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Abstract. Quantum computing has great potential for advancing ma-
chine learning algorithms beyond classical reach. Even though full-fledged
universal quantum computers do not exist yet, its expected benefits for
machine learning can already be shown using simulators and already
available quantum hardware. In this work, we consider a distance-based
classification algorithm and modify it to be run on actual early stage
quantum hardware. We extend upon earlier work and present a non-
trivial reduction using only two qubits. The algorithm is consequently
run on a two-qubit silicon spin quantum computer. We show that the
results obtained using the two-qubit silicon spin quantum computer are
similar to the theoretically expected results.

Keywords: Classification · Machine learning · Quantum computing ·
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1 Introduction

Whether we are aware of it or not, machine learning has taken a prominent
role in our lives. For example, various algorithms are used to process text [1, 2]
and speech [3, 4]. Furthermore, machine learning algorithms exist to recognise
patterns [5] and also more specifically focused on recognising faces [6]. These are
just a few of the many applications of machine learning.

In general, however, we can distinguish between three different types of ma-
chine learning: supervised, unsupervised and reinforced machine learning. In
supervised machine learning, the machine is given annotated data, which is then
used to train a model to annotate unseen data. Examples of supervised machine
learning are decision trees, support vector machines and neural networks. Unsu-
pervised machine learning algorithms use data without annotation and instead
assign the labels themselves. Examples of unsupervised machine learning are
clustering algorithms, such as k-means clustering. The third and last type is re-
inforced machine learning, or reinforcement learning, where a reward function is
used that quantifies the ‘goodness’ of a solution. Based on the reward function,
model parameters are adjusted. A prominent example of reinforcement learning
applied in practice is AlphaGo, the first algorithm to beat a human at the game
of Go [7]. As annotated data is in general expensive to gather, often a fourth
type is considered: semi-supervised learning. Here a model is initially trained
with a small set of annotated data, after which the rest of the learning is run
unsupervised with a larger set of unlabeled data.
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Each of these types has its own challenges. Two common challenges across
the four different types are however lack of data and intractability of the training
phase, meaning that training the model is too complex. The intractability is of-
ten overcome by running the algorithms on (a clusters of) computers with more
computational power. Instead, we may also opt for a completely different way of
computing: doing computations using quantum computers. In quantum comput-
ers, computations are done using quantum bits (qubits) instead of classical bits.
Classical bits are always in one of two possible definite states, zero or one. Qubits
on the other hand can be in a superposition of the different computational basis
states. A superposition is a complex linear combination of these states. Upon
measurement a label corresponding to only one of the computational basis states
is found. The probability to find each of the labels corresponds to the absolute
value squared of the corresponding amplitudes. After the measurement, the state
is projected onto a space corresponding to the found label and information on
the initial superposition before the measurement is lost. Another key property
of quantum states is that two qubits or, more general, multiple quantum states
can be entangled. Entanglement implies correlations between two systems be-
yond what is possible classically. A more elaborated introduction to quantum
computing is given in [8].

These quantum mechanical properties can be used to enhance classical com-
puting and machine learning specifically [9, 10]. Quantum algorithms can for in-
stance replace computationally expensive (sub)routines in classical algorithms,
thereby enhancing the algorithm as a whole. Examples of computationally com-
plex subroutines where quantum computing can offer benefits are sampling from
probability distributions [11] and inverting matrices [12].

Another example of where quantum computing will provide improvements
over classical algorithms is classification. In [13] for example, two quantum com-
puting methods are proposed to classify data. The first method is a variational
quantum classifier [14], similar to classical support vector machines (SVMs).
In the second method, a kernel function is estimated and optimised directly.
Instead of explicitly and iteratively training a machine learning model, a classi-
fier can also be implemented directly from the data points, as in [15]. There, a
controlled-SWAP-gate between the training data and a test data point is applied
and two measurements are applied to classify the test data point. An example
of distance-based classification is given in [16]. Here, a label is assigned based on
a distance measure evaluated on the training points and a new test point. The
classical complexity of this algorithm is O(NM), with N the number of data
points and M the number of features. The time complexity of this quantum
algorithm is constant, given efficient state preparation. The number of qubits n
required is logarithmic in the number of data points, i.e., n = O(logN).

