
Performance Analysis of Support Vector
Machine Implementations on the D-Wave

Quantum Annealer

Harshil Singh Bhatia1 and Frank Phillipson2

1 Department of Computer Science and Engineering, Indian Institute of Technology,
Jodhpur, India

2 TNO, the Netherlands Organisation for Applied Scientific Research, The Hague,
The Netherlands

Abstract. In this paper a classical classification model, Kernel-Support
Vector machine, is implemented as a Quadratic Unconstrained Binary
Optimisation problem. Here, data points are classified by a separating
hyperplane while maximizing the function margin. The problem is solved
for a public Banknote Authentication dataset and the well-known Iris
Dataset using a classical approach, simulated annealing, direct embed-
ding on the Quantum Processing Unit and a hybrid solver. The hybrid
solver and Simulated Annealing algorithm outperform the classical im-
plementation on various occasions but show high sensitivity to a small
variation in training data.

Keywords: Quadratic Unconstrained Binary Optimisation, Quantum Anneal-
ing, Support Vector Machine, Performance Analysis

1 Introduction

With the advancement in quantum computing and machine learning in recent
times, the combination of both fields has emerged, termed Quantum Machine
Learning [20]. Quantum computing is a technique of using quantum mechanical
phenomena, such as superposition and entanglement, for solving computation
problems. The current technology has established two paradigms: gate-based
quantum computers and quantum annealers. The size of these computers is still
limited, with the state of the art gated model-based quantum computer having
72 qubits (Google’s Bristlecone) and a quantum annealer having 5000 qubits (D-
Wave’s Advantage [10]). Also various other firms, such as IBM, Rigetti, Qutech
and IonQ, are working towards a practically usable quantum computer. To this
end, we need to work on quantum algorithms and quantum software engineering
skills [24].

Support Vector Machines (SVMs) [26] are supervised learning models that
are used for classification and regression analysis. SVMs are known for their
stability, i.e., they don’t produce largely different classifications with a small

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

2 Harshil Singh Bhatia et al.

variation in training data. SVMs are preferred over Deep Learning algorithms
when a relatively small training data set is available.

The SVM can be implemented on a gated model-based quantum computer
with time complexity logarithmic in the size of vectors and training samples. This
idea was proposed by Rebentrost et al. [25]. In [18], a quantum support vector
machine was experimentally realised on a four-qubit NMR (nuclear magnetic
resonance) test bench. The work of [17] establishes quantum annealing as an
effective method for classification of certain simplified computational biology
problems. The quantum annealer showed a slight advantage in classification
performance and nearly equalled the ranking performance of the other state of
the art implementations, for fairly small datasets.

In [27], Willsch et al. use a non-linear kernel to train a model on the D-Wave
2000 Quantum Annealer. For small test cases, the quantum annealer gave an
ensemble of solutions that often generalise better for the classification of unseen
data, than a single global minimum provided, which is given by a classically
implemented SVM. In [23] this approach is used, together with two other ma-
chine learning approaches, to classify mobile indoor/outdoor locations. One of
their findings is that the quantum annealing results show a solution with more
confidence than the simulated annealing solution.

One of the significant limitations of classical algorithms using a non-linear
kernel is that the kernel function has to be evaluated for all pairs of input
feature vectors which can be of high dimensions. In [4], Chatterjee et al. propose
using generalised coherent states as a calculation tool for quantum SVM and
the realization of generalised coherent states via experiments in quantum optics
indicate the near term feasibility of this approach.

In this paper, we use the formulation proposed by Willsch et al. [27] for
the SVM modeled as a Quadratic Unconstrained Binary Optimisation (QUBO)
problem, and look at its implementation and performance on the 5000 qubits [10]
quantum annealer manufactured by D-Wave Systems, both directly on the chip
and using the hybrid solver offered by D-Wave Systems. The aim of the paper is
to study the difference in behaviour of the quantum and classical algorithm for
fixed hyperparamaters. The code for the implementation using DWave Samplers
is available at [1].

This paper is structured as follows. In Section 2, we give a short introduction
on quantum annealers. The problem description and its formulation are given
in Section 3. Section 4 deals with the various implementations of the Support
Vector Machine. The classification results are presented in Section 5. We end
with some conclusions and future research prospects.

