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Abstract. Linear regression is a popular machine learning approach to
learn and predict real valued outputs or dependent variables from inde-
pendent variables or features. In many real world problems, its beneficial
to perform sparse linear regression to identify important features help-
ful in predicting the dependent variable. It not only helps in getting
interpretable results but also avoids overfitting when the number of fea-
tures is large, and the amount of data is small. The most natural way
to achieve this is by using ‘best subset selection’ which penalizes non-
zero model parameters by adding `0 norm over parameters to the least
squares loss. However, this makes the objective function non-convex and
intractable even for a small number of features. This paper aims to ad-
dress the intractability of sparse linear regression with `0 norm using
adiabatic quantum computing, a quantum computing paradigm that is
particularly useful for solving optimization problems faster. We formu-
late the `0 optimization problem as a Quadratic Unconstrained Binary
Optimization (QUBO) problem and solve it using the D-Wave adiabatic
quantum computer. We study and compare the quality of QUBO solu-
tion on synthetic and real world datasets. The results demonstrate the
effectiveness of the proposed adiabatic quantum computing approach in
finding the optimal solution. The QUBO solution matches the optimal
solution for a wide range of sparsity penalty values across the datasets.

Keywords: adiabatic quantum computing · sparse linear regression ·
feature selection

1 Introduction

Most of the real world application of machine learning arising from various do-
mains such as web, business, economics, astronomy and science involve solving
regression problems [20, 17, 27, 26]. Linear regression is a popular machine learn-
ing technique to solve the regression problems where a real valued scalar response
variable (dependent variable or output) is predicted using explanatory variables
(independent variables or input features) [12, 1]. It assumes the output variable
to be an affine function of the input variables and learns the model parameters
(weight coefficient parameters) from the data by minimizing the least squares
error. In many practical applications, we are not only interested in learning
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2 Desu et al.

such functions but also in understanding the importance of the input features
in determining the output. Identifying relevant features helps in interpretability,
which is important for many real-world applications. Moreover, these problems
are often associated with a large number of input variables and consequently
large number weight parameters. When the data is limited, least squares ap-
proach to learn the parameters will result in over-fitting and poor predictive
performance [1].

Sparse linear regression has been proposed to address the above limitations
that are associated with least squares regression. It encourages sparse weight vec-
tors by adding to the loss function, appropriate norms over the weight vectors.
Using `0 norm over the weight vector, which is known as the best subset selec-
tion method [13, 12], is an effective approach to identify features useful for linear
regression. `0 norm counts the number of non-zero components in the weight
vector and favours solutions with smaller number of non-zero elements. Conse-
quently, one can identify the important features as the ones with non-zero weight
vectors. Best subset selection has been theoretically shown to achieve optimal
risk inflation [10]. However, solving an optimization problem involving `0 norm
is non-convex and intractable as the number of possible choices of non-zero ele-
ments in weight vectors is exponentially large. In fact, this is an NP-hard problem
and can become intractable even for small values of data dimension and subset
size [21]. Approaches such as greedy algorithm based Forward- and Backward-
Stepwise Selection [12, 28] and heuristics-based integer programming [16, 19]
were proposed to select subset of features for linear regression. However, they
are sub-optimal and are not close to the optimal solution of best subset selec-
tion. Instead of modelling sparsity exactly through `0 norm, a common practice
is to use its convex approximation using `1 norm, known as Lasso regression [23].
However, it will lead to sub-optimal selection of features, and incorrect models
as the shrinkage property can result in a weight vector with many elements zero.
It can also lead to a biased model as it heavily penalizes the weight coefficients,
even the ones corresponding to the relevant and active features [18, 11].

