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Joanna Wísniewska2[0000−0002−2119−3329], and Marek
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Abstract. Quantum entanglement is an extremely important pheno-
menon in the field of quantum computing. It is the basis of many com-
munication protocols, cryptography and other quantum algorithms. On
the other hand, however, it is still an unresolved problem, especially in
the area of entanglement detection methods. In this article, we present
a computational toolbox which offers a set of currently known methods
for detecting entanglement, as well as proposals for new tools operat-
ing on two-partite quantum systems. We propose to use the concept of
combined Schmidt and spectral decomposition as well as the concept of
Gramian operators to examine a structure of analysed quantum states.
The presented here computational toolbox was implemented by the use
of Python language. Due to popularity of Python language, and its ease
of use, a proposed set of methods can be directly utilised with other
packages devoted to quantum computing simulations. Our toolbox can
also be easily extended.

Keywords: quantum entanglement · quantum software · numerical com-
putations.

1 Introduction

Quantum entanglement [20], [2], [15] is the physical phenomenon, already de-
scribed in [5] by Einstein, Podolsky, Rosen. Currently, quantum entanglement
for quantum states [18] is the basis of many quantum information processing pro-
tocols such as teleportation [4], communication [10] and cryptographic protocols
as well [3].

On the other hand, the quantum entanglement phenomenon is still not a well-
understood problem. One of the main issues is the criterion for detecting entan-
glement [7] in quantum pure and mixed states. In the case of bipartite pure
states, the Schmidt criterion can be successfully applied – it gives an unam-
biguous answer whether we are dealing with an entangled state. However, in the
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case of quantum states described by a density matrix, so-called mixed states, the
problem of detecting entanglement is still not solved in computationally effective
way. The general criterion of entanglement detection for density matrix cases is
related to the entanglement witness theory [14], and so far, there is no simple
and fast (especially computationally) entanglement verification criterion for such
type of states. In fact due to the proven NP-hardness [12], [6] of the problem
”entangled or separable?”, it is hardly to expect that such efficient algorithms
do exist on the classical side of computational technologies.

In this paper, we present a selected set of computational methods devoted
to numerical studies of bipartite entanglement in quantum states. The aim is to
develop a publicly available set of functions in Python, which will allow utilising
the proposed package of computational methods also in combination with other
packages related to quantum computing, such as QuTiP [16] and Qiskit [1].

In addition to the implementation of the basic generally known methods, our
EntDetector package also offers an access to methods of entanglement testing
using so-called Gramian matrices [8], as an additional tool for checking the en-
tanglement level between individual qubits in a given pure bipartite state. The
Gramian calculation techniques also allow us to provide a new method of easy
calculation of the density matrix in the case of a bipartite system.

We use Python language in our package, because it is currently very popular
in the field of quantum computing simulation. It seems that available Python
software do not offers enough tools in area of entanglement detection although, of
course, it is necessary to indicate the existence of the packages like Qubit4Matlab
[23] or QETLAB [17], which offer a support in this field. However, they require
a Matlab software [19].

The article is organized as follows: section 2 introduces the basic concepts
and briefly describes the basic math engine that is used in the EntDetector
package. The technical aspects of the package, including examples of usage, are
presented in section 3. A summary is provided in section 4. This paper ends with
acknowledgements and bibliography sections.

2 Mathematical framework

2.1 Spectral and Schmidt decomposition

Let H = Cd2

= Cd ⊗ Cd be a bipartite (A and B) finite dimensional Hilbert
space and let Q ∈ E(H) be a given quantum state. It is well known that the
spectrum of Q (counting multiplicity) σ(Q) = (λ1, λ2, . . . , λd2), is purely discrete
(it is important to point out that the list forming spectrum is ordered in non-
increasing way) and the following spectral decomposition is valid:

Q =

d2∑
i=1

λi|Ψi〉〈Ψi| (1)

where the orthogonal (and normalised) system of eigenfunctions |Ψi〉 of Q forms
a complete orthonormal system of dimH = d2.
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It is important to point out in this moment that the material presented in this
report is valid in the current form only under the assumption that the spectrum
of Q is simple which means that all of the corresponding eigenvalues are non-
degenerated. The general case is technically more involved and will be presented
(due to the limited space here) in an another paper [9].