2 Annealing Based Quantum Computing

Quantum annealing is based on the work of of Kadowaki and Nishimori [15]. The
idea of quantum annealing is to create an equal superposition over all possible
states. Then, by slowly turning on a problem-specific magnetic field, the qubits
interact with each other and move towards the state with the lowest energy.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

Performance Analysis of SVM Implementations 3

The challenging task of quantum annealing is to formulate the desired prob-
lem in such terms that it corresponds to finding a global minimum, such that it
can also be implemented on the hardware of the quantum device. The most ad-
vanced implementation of this paradigm is the D-Wave quantum annealer. This
machine accepts a problem formulated as an Ising Hamiltonian, or rewritten
as its binary equivalent, in QUBO formulation. The QUBO, Quadratic Uncon-
strained Binary Optimisation problem [12], is expressed by the optimisation
problem:

QUBO: min
x∈{0,1}n

xtQx, (1)

where x ∈ {0, 1}n are the decision variables and Q is a n× n coefficient matrix.
QUBO problems belong to the class of NP-hard problems [19]. Many constrained
integer programming problems can easily be transformed to a QUBO represen-
tation. For a large number of combinatorial optimisation problems the QUBO
representation is known [12,19].

Next, this formulation needs to be embedded on the hardware. In the most
advanced D-Wave Advantage version of the system, the 5000 qubits are placed in
a Pegasus architecture [10] containing K4 and K6,6 sub-graphs. Pegasus qubits
have a degree 15, i.e., they are externally coupled to 15 different qubits. The
QUBO problem has to be transformed to this structure. Due to the current lim-
itation of the chip size, a compact formulation of the QUBO and an efficient
mapping to the graph is required. This problem is known as Minor Embedding.
Minor Embedding is an NP-Hard problem and is automatically handled by the
D-Wave’s system [5]. Sometimes, fully embedding a problem on the Quantum
Processing Unit (QPU) is difficult or simply not possible. In such cases, the D-
Wave system employs built-in routines to decompose the problem into smaller
sub-problems that are sent to the QPU, and in the end reconstructs the complete
solution vector from all sub-sample solutions. The first decomposition algorithm
introduced by D-Wave was qbsolv [2], which gave a possibility to solve prob-
lems of a large scale on the QPU. Although qbsolv was the main decomposition
approach on the D-Wave system, it did not enable customisations of the work-
flow, and therefore is not particularly suited for all kinds of problems. The new
decomposition approaches that D-Wave offers are D-Wave Hybrid [10] and the
Hybrid Solver Service [8], offering more customization options of the workflow.

3 Problem description

Support Vector Machines are supervised learning models that are used for classi-
fication and regression analysis. The training set is given as {x1,x2, ... xn} that
are d-dimensional vectors in a some space χ ∈ Rd, where d is the dimension
of each vector, i.e., the number of attributes of the training data. We are also
given their labels {y1, y2, ..., yn}, where yi ∈ {1,−1}. SVMs use hyperplanes that
separate the training data by a maximal margin. In general, SVMs allow one to
project the training data in the space χ to a higher dimensional feature space

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

4 Harshil Singh Bhatia et al.

F by z = Φ(x), where z ∈ F . To find the optimal separating hyperplane having
the maximum margin, the algorithm minimizes the following equation:

min
1

2
||w||2, (2)

subject to: yi(w
TΦ(xi) + b) ≥ 1, ∀i = 1, ..., n, (3)

where w is the normal vector for the separating hyperplane given by the equation,
w =

∑
i αiyiK(xi, x), which can be transferred into its dual form by maximising

its primal Lagrangian. This is further formulated as a quadratic programming
problem:

minimise

1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)−
n∑
i=1

αi

 , (4)

subject to 0 ≤ αi ≤ C ∀i = 1, ..., n, (5)
n∑
i=1

αiyi = 0, (6)

where αi is the weight assigned to the training sample xi. If αi > 0, then xi
is a support vector. C is a regularisation parameter that controls the trade-
off between achieving a low training error and a low testing error such that
a generalization can be obtained for unseen data. The function K(xi, xj) =
Φ(xi)

TΦ(xj) is Mercer’s kernel function which allows us to calculate the dot
product in high-dimensional space without explicitly knowing the non-linear
Mapping. There are different forms of kernel functions, however, the SVM with
a Gaussian Kernel (or RBF-kernel) has been popular because of its ability to
handle cases with non-linear relation between classes and features and doing so
while having less parameters. The Gaussian Kernel is defined as

K(xi, xj) = e−γ||xi−xj ||2 (7)

where γ > 0 is the hyperparameter.