In this paper, we propose to use adiabatic quantum computing technique
for training sparse linear regression with `0 norm. Given the NP-hardness of
the problem, a tractable solution is not expected even with quantum comput-
ers. However, quantum computers have been found to be effective in speeding
up training of machine learning algorithms. In particular, adiabatic quantum
computing is found to be excellent in solving hard optimization problems [24].
Adiabatic quantum computers like D-Wave 2000Q (from D-Wave) can efficiently
solve quadratic unconstrained binary optimization (QUBO) problems. Machine
learning algorithms relying on optimization techniques for parameter estimation
can benefit from (adiabatic) quantum computing. It has been effectively used
to train machine learning models like deep belief networks (DBN) [5] and least
squares regression [2, 4, 6, 25, 8]. While much of the previous work focuses only
on least squares regression, in this paper we solve the `0 regularized least squares
regression problem. We derive a Quadratic Unconstrained Binary Optimization
(QUBO) problem for the same, and solve it using the D-Wave adiabatic quantum
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computer. We report an extensive evaluation of the performance of the QUBO
approach on synthetic and real-world data. Our experimental results indicate
that the QUBO based approach for solving large scale sparse linear regression
problems shows promise. Our main contributions are summarized as follows.

1. We propose an adiabatic quantum computing approach for the best subset
selection based sparse linear regression problem.

2. We formulate the sparse linear regression problem as a Quadratic Uncon-
strained Binary Optimization (QUBO) problem. Our approach uses QUBO
to solve best subset selection optimally and computes the corresponding re-
gression coefficients using the standard least squares regression.

3. We conduct experiments on the DWave quantum computer using synthetic
and real-world datasets to demonstrate the performance of the proposed
approach. For a wide range of sparsity penalty values, the QUBO solution
matches the optimal solution across the datasets.

2 Background

In this section, we give a brief overview of the adiabatic quantum computing
approach for solving optimization problems. We refer the interested reader to
the excellent survey by Venegas-Andraca et al [24].

2.1 Optimization Problems

Given a set S of n elements, denote by P(S) its power set. Consider a function
f : P(S) → R. The combinatorial optimization problem (we consider, without
loss of generality, the minimization problem) is to find P ∈ P(S) such that
f(P ) = minPi∈P(S)(f(Pi)). In the absence of any structure, these optimization
problems are NP-hard.

2.2 Three Formulations of Optimization

It is possible to formulate these (NP-hard) minimization problems as

– Minimization of pseudo-Boolean functions:
Consider a function f : {0, 1}n → R such that

f(x) =
∑
I⊆[n]

γI
∏
xj∈I

xj ,

where γI ∈ R. The degree of this multilinear polynomial is max{I}. The
problem is to find the x for which f(x) is minimum.

– Quadratic Unconstrained pseudo-Boolean Optimization (QUBO):
Consider a function

fB(x) =

n∑
i=1

i∑
j=1

βijxixj ,

where xi ∈ {0, 1} and βij ∈ R. Notice that this is a degree two polynomial.
Again, the problem in this case is to find x for which f(x) is minimum.
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– The Ising Model:
Given (i) a graph G = (V,E), real valued weights hv assigned to each vertex
v ∈ V , and real valued weights Juv assigned to each edge (u, v) ∈ E, (ii) A
set of Boolean variables called spins: S = {s1, . . . , sn} where su ∈ {−1, 1},
the spin sv corresponding to the vertex v and (iii) an energy function

E(S) =
∑
v∈V

hvsv +
∑

(u,v)∈E

Juvsusv.

The problem here is to find an assignment to the spins that minimizes the
energy function.

It is well known that any pseudo-Boolean function minimization problem can
be reformulated as a QUBO minimization in polynomial time [14, 24]. Further,
a QUBO problem can be very easily converted to an optimization problem in
the Ising Model in a straightforward manner, namely by using si = 2xi − 1.

2.3 Adiabatic Quantum Computation

We now briefly discuss the adiabatic quantum computing paradigm. The inter-
ested reader is referred to [9]. In what follows, we assume a basic knowledge of
quantum mechanics, in particular, the notion of a Hamiltonian operator.