Each eigenfunction |Ψi〉 can be expanded by the use of the Schmidt decom-
position [11]:

|Ψi〉 =

d∑
j=1

τ ij |ψi
j〉 ⊗ |ϑij〉, (2)

where τ ij ≥ 0,
∑d

j=1(τ ij)2 = 1 and systems {ψi
j} form a complete orthonormal

systems in part A, and resp. {ϑij} in B.
Let us define the following matrix SaSD(Q) (named Schmidt and Spectral

Data) connected to the analysed state Q: it is (d2, (d + 1)) matrix in which we
collect all the appearing Schmidt coefficients τni in the (d2, d) block building
from the first d2 rows and d columns of SaSD(Q), and in the last column we
localize the eigenvalues of Q. Graphically the map SaSD defined on E(H) looks
like:

SaSD(Q) =

 τ11 . . . τ1d λ1
...

. . .
...

...

τd
2

1 . . . τd
2

d λd2

 , (3)

or in coordinates:

SaSD(Q)j,i = τ ij for j = 1 : d2, i = 1 : d, and
SaSD(Q)j,d+1 = λj for j = 1 : d2.

The map SaSD is uniquely defined (all eigenvalues are different) for each Q.
However:

Proposition 1. Let U1, U2 be a pair of unitary maps in Cd i.e. U are SU(d)
group elements, then we define its action on Q as

Q→ (U†1 ⊗ U
†
2 )(Q)(U1 ⊗ U2), (4)

then

SaSD
(

(U†1 ⊗ U
†
2 )(Q)(U1 ⊗ U2)

)
= SaSD(Q). (5)

This means that on each 2(d2 − 1) – dimensional orbit of the local action
of the group SU(d) in the space E(H) of dimension (real) d4–1, the (d2(d +
1) − (d2 + 1))-dimensional table SaSD do not change its value. For the pair of
qudits of an arbitrary dimensions from Eq. (5) it follows that the matrix SaSD
is locally unitary invariant. However, still the complete knowledge of SaSD(Q)
is not sufficient for the complete (modulo SU(d) ⊗ SU(d)) determination of Q
as there is still deficit in dimensions at least as large as δ = d4 − d3 − 2d2 + 2,
which for the case of two qubits gives δ = 2.
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Example 1. Let us assume that we have states Qp, Qs with the corresponding
SaSD tables:

SaSD(Qp) =


τ11 . . . τ

1
n 1

1 . . . 0 0
...

. . .
...

...
1 . . . 0 0

 , SaSD(Qs) =

1 . . . 0 λ1
...

. . .
...

...
1 . . . 0 λd2

 . (6)

Then Qp is a pure state and Qs is a separable state.

Remark 1. It should be noted, once again, that in this part of our paper we only
discussed case when the spectrum of Q is simple. In general case, the situation
is more complicated and will be discussed in an another paper [9].

Any scalar function defined on the basis of SaSD(Q) will be locally SU(d)⊗
SU(d) invariant scalar. In particular, the function that is named von Neumann
entropy (vNEN) of the SaSD, which is defined below:

vNEN(Q) =

d2∑
i=1

d∑
j=1

(
− (τ ij)2 log

(
(τ ij)2

))
−

d2∑
i=1

λi log(λi), (7)

is monotone non-increasing under the action of any local quantum operations [9]
and invariant under the action of local unitary operations, where the standard
convention 0 · log 0 = 0 is being used.

Proposition 2. The function vNEN, defined on E(H), is continuous in || · ||1
topology and is SU(d)⊗ SU(d) invariant.

Remark 2. An extensive study of the introduced von Neumann entropy and
other locally unitary invariant functions build on SaSD, and, what is even more
important, the study of functions which are monotonic (in the sense of ma-
jorization theory) and also in the sense of (S)LOCC semi-order relation will be
presented elsewhere [9].

Remark 3. Some computational examples of the use of SaSD are presented at
point 3.3 of this paper.

From the very definition of vNEN it follows that

sup
Q∈E(H)

vNEN(Q) = (d2 + 2) log d, (8)

It easy to observe that the SaSD table on which the introduced global entropy
vNEN attains its maximal value looks like :

SaSD(Q) =


1√
d
. . . 1√

d
1
d2

...
. . .