The coefficients define a decision boundary that separates the vector space
in two regions, corresponding to the predicted class labels. The decision function
is fully specified by the support vectors and is used to predict samples around
the optimal hyperplane. It is formulated as follows:

f(x) = wTΦ(x) + b =

n∑
i=1

Φ(xi)Φ(x) + b, (8)

f(x) =

n∑
i=1

αiK(xi, x) + b. (9)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

Performance Analysis of SVM Implementations 5

4 Implementation

In this section we describe the used data sets, the QUBO formulation and the
solvers that are used for benchmarking.

4.1 Data

Two public datasets have been used. First, a Standard Banknote Authentication3

dataset has been used. We only considered two attributes: variance of the wavelet
function and skewness of the Wavelet function. We also used the well known
Iris4 dataset, while only considering Iris-sentosa and Iris-versicolor for binary
classification. The following 2 attributes have been used for classification here:
sepal length and sepal width.

The data has been randomised before training, and each datapoint was scaled
according to the following:

xnew =
x− xmin

xmax − xmin
. (10)

In our experiment, subsets of various sizes are taken for comparison of the scal-
ability of the implementations. We use two thirds of the data points as training
data and the remaining one third as our validation set.

4.2 QUBO formulation

To translate the quadratic programming formulation of Equations (4)-(6) to a
QUBO formulation there are two main steps. First, the input has to be translated
to binary input, using the encoding:

αn =

K−1∑
k=0

BkaKn+k
, (11)

with aKn+k
∈ {0, 1} binary variables, K the number of binary variables to encode

αn and B the base used for the encoding, usually B = 2. More details about the
choice for K can be found in [27]. The second step is to translate the constraints
(Eq. (5)-(6)) to the objective function (Eq 4), using a penalty factor ξ for a
quadratic penalty. The value of ξ is determined before the training phase(if no
particular value of ξ is known, a good strategy is to try exponentially growing
sequences, ξ = {..., 10−4, 10−3, 10−2, ...}) (We have optimized the value of ξ).
The resulting objective function then becomes:

1

2

∑
n,m,k,j

aKn+k
aKm+jB

k+jynymK(xn, xm)−
∑
n,k

BkaKn+k
+ ξ(

∑
n,k

BkaKn+k
yn)2.

(12)
3 http://archive.ics.uci.edu/ml/datasets/banknote+authentication
4 http://archive.ics.uci.edu/ml/datasets/Iris/

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

6 Harshil Singh Bhatia et al.

4.3 Solvers

Four main implementations are used. A short description of all four are given
here.

QPU Implementation The first implementation is directly on the D-Wave
Quantum Processor Unit (QPU). First, a minor embedding has to be created,
as described in Section 2. Next, due to the architecture of the quantum chip,
there are limitations to the number of direct connections between qubits. While
some qubits in the chip are connected using external couplers, the D-Wave QPU
is not fully connected. Hence a problem variable has to be duplicated to multiple
connected qubits. All these qubits representing the same variables are part of a
so-called chain. For this, a penalty value (edge weights of the chain), called chain
strength (λ), has to be found. In [6], Coffrin et al. provide a thorough analysis
for its selection procedure. The DwaveSampler [10], automatically determines
an initial value based on the QUBO at hand.

Hybrid Solvers For our second implementation, we use the Hybrid solvers
offered by D-Wave Advantage [10], which implement state of the art classical
algorithms with intelligent allocation of the QPU to parts of the problem where
it benefits most, i.e., the sampler uses the energy impact as the criteria for
selection of variables. These solvers are designed to accommodate even very
large problems. This means that most parameters of the embedding are set
automatically. By default, samples are iterated over four parallel solvers. The top
branch implements a classical Tabu Search [13] that runs on the entire problem
until interrupted by another branch completing. The other three branches use
different decomposers to sample out parts of the current sample set and send it
to different samplers. HQPU acts as a black box solver and the specific part of
the problem which gets embedded on the QPU is unknown.