To solve an optimization problem, the system is initially prepared in the
ground state of an initial Hamiltonian HI . Naturally, this ground state should
be “easy to prepare”. The ground state of a “final” Hamiltonian HF encodes the
solution to the optimization problem. Let the system, prepared in the ground
state of HI , evolve as per the following interpolating Hamiltonian for a time
duration T .

H

(
t

T

)
=

(
1− t

T

)
HI +

t

T
HF .

The adiabatic gap theorem says that if the T ≥ O( 1
g2
min

), where gmin is the

spectral gap, the system will stay in the ground state of the Hamiltonian with
high probability. Therefore, with a high probability, the system will end up in
the ground state of the final Hamiltonian, the solution of the optimization that
we are searching for. This evolution is analogous to classical simulated annealing;
the difference being that due to phenomena like superposition and entanglement
that are peculiar to quantum mechanics, the system tunnels through local peaks
instead of going over them. In what follows, we will use the quantum annealing
interchangeably with adiabatic quantum computing.

2.4 Ising Model Implementation

Quantum computers like the Quantum Processing Unit(QPU) of D-Wave, that
are based on the adiabatic quantum computing, typically implement an Ising
model [15]. Let GQC be the graph with qubits as vertices and connectors as
edges. For a vertex i in such a graph, one can talk of hi the magnetic field on
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qubit i and Jij the so-called coupling strength between qubits i and j. Further,
let σz

i be the Pauli z matrix acting on qubit i. Then,
The problem Hamiltonian HF has the Ising formulation:

HF =
∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j . (1)

While the graph structure in the Ising optimization formulation can be
generic, it may not be isomorphic to the GQC , which for D-wave QPU’s current
implementation is a chimera graph. However, it is possible to obtain a minor
embedding in a subgraph of GQC corresponding to G [24]. Then, it is possible to
obtain hi and Jij from the Ising formulation of the minimization problem. The
ground state of the Hamiltonian HF then corresponds the spin assignment to S
that minimizes the function in Eq (1).

This yields the following approach for using quantum annealing to solve a
minimization problem:

1. Pose the minimization problem as a pseudo-Boolean function minimization
problem

2. Convert the pseudo-Boolean function to a QUBO formulation
3. The QUBO formulation is then converted to an Ising model formulation on

the native QPU

The minimization is achieved through adiabatic evolution.

2.5 Linear Regression

We consider a regression problem with input-output pair (x, y), where x ∈ Rd

and y ∈ R (for e.g. house price prediction, grade prediction). We assume the
training dataset to be D = {xi, yi}Ni=1. The goal is to learn a function f :
Rd → R with good generalization performance from the training dataset. Linear
regression is one of the widely used approach for regression problems which
assumes y is a linear function of x. Non-linear regression can also be modelled
through linear regression framework by considering higher order powers of x. In
either case, the functional form is linear in terms of the parameters w ∈ Rd such
that y = wTx.

In practice, one cannot find a function which passes through all the data
points. Hence, the function is learnt to be as close as possible to the observa-
tions. Training in linear regression involves learning the parameters w such that
squared error between actual values and the values given by the function f is
minimum. The resulting optimization problem would be to find w such that it
minimizes the following squared error loss [1]:

min
w

N∑
i=1

(yi −wTxi)
2. (2)

The solution to the above problem can be computed in closed form as

w = (XTX)−1XTy, (3)
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where we assume X is a N × d matrix formed by stacking the input data as N
row vectors, y is an N dimensional column vector of the training data outputs.
We assume that the matrix X is column normalized where each column of X is
divided by its `2 norm.