...
...

1√
d
. . . 1√

d
1
d2

 , (9)
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and corresponds to the (d2 − 1)2 – dimensional manifold of maximally mixed
states in E(H).

The extended SaSD table, denoted as exSaSD, is obtained from SaSD by
adding to SaSD, defined in Eq. 3, two additional columns obtained from Schmidt
decompositions (Eq. 2):

exSaSD(Q) =

 τ11 . . . τ1d λ1 ψ1
1 . . . ψ1

d ϑ11 . . . ϑ1d
...

. . .
...

...
...

. . .
...

...
. . .

...

τd
2

1 . . . τd
2

d λd2 ψd2

1 . . . ψd2

d ϑd
2

1 . . . ϑd
2

d

 . (10)

Locally available information on state Q, as is well known, is contained in the
corresponding density matrices. Owing to the obtained below decomposition, the
computation of the corresponding reduced density matrices is very easy now.

Taking Eq. 2 into account, and after few lines of calculations, we obtain:

QB = TrA (Q) = TrA

 d2∑
i=1

λi|Ψi〉〈Ψi|

 =

d2∑
i=1

λiQ
B
i , (11)

where the operators QB
i =

∑d
j=1 |τ ij |2|ϑij〉〈ϑij | are states on the subsystem B.

Similarly, for the reduced density matrix connected to the observer relating
to the subsystem A:

QA = TrB (Q) = TrB

 d2∑
n=1

λn|Ψn〉〈Ψn|

 =

d2∑
n=1

λnQ
A
n , (12)

where QA
n =

∑d
i=1 |τni |2|ψn

i 〉〈ψn
i | are states, this time, on the subsystem A.

The obtained systems of operators {QA
n } and {QB

n } are consisting of non-
negative, and therefore Hermitian, operators and are locally measurable, each
of them. In particular, the squares of the Schmidt coefficients τni in the Schmidt
decompositions of the parent state Q eigenfunctions are observable (measurable)
quantities.

Proposition 3. Let H = Cd2

= Cd ⊗ Cd be a bipartite Hilbert space and let
Q ∈ E(H). Let (QA, QB) be the pair of corresponding reduced density matrices
and let

QA
n =

d∑
i=1

|τni |2|ψn
i 〉〈ψn

i | and corr. QB
n =

d∑
i=1

|τni |2|ϑni 〉〈ϑni |, (13)

for n = 1 : d2 be the corresponding operators as defined by the use of exSaSD(Q).

Then QA =
∑d2

n=1 λnQ
A
n and QB =

∑d2

n=1 λnQ
B
n .

As the local information is invariant under local unitary action, we can define,
in according to the ideas presented in [8], the following interesting invariant and
monotonic functions.
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Definition 1. Gramian functions of Q:

G(QA
n ) = det

(
1Cd +QA

n

)
=

d∏
j=1

(
1 + (τnj )2

)
, (14)

for n = 1:d2 and 1Cd represents an identity operator in space of the subsystem A.
Identical definitions are also valid in part B of the analysed system.

Proposition 4. For each n the value G(QA
n ) is invariant under the action of

local unitary group, for any unitary map U acting on Cd:

G(UQA
nU
†) = G(QA

n ) and resp. G(UQB
nU
†) = G(QB

n ). (15)

Proof. Obvious. �

Lemma 1. For each n = 1:d2,

sup
Q∈E(Cd2 )

G(QA
n ) = sup

Q∈E(Cd2 )

G(QB
n ) =

d∏
j=1

(
1 +

1

d

)
, (16)

is true.

