1(t)}. (12)

At this time, we measure R (biαk)
−1
i |φbi,mi

(αk)⟩i on the x-z plane of the
Bloch sphere. If the qubit is on the positive half axis of the Z axis, the output
of quantum point function is |0⟩. If it is on the negative half, the output is |1⟩.
At this time, Alice replaces s with t and publishes the new private key sk.

4 Security Analysis

4.1 Key updating

This scheme updates s in the public key with the classical bit string t = {0, 1}2d+2

generated randomly each time. Alice generates t randomly, and Bob needs to use
the private key (C−1

0,0 , C
−1
0,1 , · · · , C

−1
K,0, C

−1
K,1) to calculate t, and then obtain the

coefficients of the quantum state qi = |φbi,mi (αk)⟩i = R (miπ) |φbi (αk)⟩i.
Because t is not published to the public, Bob can verify the identity infor-

mation of the encrypting party while using the private key. The encryption and
decryption scheme can be carried out in two directions and circularly.

4.2 Indistinguishablility Security

Theorem 1 If there exist quantum black-box obfuscation and secure quantum
one-way trapdoor function, there also exists a quantum asymmetric encryption
scheme which satisfies indistinguishability chosen-plaintext attack (IND-CPA)
security.
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Proof 1 A quantum polynomial time interpreter δ with only black-box access to
Ensk can be used to simulate the access of any QPT adversary. Because of the
access to the quantum encryption circuit, the interpreter can select a random
number to be used for encryption.

For any QPT adversary, A =
(
R,R−1

)
, u =

∣∣φb(PK) (αk)
⟩
⊗ R (mj), v =∣∣φb(PK) (αk)

⟩ (∣∣0d⟩ ⟨0d∣∣⊗mi

)
, we have

| Pr
{
R−1 [PK ⊗R (mi)] = 1

}
− Pr

{
R−1

[
PK

(∣∣0d⟩ ⟨0d∣∣⊗mi

)]
= 1

}
|

=
∣∣Pr{R−1 [u,O (Ub,k)] = 1

}
− Pr

{
R−1 [v,O (Ub,k)] = 1

}∣∣
≤
∑
k

∣∣Pr{R−1[u, β(b)] = 1
}
− Pr

{
R−1[v, β(b)] = 1

}∣∣ · Pr{R−1
1 [u,O (Ub,k) = β(b)]

}
.

(13)
Here R−1

1 is the subline of R−1. Owing to the virtual black-box property, there is∣∣Pr [R−1 (O (Ub,k)) = 1
]
− Pr

[
SUb,k

(∣∣0d⟩) = 1
]∣∣ ≤ negl(n) (14)

And we have∑
k

∣∣Pr{R−1[u, β(b)] = 1
}
− Pr

{
R−1[v, β(b)] = 1

}∣∣ · Pr{R−1
1 [u,O (Ub,k) = β(b)]

}
≤
∑
k

∣∣Pr{R−1[u, β(b)] = 1} − Pr
{
R−1[v, β(b)] = 1

}∣∣ · ∣∣Pr{SUb,k
(∣∣0d⟩) = b

}
+ negl(n)

∣∣
(15)

When S under the quantum-accessible random oracle accesses Ub,k successfully,
β(b) = bk, otherwise β(b) = 0. So∑

k

∣∣Pr{R−1[u, β(b)] = 1
}
− Pr

{
R−1[v, β(b)] = 1

}∣∣ · ∣∣Pr{SUb,k
(∣∣0d⟩) = b

}
+ negl(n)

∣∣
=
∣∣Pr{R−1 [u, bk] = 1

}
− Pr

{
R−1 [v, bk] = 1

}∣∣ · ∣∣Pr{SUb,k
(∣∣0d⟩) = b

}
+ negl(n)

∣∣
+
∣∣Pr{R−1[u, 0] = 1

}
− Pr

{
R−1[v, 0] = 1

}∣∣ · ∣∣Pr{SUb,k
(∣∣0d⟩) = 0

}
+ negl(n)

∣∣
(16)

Owing to Pr
{
SUbk

(∣∣0K⟩)
= bk

}
= poly(n)/2n ≤ negl(n) and IND-security of

one-time pad, we have∣∣Pr{R−1[u, 0] = 1
}
− Pr

{
R−1[v, 0] = 1

}∣∣
= | Pr

{
R−1

[∣∣φb(PK) (αk)
⟩
⊗R (mi)

]
= 1

}
− Pr

{
R−1

[∣∣φb(PK) (αk)
⟩ (∣∣0d⟩ ⟨0d∣∣⊗mi

)]
= 1

}
|

=negl(n)

(17)

Thus we have∣∣Pr{R−1 [PK ⊗R (mi)] = 1
}
− Pr

{
R−1

[
PK

(∣∣0d⟩ ⟨0d∣∣⊗mi

)]
= 1

}∣∣
≤
∣∣Pr{R−1 [u, bk] = 1

}
− Pr

{
R−1 [v, bk] = 1

}∣∣ · |negl(n) + negl(n)|
+ negl(n) ·

∣∣Pr{SUb,k
(∣∣0d⟩) = 0

}
+ negl(n)

∣∣ = negl(n)

(18)

In conclusion, the asymmetric encryption scheme of quantum obfuscation
satisfies indistinguishability security.
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5 Conclusion

In this paper, we presented an asymmetric encryption scheme based on quantum
point obfuscation. It not only achieves indistinguishability security without clas-
sical cryptography, but also solves the problem of key management in symmetric
encryption. This work promotes the research on quantum computation and pro-
vides quantum obfuscation as a more secure method to achieve confidentiality
of cryptography.
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