Simulated Annealing Simulated Annealing, is implemented using the
SimulatedAnnealerSampler() sampler from the D-Wave Ocean Software Devel-
opment Kit [9]. Simulated Annealing is a probabilistic method proposed by Kirk-
patric, Gelett and Vecchi in [16] for finding the global minimum of a cost func-
tion. It is a meta-heuristic to approximate global optimisation in a large search
space for optimisation problems. It works by emulating the physical process of
first heating and then slowly cooling the system to decrease defects, thus min-
imizing energy. In each iteration the Simulated Annealing heuristic considers a
neighbouring state s∗ of the current state s and probabilistically decides whether
to move the system to state s∗ or not. Here, the probability distribution is based
on a scale proportional to temperature. The heuristic accepts points that lower
the objective, but also accepts points that raise the objective with a certain
probability, hence avoiding being trapped in a local minimum. To converge the
algorithm an annealing schedule is decided, which decreases the temperature as
the heuristic proceeds. Lowering the temperature reduces the error probability,

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

Performance Analysis of SVM Implementations 7

and hence decreasing the extent of the search, which in turn leads the heuristic
to converge to a global minimum.

Classical Implementation Finally, to implement the SVM’s classically, we
have used the scikit-learn [21] Python library. Scikit-learn uses LIBSVM [3] for
implementing a support vector machine. The Quadratic formulation, Eq. (4), is
formulated in its dual form:

minimise
1

2
αTQα− eTα, (13)

subject to Eq. (5)-(6). Here Qij = yiyjK(xi, xj) and e = [1, .., 1]. Q is a dense
positive semi-definite matrix and might become too large to store. To tackle this
a decomposition method is used that modifies only a subset of Q. This subset
B leads to a smaller optimisation problem. LIBSVM uses Sequential Minimal
Optimisation [11], which restricts B to only two elements. Hence, a simple two
variable problem is solved at each iteration without the need of any quadratic
programming optimisation software like CPLEX[7] or Gurobi[14].

5 Results

We ran the simulations for the Standard Banknote Authentication dataset and
the well known Iris Dataset, using the implementations discussed in subsection
4.3. The simulations were run using the following parameter values: K = 2,
B = 2, C = 3, ξ = 0.001, γ = 16. We do not intend to optimize C, γ as our
aim is to study the behaviour for same hyper parameters. However ξ has been
optimized.

We use Key Performing Indicators (KPI), which are measurable values that
depicts how effectively a classification model has performed. We have used Ac-
curacy, F1-score, Precision and Recall as our KPI’s. Accuracy is the fraction of
samples that have been classified correctly, Precision is the proportion of correct
positive identifications over all positive identifications, Recall is the proportion
of correct positive identifications over all actual positives:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
, Recall =

tp

tp+ fn
, Precision =

tp

tp+ fp
,

where tp is true positive, fp is false positive, tn is true negative and fn is false
negative. The F1-score is a way of combining the precision and recall of the
model, and it is defined as the harmonic mean of the model’s precision and
recall:

F1 =
tp

tp+ 1
2 (fp+ fn)

.

The probability or the certainty with which a class is predicted by the model,
is defined as the confidence of the classifier. The higher the absolute value of the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

8 Harshil Singh Bhatia et al.

decision function, as shown in Equation (9), for a given data point, the more
probable it is that the data point belongs to a particular class. Figures 1-6 rep-
resent the contour plot of the decision function, with the horizontal and vertical
axis representing the data points and the decision function for the corresponding
points being represented by the colour gradient.

In Table 1, we benchmark the results of the previously discussed implemen-
tations from Section 4.3 on two different randomized versions of the well known
Iris Dataset while varying the size of the input dataset (N). For each instance we
show the accuracy, F1-score and Lagrangian value(-Energy) for the best solu-
tion found by the solvers. We see that the hybrid solver (HQPU) and Simulated
Annealing (SA) produce the same classifiers for all instances of the data. In
our previous research we have seen that the hybrid solver outperforms SA while
scaling for larger datasets [22].