However, on datasets with large dimensions and limited data, learning the
parameters by minimizing the squared loss alone can result in learning a com-
plex model which will overfit on the data. Under these circumstances, one could
achieve a very low training error but a high test error and consequently poor gen-
eralization (predictive) performance. For instance, in predicting tumour based
on genetic information, the input dimension is in the order of thousands while
the number of samples is often in the order of hundreds. In such problems, only
a few dimensions are relevant and contribute to the output prediction. Instead
of solving the regression problem using all the input features, solving using the
best subset of features could lead to functions with better generalization perfor-
mance. Moreover, this can help in identifying features which are relevant to the
regression problem and this aids in interpret ability. This is ideally achieved by
adding a `0 regularization term over the parameters to the least squares loss. `0
norm regularizer is defined as

‖w‖0 =

d∑
j=1

I{wj 6= 0}

. This counts the number of non-zero elements in the weight vector and conse-
quently it determines the dimensions which are active and relevant. The resulting
regularized loss function to estimate w is given as

min
w

N∑
i=1

(yi −wTxi)
2 + λ‖w‖0. (4)

However, `0 norm is discontinuous, and the above optimization problem is known
to be NP-Hard. However, it gives the best possible solution to sparse linear
regression [12].

3 Proposed Methodology

Adiabatic quantum computing system in D-Wave requires the problem to be
specified as a QUBO expression [24]. The QUBO expression is then internally
converted to an Ising model and is fed to the D-Wave quantum computing sys-
tem. We propose an approach to express the regularized least squares regression
problem with `0 norm given by (4) as a QUBO problem. Existing approaches
(eg [6]) for the related problem of standard least square regression assumes a
bounded word length k for the elements of w in order to construct a QUBO
formulation and the number of logical qubits needed depends on k as well as the
dimension d. We attempt to construct a QUBO formulation to solve the subset
selection optimally. We then solve the values of the selected elements of w classi-
cally. In this way, we avoid any assumption on the word length for the elements of

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_8

https://dx.doi.org/10.1007/978-3-030-77980-1_8


Adiabatic Quantum Feature Selection for Sparse Linear Regression 7

w. Furthermore, the number of logical qubits used in our case is only a function
of the dimension d. We introduce a binary vector (selection vector) z ∈ {0, 1}d,
with zj determining whether dimension j is selected. The best subset selection
problem can be solved as an optimization problem involving both the selection
vector z and the weight vector w. We first rewrite the original formulation in
(4) using the selection vector as follows

min
w,z

N∑
i=1

(yi −wTx′i)
2 + λ‖z‖0, (5)

where vector x′i = xi ◦ z, is the element-wise product between the input vector
xi and the selection vector z. For any arbitrarily fixed z, solution for w can be
obtained by first solving

w′ = (X ′TX ′)−1X ′T y, (6)

where X ′ is the N × d′ submatrix of the N × d matrix X, where X ′ is obtained
by retaining only the ‖z‖0 = d′ columns of X corresponding to non-zeros in
the vector z. Vector w′ is simply a projection of the d′ components of the target
vector w corresponding to the d′ non-zeros in z. Since, the remaining components
of w are all zeros, w is trivially obtained from w′.

We use Lemma 1 (Section 3.2), to obtain the following first order approxi-
mation (X ′TX ′)−1 ≈ α(2I−αX ′TX ′), where α = 2/(d+1). Substituting this in
(6) yields w′ = α(2I −αX ′TX ′)X ′T y. We can also view X ′ as the N × d matrix
X×diag(z), where the diag(z) is a diagonal matrix whose diagonal corresponds
to the vector z. Clearly, in this X ′, columns corresponding to the zeros in z are
all zeros. With this definition of X ′, it is straightforward to verify that, we can
directly write the expression for w in place of w′ as

w = α(2I − αX ′TX ′)X ′T y. (7)

3.1 QUBO Formulation

We derive an equivalent QUBO formulation for (4) using (5) and the expression
for w from (7). Using (7), we obtain ith component wi of w as

wi = α

(2− αz2i
N∑

p=1

x2pi

)
N∑

k=1

xkiziyk −
d∑

j=1,j 6=i

N∑
p=1

xpizi.xpjzj

N∑
k=1

xkjzjyk

 .