For this constant complexity to hold, efficient state-preparation is a necessity.
This can however pose challenges [17], and, if the state is prepared explicitly,
even can result in an exponential overhead in the number of qubits. In general,
an m×m-qubit unitary gate can be decomposed exactly in O(m34m) single qubit
and CNOT-gates [18], which was later reduced to O(2m) quantum gates [19, 20].
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Instead of explicit state preparation, the state can also be obtained from the
output of other quantum processes or by using a quantum RAM [21], a register
or quantum computer that stores specific states. Note that for the latter, the
challenge shifts from efficiently preparing a quantum state to efficiently prepar-
ing and storing the states in the quantum RAM. An approach proposed in [22]
uses a divide-and-conquer algorithm for quantum state preparation, with a poly-
logarithmic complexity in N , the number of data points, compared to a classical
complexity of O(N). The complexity of the quantum distance-based classifier
of [16] thus depends on the complexity of state-preparation.

Especially for near-term devices with limited resources, state preparation can
limit the applicability of this algorithm. A reduction to overcome this limitation
is presented in [23]. By formulating the algorithm as a quantum channel and
considering a single data point at a time, similar performance is reached as with
the original algorithm. Conditional on the measurement of the ancilla qubit ei-
ther a new data point is chosen uniformly at random or the label is assigned to
the test point. We consider a different non-trivial reduction of the distance-based
classifier to be run on near-term hardware, classifying data points in one of two
classes. Our algorithm can be used as benchmarking algorithm for comparison
with classical devices and to compare different quantum chips. In this work,
we compare the classical theoretical results with the results obtained through a
decoherence-free quantum simulation and by running the algorithm on a two-
qubit silicon spin quantum chip developed by QuTech. In Section 2 we briefly
explain the distance-based classifier presented in [16]. In Section 3 we present a
non-trivial reduction of the algorithm to a two-qubit version. The results of run-
ning the algorithm on the quantum hardware and on the simulator are presented
and compared to the theoretically expected results in Section 4. Conclusions are
given in Section 5.

2 Distance-based classifier

In this section we explain the quantum distance-based classifier proposed in [16].
This algorithm classifies a test point, based on its distances to data points in a
data set. The algorithm returns a binary variable representing the label of the
test point.

Consider a data set D = {xi, yi}N−1i=0 with data points xi ∈ RM and labels
yi ∈ {±1}. Let x̃ ∈ RM be an unlabeled data point, the goal is to assign the
label ỹ to this data point x̃. The algorithm presented in [16], implements the
threshold function

ỹ = sgn

(
N−1∑
i=0

yi
[
1− 1

4N

∥∥x̃− xi
∥∥2]) , (1)

where sgn: R → {−1, 1} is the signum function and κ(x̃,x) = 1 − 1
4N ‖x̃− x‖2

is the similarity function or kernel.
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Without loss of generality we can assume that the data points in D are
normalised. The data points can then be encoded in qubits:

x = (x0, . . . , xM−1)T 7→ |x〉 =

M−1∑
j=0

xj |j〉 ,

with xj the j-th coefficient of x and |j〉 the j-th computational basis state. Let
us consider the quantum state

|D〉 =
1√
2N

N−1∑
i=0

|i〉
(
|0〉 |x̃〉+ |1〉 |xi〉

)
|yi〉 . (2)

Here, the first register |i〉 is an index register, indexing the data points. The
second register is an ancilla qubit entangled with the test point and the i-th
data point. The fourth register encodes the label yi. In case of only two classes,
the fourth register is only a single qubit. Note that binary labels y and labels
s ∈ {±1} are directly related via y = (s+ 1)/2.

The algorithm starts from the quantum state of Eq. (2) and consists of a
Hadamard operation on the ancilla qubit, a measurement of that qubit and a
measurement of the fourth register. Due to the probabilistic nature of quantum
algorithms, multiple measurement rounds should be used. The label of the test
point is assigned based on the measurement of the fourth register, conditional
on the first measurement giving a 0. Results where the first measurement gives
a 1 should be neglected.

After the Hadamard gate we are left with

|D〉 =
1

2
√
N

N−1∑
i=0

|i〉
(
|0〉 (|x̃〉+ |xi〉) + |1〉 (|x̃〉 − |xi〉)

)
|yi〉 . (3)

Measuring the ancilla qubit and only continuing with the algorithm if the |0〉-
state is measured, leaves us with

|D〉 =
1

2
√
Npacc

N−1∑
i=0

|i〉 |0〉 (|x̃〉+ |xi〉) |yi〉 . (4)

Here, pacc is the probability of measuring 0, given by

pacc =
1

4N

∑
i

∥∥x̃ + xi
∥∥2 . (5)

If instead the |1〉-state is measured, the algorithm should be aborted and run
again, which can also be taken care of in a post-processing step. The probability
of obtaining a label ỹ = 1 is given by

P(ỹ = 1) =
1

4Npacc

∑
i|yi=1

∥∥x̃ + xi
∥∥2 . (6)
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If both classes have the same number of data points and the data points are
normalised, we have

1

4N

∑
i

∥∥x̃ + xi
∥∥2 = 1− 1

4N

∑
i

∥∥x̃− xi
∥∥2 .