In Table 2, we show the results of the previously discussed implementa-
tions on the Standard Banknode Authentication dataset. Similar to Table 1,
the HQPU and SA produced identical classifiers. The HQPU and SA give rea-
sonable results in comparison to the scikit-learn (Classical Implementation). We
observe that the QPU is not able to find embeddings for instances larger that 90.
QPU produces higher energy, inefficient solutions in comparison to HQPU and
SA. From Figures 2 and 3, we observe that the most efficient solutions in terms
of energy (produced by the QUBO formulation), have sparsely situated dark
regions instead of a smoother dark region. These dark regions are concentrated
around the support vectors. A smoother plot is obtained for the QPU simulation
(Figure 1), which is credited to the inability of the solver to find the minimum
energy solution. The solution obtained by the QPU has already been disregarded
and improved by the HQPU and SA solvers. Unlike SA and HQPU, scikit-learn
(Figure 4) produces smoother plots, i.e., plots with large dense regions. Hence,
the classifier has a higher confidence when predicting data. Even though the hy-
perparamters are same, scikit-learn has a softer margin, i.e., it allows the SVM
to make some mistakes while keeping the margin at the maximum so that other
points can be classified correctly.

To test the error tolerance of the classifiers, we ran another simulation of the
Banknote Authentication dataset, but with 4 artificially inserted data points.
We inserted 2 Type 1 points in dark blue region and similarly, we inserted 2
Type -1 points in dark red region. The SA/HQPU (Figure 5) considered the
artificially inserted datapoints as support vectors and created a small region
around it giving a completely new classifier. The accuracy and F1 score showed
a variation, and decreased from (0.94, 0.94) to (0.88, 0.89). The classifier ended
up overfitting (hard margin) the data. This works extremely well for the training
set, but not for the validation set, which can be seen from the decrease in the
value of KPI’s.

Although scikit-learn (Figure 6), did consider the points as support vectors,
it doesn’t create a new region for it, hence demonstrating a softer margin. The
KPI’s for this classifier also remained unaffected by the insertion of the new
data.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

Performance Analysis of SVM Implementations 9

6 Conclusion

Quantum machine learning is still in its early stages and the implementation
of machine learning paradigms on a quantum computer has shown immense
capability. Quantum computing will provide the computational power needed
when classical computers are reaching the upper cap of their performance, In
this phase, hybrid solvers produce promising results by combining state of the
art classical algorithms with a quantum annealer. In this paper, we compare the
performance of hybrid solver, simulated annealing and direct QPU embedding
for implementing the support vector machine. While comparing the sensitivity
of the QUBO formulation in all the implementation to variation in input data.

With the limited development of the current hardware, the Quantum Pro-
cessing Unit (QPU) is only able to solve small instances and is unable to find a
suitable embedding for larger instances (> 90), for larger instances decomposi-
tion algorithms are required. Inefficient classifications are obtained by the QPU
(for the small instances), which are outperformed by other implementations.

HQPU and SA have produced the same classifiers for all the input data, but
from previous research we know that HQPU scales better. In Table 2, HQPU
and SA have been able to outperform scikit-learn’s implementation.
The scikit-learn implementation has produced higher confidence plots, while
HQPU and SA have produced highly sparse plots centered around support vec-
tors, which isn’t desirable for the generalisation of a classifier. The QUBO for-
mulations have been highly sensitive to small variations showing a hard margin
for the same input parameters. A slight variation (2 misclassified in a data set
consisting of 100 datapoints) lead to different classifiers. HQPU and SA were
found to overfit the data for the same parameters as scikit-learn. The classical
implementation on the other hand wasn’t affected by a slight variation in the
input dataset.

Future research comprises understanding some of the results further. First
there is the sensitivity to small variations of the data. We want to investigate
whether this comes from possible overfitting by the QUBO-based implementa-
tions, which follow from the various plots. Second, we saw a significant difference
in Lagrangian value between the QUBO-based and the Scikit-Learn approaches.
There might be other objective functions suitable for the QUBO formulation
than currently used.

Acknowledgments

The authors thank Irina Chiscop and Tariq Bontekoe for their valuable review
and comments.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

10 Harshil Singh Bhatia et al.

References

1. Bhatia, H.: Support vector machine implementation on d-
wave quantum annealer, https://github.com/HarshilBhatia/

-Support-Vector-Machine-Implementation-on-D-Wave-Quantum-Annealer

2. Booth, M., Reinhardt, S.P., Roy, A.: Partitioning Optimization Problems for Hy-
brid Classical/Quantum Execution. Tech. rep., D-Wave Systems (09 2017)

3. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

4. Chatterjee, R., Yu, T.: Generalized coherent states, reproducing kernels, and quan-
tum support vector machines. Quantum Information & Computation 17(15-16),
1292–1306 (2017)