Recalling that for each column i of X,
∑N

p=1 x
2
pi = 1, we expand the above

expression to obtain

wi = α(2− αz2i )

N∑
k=1

xkiziyk − α2
d∑

j=1,j 6=i

N∑
p=1

xpizi.xpjzj

N∑
k=1

xkjzjyk

= zi

α(2− α)

N∑
k=1

xkiyk − α2
d∑

j=1,j 6=i

zj

N∑
p=1

xpixpj

N∑
k=1

xkjyk

 . (8)
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The last step follows because zci = zi for binary zi, for all positive integer c.
Substituting the above expression for wi, we can rewrite (5) as

min
z

N∑
t=1

(
yt −

d∑
i=1

wixtizi

)2

+ λ

d∑
r=1

zr

= min
z

N∑
t=1

yt − d∑
i=1

α(2− α)

N∑
k=1

xkiyk − α2
d∑

j=1,j 6=i

zj

N∑
p=1

xpixpj

N∑
k=1

xkjyk

xtizi

2

+ λ

d∑
r=1

zr.

Denoting the elements of XTX by pij and the elements of XT y by qi, the
above minimization can be reformulated as

min
z

N∑
t=1

yt − d∑
i=1

α(2− α)qi − α2
d∑

j=1,j 6=i

zjpijqj

xtizi

2

+ λ

d∑
r=1

zr

= min
z

N∑
t=1

yt − d∑
i=1

α(2− α)qixtizi −
d∑

j=1,j 6=i

α2pijqjxtizjzi

2

+ λ

d∑
r=1

zr.

Letting b(t)ij = α2(pijqjxti + pjiqixtj) and q′i = α(2− α)qi, the above mini-
mization becomes

min
z

N∑
t=1

yt − d∑
i=1

q′ixtizi +
∑

1≤i<j≤d

b(t)ijzizj

2

+ λ

d∑
r=1

zr. (9)

Expanding (9) further and again simplifying using zci = zi, we finally obtain

min
z

y +

d∑
i=1

(ei + λ) zi +
∑

1≤i<j≤d

fijzizj +
∑

1≤i<j<k≤d

gijkzizjzk +
∑

1≤i<j<k<l≤d

hijklzizjzkzl

 ,

where

ei =

N∑
t=1

(
q′i

2
x2ti − 2q′ixtiyt

)
,

fij =

N∑
t=1

(
b(t)2ij + 2

(
q′iq
′
jxtixtj −

(
q′ixti + q′jxtj − yt

)
b(t)ij

))
,

gijk =

N∑
t=1

(
2
(
b(t)ijb(t)ik + b(t)ijb(t)jk + b(t)ikb(t)jk

− q′kxtkb(t)ij − q′ixtib(t)jk − q′jxtjb(t)ik
))
,

hijkl =

N∑
t=1

2
(
b(t)ijb(t)kl + b(t)ikb(t)jl + b(t)ilb(t)jk

)
, and y =

N∑
t=1

y2t .
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We make use of the in-built method ‘make quadratic()’ in Ocean SDK pro-
vided by D-Wave [3] to obtain a quadratic equivalent (QUBO expression) of
the above binary optimization problem. D-wave uses efficient approaches [24]
to turn higher degree terms to quadratic terms by introducing auxiliary binary
variables. In our case, it follows that the final QUBO formulation would involve
O(d4) logical qubits.

The QPU finds an optimal solution for z. An optimal solution for z corre-
sponds to an optimal feature selection. Once an optimal choice of features is
known, the problem of solving w reduces to the standard least squares regres-
sion problem (Eq (3)), which can be solved efficiently using any of the existing
methods.

3.2 Approximation of (XTX)−1

We derive a bound on (XTX)−1, which is a direct adaptation of the well-known
Neumann series [22]. However, we include the whole proof here for complete-
ness. We recall that every column of the N × d matrix X is `2 normalized. We
assume that XTX is full rank. Clearly, following Lemma also holds true for any
(X ′TX ′)−1, where X ′ is a submatrix of X obtained by retaining some d′ ≤ d
columns of X.

Lemma 1. (XTX)−1 = α limn→∞
∑n

i=0(I − αXTX)i for positive α ≤ 2
d+1 .