Let us define also logarithmic volumes of QA
n (resp. QB

n ) as:

gA(n) = logG(QA
n ) = logG(QB

n ) = gB(n), (17)

and also the complete Gram volumes of Q as

gA(Q) =

d2∏
k=1

G(QA
k ) = gB(Q) =

d2∏
k=1

G(QB
k ). (18)

Together with its logarithmic counterparts :

lgA(Q) = log

d2∏
k=1

G(QA
k ) = lgB(Q) = log

d2∏
k=1

G(QB
k ). (19)

Proposition 5. The complete Gram volume gA(Q) of a given Q ∈ E(Cd2

) and
its logarithmic counterpart are locally SU(d)⊗SU(d) invariants of Q. The same
is true for part B of the analysed system. Additionally:

sup
Q∈E(Cd2 )

gA(Q) = sup
Q∈E(Cd2 )

gB(Q) =

 d∏
j=1

(
1 +

1

d

)d2

, (20)

and

sup
Q∈E(Cd2 )

lgA(Q) = sup
Q∈E(Cd2 )

lgB(Q) = d2

 d∑
j=1

log

(
1 +

1

d

) . (21)

Another approach to certain aspects of reduced density matrices structure is
based on the use of the Schmidt decomposition method in the Hilbert-Schmidt
space of operators build on the space Cd⊗Cd. This will be discussed in a separate
paper [9].
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2.2 Some remarks on the majorization theory

For a given finite sequence a = (a1, . . . , an) where ai ∈ R, we apply the operation
of ordering in non-increasing order and denote the result as a≥. Of particular
interest, is the image of this operation when applied point-wise to the finite
dimensional simplex Cn

+(1) := {a = (a1, . . . , an), ai ∈ R, ai ≥ 0,
∑n

i=1 ai = 1}.
This will be denoted as C≥.

Let us recall the standard definition of majorizations. Let a, b ∈ C≥. Then
we say that b majorizes a iff:

k∑
i=1

ai ≤
k∑

i=1

bi, (22)

for any k = 1 : n.
If this holds to be true then we denote this fact as a � b.
We say that b majorizes multiplicatively a iff for any k, and k = 1 : n:

k∏
i=1

(ai + 1) ≤
k∏

i=1

(bi + 1). (23)

If this holds to be true then we denote this fact as a�m b.
Let F be any function (continuous, but not necessarily) on the interval [0, 1].

Let us recall the well known result, see i.e. [2].

Lemma 2. Let as assume that f is a continuous, increasing and convex function
on R. If a � b then f(a) � f(b).

It is clear from the very definition that a �m b iff log(a+ 1) � log(1 + b).

Proposition 6. Let a, b ∈ C≥ and let us assume a�mb. Let f be continuous,
increasing function such that the composition f ◦ exp(x) is convex on a suitable
domain. Then f(a) � f(b).

Proof. Fixing k, k = 1 : n, the following holds to be true:

k∏
i=1

(ai + 1) ≤
k∏

i=1

(bi + 1). (24)

Taking log of both side we obtain

k∑
i=1

log(1 + ai) ≤
k∑

i=1

log(1 + bi). (25)

Applying Lemma 2, we get

k∑
i=1

f(e · ai) ≤
k∑

i=1

f(e · bi), (26)

and the symbol e represents the Euler constant. �
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In particular, taking constant function f(x) = x, we conclude:

Corollary 1. Let a, b ∈ C≥ and let us assume that a �m b, then a � b.

The last result says that each linear chain of the semi-order relation �m in
E(H) is contained in some linear chain of the semi-order. It means that the
semi-order �m is finer than those induced by ≺.

Theorem 1. Let H be a separable Hilbert space and let Q1 and Q2 be states on
H. Then any �-maximal element in E(H) is also �m-maximal.

Proof. If σ(Q1) �m σ(Q2) then σ(Q1) ≺ σ(Q2). Let Q∗ be a ≺-maximal in
E(H), and let as assume that there exists Q# such that Q∗ �m Q# and the
contradiction is present. �

3 Implementation and example in Python environment

In this part of the article, we present a basic information concerning the Ent-
Detector package. The most important assumptions, about the implementation
and realised functionalities, are described in section 3.1. The examples of our
package’s use are shown in section 3.2.

In section 3.3, we join the spectral and Schmidt decomposition for pure and
mixed states. Our package carries out the decomposition which, as it was shown
in section 2.1, allows characterising a bipartite quantum state by the level of
entanglement e.g. for isotropic states, as shown in section 3.4.

3.1 Implementation assumptions

One of the fundamental assumptions about the EntDetector implementation
was the choice of Python programming language because of its accessibility and
simplicity. Another crucial issue is the prospect of utilizing other known libraries
for quantum computation, like qiskit [1] and QuTiP [16], which are available
in Python. We also assume that the realisation of numerical calculations are
performed by the packages NumPy [13] and SciKit [24].