5. Choi, V.: Minor-embedding in adiabatic quantum computation: I. the parameter
setting problem (2008)

6. Coffrin, C.J.: Challenges with chains: Testing the limits of a d-wave quantum
annealer for discrete optimization. Tech. rep., Los Alamos National Lab.(LANL),
Los Alamos, NM (United States) (2019)

7. Cplex, I.I.: V12. 1: User’s manual for cplex. International Business Machines Cor-
poration 46(53), 157 (2009)

8. D-Wave-Systems: D-wave hybrid solver service: An overview, https:

//www.dwavesys.com/sites/default/files/14-1039A-A_D-Wave_Hybrid_

Solver_Service_An_Overview.pdf

9. D-Wave-Systems: D-wave ocean sdk, https://github.com/dwavesystems/

dwave-ocean-sdk

10. D-Wave-Systems: The d-wave advantage system: An overview (2020),
https://www.dwavesys.com/sites/default/files/14-1049A-A_The_D-Wave_

Advantage_System_An_Overview_0.pdf

11. Fan, R.E., Chen, P., Lin, C.: Working set selection using second order information
for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)

12. Glover, F., Kochenberger, G., Du, Y.: A tutorial on formulating and using qubo
models. arXiv preprint arXiv:1811.11538 (2018)

13. Glover, F., Laguna, M.: Tabu Search, pp. 2093–2229. Springer US, Boston, MA
(1998)

14. Gurobi Optimization, L.: Gurobi optimizer reference manual (2020), http://www.
gurobi.com

15. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model.
Physical Review E 58(5), 5355 (1998)

16. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
science 220(4598), 671–680 (1983)

17. Li, R.Y., Di Felice, R., Rohs, R., Lidar, D.A.: Quantum annealing versus classi-
cal machine learning applied to a simplified computational biology problem. npj
Quantum Information 4(1) (2018)

18. Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support
vector machine. Physical Review Letters 114(14) (2015)

19. Lucas, A.: Ising formulations of many np problems. Frontiers in Physics 2, 5 (2014)
20. Neumann, N., Phillipson, F., Versluis, R.: Machine learning in the quantum era.

Digitale Welt 3(2), 24–29 (2019)
21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://github.com/HarshilBhatia/-Support-Vector-Machine-Implementation-on-D-Wave-Quantum-Annealer
https://github.com/HarshilBhatia/-Support-Vector-Machine-Implementation-on-D-Wave-Quantum-Annealer
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.dwavesys.com/sites/default/files/14-1039A-A_D-Wave_Hybrid_Solver_Service_An_Overview.pdf
https://www.dwavesys.com/sites/default/files/14-1039A-A_D-Wave_Hybrid_Solver_Service_An_Overview.pdf
https://www.dwavesys.com/sites/default/files/14-1039A-A_D-Wave_Hybrid_Solver_Service_An_Overview.pdf
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://www.dwavesys.com/sites/default/files/14-1049A-A_The_D-Wave_Advantage_System_An_Overview_0.pdf
https://www.dwavesys.com/sites/default/files/14-1049A-A_The_D-Wave_Advantage_System_An_Overview_0.pdf
http://www.gurobi.com
http://www.gurobi.com
https://dx.doi.org/10.1007/978-3-030-77980-1_7

Performance Analysis of SVM Implementations 11

Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in python. Journal of Machine Learning Research 12, 2825–2830 (2011)

22. Phillipson, F., Bhatia, H.S.: Portfolio optimisation using the d-wave quantum an-
nealer. In: International Conference on Computational Science. pp. 1–14. Springer
(2021)

23. Phillipson, F., Wezeman, R.S., Chiscop, I.: Three quantum machine learning ap-
proaches or mobile user indoor-outdoor detection. In: 3rd International Conference
on Machine Learning for Networking (2020)

24. Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J.L., Serrano, M.A.,
Hernández, G., de Guzmán, I.G.R., Paradela, C.A., Polo, M., Murina, E., et al.:
The talavera manifesto for quantum software engineering and programming. In:
QANSWER. pp. 1–5 (2020)

25. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector ma-
chine for big data classification. Physical Review Letters 113(13) (9
2014). https://doi.org/10.1103/physrevlett.113.130503, http://dx.doi.org/10.