From Lemma 1, a kth order approximation of (XTX)−1 is given by

(XTX)−1 ≈ α
∑k

i=0(I − αXTX)i, where α = 2/(d+ 1). In order to prove the
Lemma, we first show the following Claim.

Claim. Eigenvalues of XTX are in the range [0, d].

Proof. Since XTX is a d× d Gram matrix, XTX is a symmetric positive semi-
definite matrix. Hence, all eigenvalues of XTX are non-negative. Let U [λ]UT be
the eigendecomposition of XTX where [λ] is the diagonal matrix of eigenvalues
of XTX. We note that U is an orthonormal d×d matrix where UUT = I. Thus,
for any vector a, ∥∥aUT

∥∥2
2

= ‖a‖22 .

Let U = [u1, . . . ,ud], where uis are column vectors. Similarly, let UT =
[v1, . . . ,vd]. Let X = AUT , where A = XU . Let the N × d matrix A be viewed
as stacking of N row vectors a1, . . . ,aN in the same order.

Since, columns of X are normalized and since X = AUT , it is easy to verify
that for any j ∈ {1, . . . , d},

∑N
i=1〈ai,vj〉2 = 1. It follows that,

d∑
j=1

N∑
i=1

〈ai,vj〉2 = d.

Interchanging the summations, we obtain
∑N

i=1

∑d
j=1〈ai,vj〉2 = d.
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The inner summation is
∥∥aiUT

∥∥2
2
. Recalling that

∥∥aiUT
∥∥2
2

= ‖ai‖22, it follows

that
∑N

i=1 ‖ai‖
2
2 = d. In other words,

∑N
i=1

∑d
j=1 a

2
ij = d, where aij is the entry

at ith row and jth column of matrix A, which is also the jth component of the
vector ai.

Recalling that X = AUT and that XTX = U [λ]UT , we have

XTX = UATAUT = U [λ]UT .

In other words, ATA = [λ]. The jth diagonal entry of ATA is given by∑N
i=1 a

2
ij . However, recalling that

∑N
i=1

∑d
j=1 a

2
ij = d , it follows that jth diag-

onal entry of ATA satisfies

N∑
i=1

a2ij ≤
N∑
i=1

d∑
j=1

a2ij = d.

It follows that every entry of [λ] is in the range [0, d]. ut

Proof (Lemma 1). Let the eigendecomposition of XTX = U [λ]UT . It follows
that the eigendecomposition of

αXTX = U [αλ]UT .

where [αλ] is the scalar multiplication of α with the eigenvalue diagonal matrix
[λ].

Let Y = αXTX. From Claim 3.2, it follows that all eigenvalues of a full
rank XTX are in (0, d]. Consequently, all eigenvalues of Y are in (0, 2) for α ≤
2/(d+ 1).

Let B = I − Y . Since eigenvalues of Y are in (0, 2), it follows that the
eigenvalues of B are in (−1, 1). Since all eigenvalues of B are strictly less than 1 in
absolute value, it follows that limn→∞Bn = 0. In other words, limn→∞

∑n
i=0B

i

is a convergent series. Following Neumann series gives

lim
n→∞

(I −B)

n∑
i=0

Bi = lim
n→∞

(
n∑

i=0

Bi −
n∑

i=0

Bi+1

)
= lim

n→∞
(I −Bn+1) = I.

Thus, Y −1 = (I−B)−1 = limn→∞
∑n

i=0B
i Recalling Y = αXTX, where

α is a positive scalar, and B = I − Y , we obtain

α−1(XTX)−1 = lim
n→∞

n∑
i=0

(I − Y )i.