The mentioned simplicity of the EntDetector’s usage may be shown on the
example of an access to basic functions generating quantum states. We have
prepared representations of pure states (e.g. Bell, GHZ, W states) and density
matrices (e.g. Horodecki (2 × 4) and (3 × 3) bound entangled states, isotropic
states) which are invoked in the following way:

– q = create_qubit_bell_state(), q = create_ghz_state(d, n),

– q = create_wstate(n), qden = create_bes_horodecki_24_state(),

– qden = create_bes_horodecki_33_state(),

– qden = create_isotropic_state(p, d, n),
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Fig. 1. Execution of an example calculating left, right, and full Gram matrices for the
product system generated by the states |0〉 and |+〉. The example was run in Spyder
4.x editor, system distribution: Linux Ubuntu 20.04.01 LTS, environment Anaconda
4.x, Python version 3.8 64bit

where d stands for the dimension of a quantum unit, n represents the number
of qudits, and p is a real value between 0 and 1. The variable q contains a vec-
tor state, and qden encloses a density matrix. The functions names are quite
complex, but they describe the purpose of usage clearly.

The package offers basic functions for estimating entanglement’s level, e.g.
computing entropy, values of Concurrence and Negativity measures, calculating
monotones for the systems of two (there also exist functions for three, and four)
qubits:

– v = entropy(qden), v = concurrency(qden), v = negativity(qden),
– v = monotone_for_two_qubit_system(qden),

where qden represents a density matrix, and the result is assigned to the vari-
able v. Types of arguments for presented functions are objects defined in the
NumPy library, so it is easy to perform calculation joining functions from differ-
ent packages (written in Python) dedicated to quantum computing, e.g. QuTIP.

The EntDetector includes a new tools like Gram matrices generation and
a joined spectral-Schmidt decomposition:

– tblsas = create_spectral_and_schmidt_data(qden, schmidt_shape),
– right, left, full = gram_matrices_of_vector_state(v, d1, d2).

Naturally, we are not able to signal all implemented functions here. A current
version of the package, directly related to this paper, is available at [22]. However,
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a future versions of the package and documentation are going to be published
at main repository of our project in [21].

Remark 4. It should be emphasised once more that the main goal of the EntDe-
tector package is to provide a user-friendly set of functions which allow analysing
entanglement level with the help of known methods, e.g. the Negativity measure
or Schmidt decomposition. It is also important to introduce some new methods,
like density matrices expressed as Gramians what gives us a prospect of entan-
glement examination with the use of Gram volume and SaSD method, proposed
in this work. The EntDetector should supplement other existing packages, like
qiskit and QuTIP, with additional functions dedicated to entanglement analysis
(e.g. SaSD tables, Gramian matrices).

3.2 Simple examples

The first example that we would like to present, is the Schmidt decomposi-
tion of an entangled state – more precisely: one of so-called EPR pairs: |ψ〉 =
1√
2

(|00〉+ |11〉). To do it, we need to generate the mentioned state, perform

the decomposition, and check if two Schmidt coefficients could be obtained. The
code realising this task has the following form:

from entdetector import *

q = create_qubit_bell_state()

schmidt_shp=(2, 2)

s,e,f = schmidt_decomposition_for_vector_pure_state(q, schmidt_shp)

The function executing Schmidt decomposition requires introducing dimen-
sions of the decomposition. The size of EPR vector is 4, so the decomposition’s
dimensions are 2× 2 (given as a variable: schmidt shp=(2, 2)). A reconstruction
of quantum states is realised by a function:

qrebuild = reconstruct_state_after_schmidt_decomposition(s, e, f)

The Schmidt coefficients values are assigned to the variable s. The basis
vectors are stored in e and f. Naturally, in the example with the EPR pair, we
obtain two Schmidt coefficients equal to numeric value 0.70710678.