1103/PhysRevLett.113.130503

26. Wang, L.: Support vector machines: theory and applications, vol. 177. Springer
Science & Business Media (2005)

27. Willsch, D., Willsch, M., De Raedt, H., Michielsen, K.: Support vector machines
on the d-wave quantum annealer. Computer Physics Communications 248, 107006
(2020)

Fig. 1. Contour plot of decision function, support Vectors and input data points im-
plemented using the QPU on the Standard Banknote Authentication Dataset with 60
samples.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://doi.org/10.1103/physrevlett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1103/PhysRevLett.113.130503
https://dx.doi.org/10.1007/978-3-030-77980-1_7

12 Harshil Singh Bhatia et al.

Fig. 2. Contour plot of decision function, support vectors and input data points im-
plemented using the HQPU and SA solvers on the Standard Banknote Authentication
Dataset with 60 samples.

Fig. 3. Contour plot of decision function and support vectors implemented using the
HQPU and SA solvers on the Standard Banknote Authentication Dataset with 60
samples.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

Performance Analysis of SVM Implementations 13

Fig. 4. Contour plot of decision function and support vectors implemented using the
scikit-learn library on the Standard Banknote Authentication Dataset with 150 sam-
ples.

Fig. 5. Contour plot of decision function and artificially inserted data points using the
HQPU and SA solvers on the Standard Banknote Authentication Dataset with 150
samples.

Fig. 6. Contour plot of decision function and artificially inserted data points using
the scikit-learn library on the Standard Banknote Authentication Dataset with 150
samples.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

14 Harshil Singh Bhatia et al.

Table 1. Results for the Iris Dataset. Data 1 and Data 2 denote 2 different randomised
version of the same.

Data 1 Data 2

Size F1 Prec Rec Acc Lagr F1 Prec Rec Acc Lagr

HQPU

30 1 1 1 1 6.61 0.88 0.8 1 0.9 5.44
60 1 1 1 1 7.36 1 1 1 1 8.5
90 1 1 1 1 8.75 1 1 1 1 9.33

SA

30 1 1 1 1 6.61 0.88 1 1 0.9 5.44
60 1 1 1 1 7.36 1 1 1 1 8.5
90 1 1 1 1 8.75 1 1 1 1 9.33

Scikit-learn

30 1 1 1 1 4.32 0.88 1 1 0.9 4.03
60 0.96 0.9 1 0.96 3.16 1 0.9 1 1 2.17
90 1 1 1 1 3.13 1 1 1 1 2.06

Table 2. Results for the two randomized versions(denoted as Data1, Data2)of the
Standard Banknote Authentication Dataset

Data 1 Data 2

Size F1 Prec Rec Acc Lagr F1 Prec Rec Acc Lagr

HQPU

30 1 1 1 1 7.12 0.66 1 0.5 0.8 7.44
60 0.93 0.88 1 0.95 13.81 0.88 0.8 1 0.9 11.45
90 0.83 1 0.7 0.83 15.98 0.86 0.81 0.92 0.86 16.79

120 0.91 0.95 0.88 0.90 31.04 0.875 0.875 0.875 0.9 21.30
150 0.95 1 0.89 0.94 38.72 0.84 0.88 0.88 0.88 31.85

SA

30 1 1 1 1 7.13 0.66 1 0.5 0.8 7.45
60 0.93 0.88 1 0.95 13.81 0.88 0.8 1 0.9 11.45
90 0.83 1 0.7 0.83 15.98 0.93 0.81 0.92 0.95 16.8

120 0.91 0.95 0.88 0.90 31.04 0.87 0.875 0.875 0.9 21.30
150 0.95 1 0.89 0.94 38.72 0.84 0.88 0.8 0.88 31.85

Scikit-Learn

30 1 1 1 1 2.49 0.57 0.4 1 0.7 -4.45
60 1 1 1 1 5.99 0.88 1 0.8 0.9 -15.92
90 0.77 0.71 0.83 0.80 8.30 0.94 0.94 0.94 0.93 -21.18

120 0.91 0.9 0.9 0.9 13.43 0.85 0.82 0.88 0.88 -18.57
150 0.92 0.92 0.92 0.92 4.63 0.85 0.77 0.94 0.88 -34.23

QPU

30 1 1 1 1 12 0.8 1 0.5 0.9 5.9
60 0.93 0.88 1 0.95 96.6 0.75 0.9 1 0.8 8.4
90 0.77 1 1 0.76 294 0.8 0.75 8 0.8 6.53

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_7

https://dx.doi.org/10.1007/978-3-030-77980-1_7