Therefore, the algorithm implements the classifier of Eq. (1). By evaluating the
algorithm multiple times, the most likely class is obtained.

Note that, as discussed in the introduction, the constant complexity of this
algorithm is under the assumption of efficient state preparation, for instance
using a quantum RAM. Extensions on this work and relaxation of assumptions
in the original work are given in [24]. One of these assumptions is that all classes
contain the same number of data points. In the next section we will reduce this
distance-based classifier to a two qubit version.

3 Reduction to a two-qubit version

In this section we present a non-trivial reduction of the distance-based classifier
to a two qubit version to be run on few qubit quantum hardware. This reduced
algorithm can consequently be used for comparing the fidelity of pairs of qubits
due to the simple nature of this algorithm. The algorithm proposed in this section
produces the same probability distribution for the measured labels as the original
distance-based classifier for a given data set. In our approach, we use the same
qubit for both encoding the data points as well as encoding the labels.

For a two-qubit version of the algorithm, we consider a training set D =
{(x0,−1), (x1, 1)} and a test point x̃, with each data point having two features.
We can encode the data points as

|x0〉 = cos(θ/2) |0〉 − sin(θ/2) |1〉
|x1〉 = cos(φ/2) |0〉 − sin(φ/2) |1〉
|x̃〉 = cos(ω/2) |0〉 − sin(ω/2) |1〉 ,

such that Ry(θ) |0〉 = |x0〉. Without loss of generality we may assume θ = 0.
Furthermore, note that for two data points, the index register and the label
register have the same value. Hence, the two can be combined and the initial
state is given by

1

2
|0〉
(
|0〉 |x̃〉+ |1〉 |0〉

)
+

1

2
|1〉
(
|0〉 |x̃〉+ |1〉 |x1〉

)
.

The ratio of the probabilities when measuring the first register is then given by

P(|yi〉 = |0〉)
P(|yi〉 = |1〉)

=
cos2

(
ω
4

)
cos2

(
ω−φ
4

) , (7)
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with ω and φ depending on the data points. For a further reduction to only two

qubits we set t = cos2
(
ω
4

)
/ cos2

(
ω−φ
4

)
, and define

ω′ =

{
4 arctan

(
1−
√
t

1+
√
t

)
if t 6= 1

0 else
. (8)

For t = 1 both classes are equally likely. We propose the quantum circuit shown
in Fig. 1 for classification. The resulting probability distribution is equal to that
of the original classifier.

Fig. 1. A two qubit classification quantum circuit. The operations are a Hadamard
gate (H), rotations around the Y -axis (Ry), a controlled-NOT operation (CNOT )
and two measurements. The used angle depends on the data points.

The quantum circuit in Fig. 1 produces the desired probability distributions.
The first gates prepare the desired quantum state and the last Hadamard-gate
is similar to the operation in the original algorithm. The initial state is given by

1√
2

(cos(ω′/2) |00〉+ sin(ω′/2) |01〉+ |11〉) (9)

and the quantum state before the measurements is

1

2
(cos(ω′/2) |00〉+ cos(ω′/2) |10〉

+ (1 + sin(ω′/2)) |01〉+ (1− sin(ω′/2)) |11〉) .

When measuring the first (left-most) qubit and only continuing if the |0〉-state
is measured, we have

1

2
√
p′acc

(cos(ω′/2) |00〉+ (1 + sin(ω′/2)) |01〉) , (10)

with p′acc the acceptance probability given by

p′acc =
1 + sin(ω′/2)

2
. (11)
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Note that this acceptance probability differs from the one given in Eq. (5), how-
ever the conditional probabilities of measuring the labels does match that of the
original algorithm. This acceptance probability only depends on the distribution
of the considered data points on the unit circle.

The method above can be generalised to arbitrary data sets with two classes.
Instead of a single data point, a representative of each data set is used in the
classification. This follows as for normalised data, only the angle of the data
point is considered and each angle has an equal contribution. Hence, the mean
of the angles can be used for the representative data point. This step requires
the computation of two means, both of N/2 angles.

4 Results

In this section we present the results when running the algorithm on quantum
hardware and on a quantum simulator. These results are compared to the results
we expect based on a theoretical evaluation of the quantum operations. These
expected probabilities are obtained from the quantum state in Eq. (10) and the
acceptance probability from Eq. (11).

We used the Quantum Inspire platform [25, 26], developed by QuTech, to
obtain our results. This online platform hosts two quantum chips: a 2-qubit
silicon spin chip and a 5-qubit transmon chip. Furthermore, a quantum simulator
based on the QX programming language is available [27]. We used the publicly
available 2-qubit silicon spin chip for our results.