The result follows by observing that, (XTX)−1 = α limn→∞
∑n

i=0(I −Y )i.
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4 Experimental Results

For experimental evaluation of our approach, we consider both synthetic datasets
as well as real world data. The QUBO formulation is run on D-Wave 2000Q
quantum computer which has 2048 qubits. For a given dataset, we run the cor-
responding QUBO instance on D-Wave for multiple runs. Each run outputs a
feature selection z. The corresponding w and the objective function value is ob-
tained from Eq (6) and Eq (4) respectively. The final solution is chosen as the
one that minimizes the objective function. We compare the quality of QUBO
solution with optimal solution for this NP-hard problem computed by exhaus-
tive search in the classical setting. This exhaustive search is performed over all
possible feature selections to find the solution that minimizes Eq (4). Here again,
for a given feature selection, w is obtained from Eq (6).

Synthetic datasets were generated using randomly chosen X and a randomly
chosen sparse vector w. The outputs are obtained as y = X>w. We generate
a separate synthetic input data for input dimensions in the range 5, . . . , 10. For
each of these dimensions, the number of samples N in the input data is fixed as
3000. For each of the resulting six input datasets, we use QUBO to solve Eq (4)
for 5 different λ values. Table 1 summarises QUBO results. For each input data
and λ combination, the table gives the `0 norm of w, which corresponds to the
cardinality of the selected features, computed using QUBO and the optimal w
computed classically by exhaustive search. Columns 6 and 7 of the table give the
values of the objective function Eq (4) corresponding to w obtained through the
classical solution and QUBO respectively. A set of λ× d values were used so as
to reduce the sparsity penalty λ for increasing d. This balances the contributions
of the regression gap and the sparsity penalty in the objective function. The last
five rows of Table 1 show results for 500 runs, while the rest are for 100 runs. We
can observe that the cardinality of w, i.e. the number of features selected, is the
same for the QUBO solution and classical solution for most values of λ across all
the synthetic datasets. Similarly, the objective function values are also very close
for the QUBO and classical solution. For data with input dimension 10, we also
experimented with 500 QUBO runs. These are included as the last 5 rows in the
table. As shown in the table, increasing the number of runs further improved the
performance of the QUBO solver in finding optimal solutions. For higher values
of λ, we observe an increased gap between the QUBO solution and the optimal
solution. This is partly due to the fact that higher values of λ induces sparser
z. In such situations, choosing α closer to 2/(d′ + 1) in Eq (7), where d′ is the
cardinality of the optimal feature set, can yield a better inverse approximation
compared to the existing 2/(d+ 1) value. However, the value of d′ is not known
a priori. Hence, using a higher order inverse approximation or running QUBO
with different permissible values of α are potential ways to mitigate this issue.

We also measured the mean squared error (MSE) for the optimal classical and
the QUBO settings on the train and test data. The test error was measured using
a held-out test data of 1000 points generated separately for each d, using the
same distribution as the training data. In particular, we measured the absolute
gap between the test errors of classical and QUBO as well as between the train
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Number
of
points
(N)

Number
of fea-
tures
(d)

λ×d
‖w‖0
Classi-
cal

‖w‖0
QUBO

Objective
value
Classical

Objective
value
QUBO

Preproce-
ssing time
(sec)

Processing
time (sec)

3000 5 10 1 2 2.43 4 0.3802 1.7997
3000 5 1 2 2 0.4 0.4 0.3015 1.463
3000 5 0.1 2 2 0.04 0.04 0.2921 1.8042
3000 5 0.01 2 2 0.004 0.004 0.3087 1.5339
3000 5 0.001 2 2 0.0004 0.0004 0.3158 1.7676

3000 6 10 1 3 3.1993 5 0.5311 1.6666
3000 6 1 2 3 0.4542 0.5 0.5421 1.6226
3000 6 0.1 3 3 0.05 0.05 0.5286 1.6272
3000 6 0.01 3 3 0.005 0.005 0.5807 1.5697
3000 6 0.001 3 3 0.0005 0.0005 0.5341 1.6663

3000 7 10 2 3 2.9767 4.2858 0.8584 1.9038
3000 7 1 2 3 0.4053 0.4286 0.985 1.8351
3000 7 0.1 3 3 0.0429 0.0429 0.9155 1.8839
3000 7 0.01 3 3 0.0043 0.0043 0.8463 1.8471
3000 7 0.001 3 3 0.0005 0.0005 0.8983 1.8971