3.3 Spectral and Schmidt decomposition

We described the properties of spectral decomposition and the Schmidt decom-
position in section 2.1. Let us generate the pure state q = q0⊗ qplus:

q0 = create_qubit_zero_state()

qplus = create_qubit_plus_state()

q = np.kron(q0, qplus)
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where q0 = |0〉 and qplus = |+〉. Now, we can calculate both decompositions
directly:

schmidt_shape=(2, 2)

qden = vector_state_to_density_matrix( q )

sas_tbl = create_sas_table_data(qden, schmidt_shape)

As the result, we obtain the following SaSD given in Eq. (9):

>>> print_sas_table( sas_tbl )

1.0 0.0 | 0.9999

1.0 0.0 | 0.0

1.0 0.0 | 0.0

1.0 0.0 | 0.0

A SaSD table for the Bell state q = 1√
2

(|00〉+ |11〉) is generated by:

q = create_qubit_bell_state()

qden = vector_state_to_density_matrix( q )

sas_tbl = create_sas_table_data(qden, schmidt_shape)

has the form:

>>> print_sas_table( sas_tbl )

0.70710678 0.70710678 | 0.9999

1.0 0.0 | 0.0

1.0 0.0 | 0.0

0.70710678 0.70710678 | 0.0

3.4 Decomposition of two-qubit isotropic state

SaSD tables allow analysing the isotropic state given as:

ρ = (p · |ψ+〉〈ψ+|) + (1− p) 1

d2
· (Id ⊗ Id), (27)

where in our case we assume that p is real and − 1
d2−1 ≤ p ≤ 1. The parameter d

is the dimension of a quantum unit utilized to construct the maximally entangled
state |ψ+〉 (and its density matrix |ψ+〉〈ψ+|). The state ρ in general is entangled
when 1

d+1 < p ≤ 1, and in a contrary, separable if − 1
d2−1 ≤ p ≤

1
d+1 .

The SaSD table for the isotropic state with d = 2 and p = 0 is calculated by:

p=0.0

q = create_qubit_bell_state()

qdentmp = np.outer(q, q)

qden = (p * qdentmp) + ((1-p) * 0.25 * np.eye(4))

schmidt_shape=(2, 2)

sas_tbl = create_sas_table_data(qden, schmidt_shape)

and the result as SaSD table is:
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Fig. 2. The value of the maximal eigenvalue, the sum of others eigenvalues (denoted
as sum of oth. evs), and also their difference for two-qubit isotropic state. The figure
also shows the values of other quantum entanglement measures like Negativity and
Concurrence. It is possible to point out that the Concurrence measure and the difference
between the max eigenvalue and the sum of others eigenvalues are equal for p ≥ 0.33

>>> print_sas_table( sas_tbl )

1.0 0.0 | 0.25

1.0 0.0 | 0.25

1.0 0.0 | 0.25

1.0 0.0 | 0.25

It should be noted that for parameter p = 0 the examined isotropic state takes
a form of the maximally mixed state.

A SaSD table analysis enables entanglement detection in a given isotropic
state for d = 2. Let us generate the exemplary tables for p = 0.25 and p = 0.75:

p=0.25 p=0.75

0.7071 0.7071 | 0.5125 0.7071 0.7071 | 0.8125

0.9265 0.3760 | 0.1625 1.0 0.0 | 0.0625

0.9070 0.4209 | 0.1625 1.0 0.0 | 0.0625

0.8243 0.5661 | 0.1625 0.7071 0.7071 | 0.0625

The numeric analysis shows that we can point out the greatest eigenvalue corre-
lated with the row having two non-zero coefficients what allows delineating the
border between entangled and separable states. This phenomenon is depict on
the plot in Fig. 2.
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4 Conclusions

In the article, we presented a package supporting work with qubit and qudit
systems in terms of detecting entanglement in bipartite systems. The most im-
portant assumption was to provide convenient tools in the form of computational
functions that perform the necessary decompositions, as well as entanglement
detection functions.

In addition to providing support for known tools in the field of entanglement
research, such as the Negativity and Concurrence measures, our package also
offers new tools useful in the field of entanglement, such as the left and right
Gramian of a given quantum state. EntDetector also offers an additional tool
called SaSD. The information obtained with SaSD allows us, for example, to
calculate the entropy for the studied quantum state.

The package has also the ability to examine the presence of entanglement in
the indicated parts of a quantum register. The current procedure enables, for
example, detecting entanglement, e.g. in graph states, and to verify whether a
given examined state contains correctly entangled qubits.
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