For the experiments we use the Iris flower data set [28]. This data set contains
150 data points, equally distributed over three classes. Each data point has
four features. We only consider the Setosa and Versicolor class and the first
two features of the data points: the width and length of the sepal leaves. We
standardise and normalise the data points and then randomly sample data points
to form the data sets to run the algorithm with. Additionally, we randomly
sample another data point, not used yet, together with its corresponding label.
This data point is used as test point. For the first data set, we sample the test
point from the Setosa class, for the second data set we sample the test point
from the Versicolor class. The three data points of each data set can now be
written as

|x0〉 = |0〉
|x1〉 = cos(φ/2) |0〉 − sin(φ/2) |1〉
|x̃〉 = cos(ω/2) |0〉 − sin(ω/2) |1〉 ,

with appropriate angles φ and ω. We identify label 0 with the Setosa class and
label 1 with the Versicolor class.

For the first data set we have x0 = (1, 0), x1 = (−0.9929, 0.1191) and x̃ =
(0.9939, 0.1103), which correspond with Iris samples 34, 75 and 13, respectively.
The corresponding angles are φ ≈ −6.0445 and ω ≈ −0.2210. For the second
data set we randomly chose Iris samples 21, 58 and 82. Hence, the data points
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are given by x0 = (1, 0), x1 = (−0.1983, 0.9802) and x̃ = (0.5545, 0.8322). The
corresponding angles are φ ≈ −3.5407 and ω ≈ −1.9662. Both data sets are
shown in Figure 2. Based on a visual inspection, the first data set should be
easier to correctly classify than the second.

Fig. 2. Data set 1 (left) and data set 2 (right) used for the experiments. The label
indicates the data points. The test point is given by xt.

For both data sets, we determine t and ω′ and consequently run the circuit
as shown in Fig. 1 on the quantum simulator and on the 2-qubit silicon spin chip
with 2,048 circuit evaluations in total. Additionally, we present the theoretically
expected probabilities, which correspond with an infinite number of evaluations.
The found probabilities are shown in Tab. 1 and the different between the simu-
lation results and the theoretical results are due to the finite number of shots for
the simulations. This table also shows the acceptance probabilities. The shown
probabilities for both labels are conditional on the ancilla qubit being in the
|0〉-state.

We see a significant different between the acceptance probability for both
data sets. This results from the initial distribution of the data points on the
unit circle. Different acceptance probabilities are expected for different initial
distributions. For the second data set, the probabilities corresponding to both
classes matches well with the expected probabilities. For the first data set, the
probabilities differ more, likely due to decoherence effects. Note that in all cases,
the correct label is assigned to the test point: label 0 for the first data set and
label 1 for the second data set.
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Table 1. Shown are the results for classifying x̃. Hardware and simulation results are
shown as well as the theoretical values. The results hardware and simulation results
are taken from 2048 measurement rounds.

pacc P(ym) = −1 P(ym) = 1

Hardware 0.83544 0.7744 0.2256
Data set 1 Simulation 0.9893 0.9877 0.0123

Theoretical 0.9870 0.9870 0.0130

Hardware 0.3755 0.4655 0.5345
Data set 2 Simulation 0.4863 0.4719 0.5281

Theoretical 0.5232 0.4768 0.5232

5 Conclusions

This paper presented a non-trivial reduction of the distance-based classification
algorithm of [16] to a two qubit version. Due to the simple nature of the reduced
algorithm, it can be used to compare various near-term quantum chips with
limited number of qubits. Different quantum chips can be compared based on
how close the found results are to the expected ones. In this work we considered
the two qubit silicon spin chip developed by QuTech and modified the algorithm
to be run on that hardware backend. The algorithm classifies a data point in
one of two classes. Due to the limited size, the classes are represented as single
data points. Classification using larger data sets is still possible by considering
the single data point used in the algorithm as being a representative of the
entire class. Thereby, arbitrarily sized data sets can be used, after a suitable
preprocessing step.

The obtained probability distributions are similar to the theoretically ex-
pected results, however with the differences resulting from decoherence and dif-
ferent rotation angles. For small rotation angles, the probability of introducing
errors is also smaller. We found that the same probability distribution is pro-
duced as one would obtain with the original multi-qubit approach, however, less
qubits are used. We tested the algorithm with two random data sets and in both
cases, the correct label was assigned to the test point. The hardware used to
produce these results was a two-qubit silicon spin quantum chip, developed by
QuTech and hosted publicly on the Quantum Inspire platform.
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