3000 9 10 2 4 2.3813 4.4573 2.0121 3.7735
3000 9 1 3 4 0.3468 0.4445 1.9516 4.4245
3000 9 0.1 4 4 0.0445 0.0445 2.0444 4.4954
3000 9 0.01 4 4 0.0045 0.0045 1.9706 4.5724
3000 9 0.001 4 4 0.0005 0.0005 1.9625 4.5866

3000 10 10 3 5 3.1369 5.0124 3.8412 7.2634
3000 10 1 4 5 0.4128 0.5 3.8206 7.5119
3000 10 0.1 5 6 0.05 0.1573 3.6595 7.2924
3000 10 0.01 5 5 0.005 0.0174 3.6433 7.3122
3000 10 0.001 5 6 0.0005 0.0127 3.6286 7.3667

3000 10 10 3 5 3.1369 5 3.0189 6.6345
3000 10 1 4 5 0.4128 0.5 3.1579 7.244
3000 10 0.1 5 5 0.05 0.05 3.0992 7.0419
3000 10 0.01 5 5 0.005 0.005 2.8799 7.3774
3000 10 0.001 5 5 0.0005 0.0005 2.8831 7.1387

Table 1. Experimental results on synthetic datasets for different d values.

Numb-
er of
points
(N)

Num-
ber
of
fea-
tures
(d)

λ
‖w‖0
Classi-
cal

‖w‖0
QUBO

Objective
value Clas-
sical

Objective
value
QUBO

Preproc-
essing
time (sec)

Processing
time (sec)

442 10 10000 6 6 11561403.16 11615190.26 0.52024 7.71478
442 10 1000 8 8 11502623.87 11519510.11 0.52523 8.0403
442 10 100 9 7 11494877.38 11554655.73 0.51418 7.75863
442 10 10 10 7 11493995.03 11511792.48 0.52244 7.51821
442 10 1 10 8 11493905.03 11511518.11 0.51872 7.47994

Table 2. Results on the real-world Diabetes dataset for 100 QUBO runs.
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errors. For values of d× λ ≤ 1, the gap was less than 10−6. For d× λ = 10 case,
the gap was of the order of 10−3.

The preprocessing time is the time taken to create the QUBO formulation
using the D-wave libraries. The processing time includes the network time to
upload the problem instance to D-wave, network time to download the solution
and the execution time on the D-Wave quantum computer. We used the default
annealing time (20 micro seconds) provided in the D-Wave Sampler API (SAPI)
servers [3] and with this, the execution time for each run was around 11 milli
seconds. The reported processing time is almost entirely the data upload and
download overhead. Processing time is averaged over the number of QUBO runs.

Table 2 shows the QUBO performance for the real-world Diabetes dataset [7].
The number of QUBO runs here is 100. For this dataset, smaller λ values did not
induce any sparsity even for the classical optimal solution, due to high values of
regression error term in the objective function. Hence, we chose larger λ values
to induce sparsity. Here again, we observe that the objective function values
are similar for the QUBO solution and the classical solution, and increasing the
number of QUBO iterations can possibly narrow the gap further.

5 Future Directions

We believe that this work is an important step towards applying Adiabatic
Quantum Computing for efficiently solving practical and large scale sparse linear
regression problems. This paper leaves open several future directions to explore.
Our experiments were limited by a restricted access to the D-wave infrastructure.
Experiments involving larger problem instances needs to be done to measure the
quantum advantage. Moreover, experimentation with different annealing sched-
ules and durations are likely to yield faster convergence to the optimal solution.
Different ways of reducing the effect of inverse approximation can be explored.
Examples are higher order approximation and approximations using multiple
feasible values of α. A practical direction would be to apply the QUBO based
regression model on real world data and compare with other models to measure
generalization error.
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