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Abstract. This paper proposes a Cross Entropy approach to shape con-
strained Hamiltonians by optimizing their energy penalty values. The
results show a significantly improved solution quality when run on D-
Wave’s quantum annealing hardware and the numerical computation of
the eigenspectrum reveals that the solution quality is correlated with a
larger minimum spectral gap. The experiments were conducted based on
the Knapsack-, Minimum Exact Cover- and Set Packing Problem. For
all three constrained optimization problems we could show a remarkably
better solution quality compared to the conventional approach, where
the energy penalty values have to be guessed.
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1 Introduction

Experimental quantum computing has gained a lot of attention in the last
decade, since quantum computers have been commercialized by their compa-
nies [2,3]. There exist different types of quantum computing hardware. The more
known one is the quantum gate-model computer. It is the quantum pendant to
our classical computers, which work with classical logical gates. The other type
of quantum computers are quantum annealers, which are particularly designed
for solving or finding good approximations to optimization problems. D-Wave
Systems is the first company, which has made their quantum annealing hardware
available for public and a lot of research has been done since then [1, 5, 13,23].

D-Wave’s Quantum Annealing (QA) algorithm, which is implemented in
hardware, is based on the adiabatic quantum computing principle [20]. First,
one has to map the corresponding optimization problem to a so called Ising
Hamiltonian in order to execute it on the hardware. The fundamental process
of QA then is to physically interpolate between an initial Hamiltonian, whose
minimal energy configuration (or ground state) is easy to prepare, and a prob-
lem Hamiltonian, whose minimal energy configuration, that corresponds to the
best solution of the defined Ising problem Hamiltonian, is sought. According to
the adiabatic theorem, if this process is executed slowly enough, and the coher-
ence domain is sufficiently large, the probability to stay in the ground state and
thus in the minimal energy configuration of the problem Hamiltonian is close to
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one [6]. However, due to thermal fluctuations or a non-adiabatic anneal process
the system can leap from the ground to an excited state. The minimum distance
between the ground state and the first excited state throughout any point in the
anneal process is called the minimum spectral gap. Since it is physically hard
to ensure long coherence times in quantum systems, one can not increase the
anneal time arbitrarily in order to avoid computational errors by jumping to
excited states.

That is why we address this problem experimentally, not by adjusting the
anneal time, but by applying a Cross-Entropy (CE) method to optimize the
hyperparameters of the solution landscape, which are represented by the energy
penalty values of the constrained Hamiltonian of the optimization problem. We
can show that by optimizing the penalty values, the minimum spectral gap of the
problem Hamiltonian is scaled and shifted. In effect, D-Wave’s QA algorithm has
a higher chance of remaining in the ground state, which results in a significant
increase in solution quality as compared to the conventional approach without
CE optimization. For our experiments we used the Knapsack Problem (KP),
Minimum Exact Cover (MEC) Problem and the Set Packing (SP) Problem to
verify our approach. We experimentally reveal the linear correlation between the
size of the minimum spectral gap and the corresponding approximation ratio of
the D-Wave annealer to the best known solution (BKS) of the problem instance.

2 Background

2.1 Quantum Annealing Algorithm

Quantum annealing is a metaheuristic for solving complex optimization and
decision problems [15]. D-Wave’s quantum annealing algorithm is implemented
in hardware, and it is designed to find the lowest energy state of a spin glass.
Such a system can be described by an Ising Hamiltonian of the form

H(s) =
∑
i

hisi +
∑
i<j

Jijsisj (1)

where hi is the on-site energy of qubit i, Jij are the interaction energies of
two qubits i and j, and si represents the spin (−1,+1) of the i-th qubit. The
basic process of quantum annealing is to physically interpolate between an initial
HamiltonianHI with an easy to prepare minimal energy configuration (or ground
state), and a problem Hamiltonian HP , whose minimal energy configuration,
that corresponds to the best solution of the defined problem, is sought (see Eq.
(2)). The physical principle on which the D-Wave computation process is based
on can be described by a time-dependent Hamiltonian as stated in Eq. (2).

H(t) = A(t)HI +B(t)HP (2)

The anneal functions A(t) and B(t) must satisfy B(t = 0) = 0 and A(t = τ) = 0,
with τ being the total evolution time. When the state evolution changes from
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t = 0 to t = τ , the annealing process, described by H(t), leads to the final form
of the Hamiltonian corresponding to the objective Ising problem that needs to
be minimized. Therefore, the ground state of the initial Hamiltonian H(0) = HI
evolves to the ground state of the problem Hamiltonian H(τ) = HP . The mea-
surements performed at time τ deliver low energy states of the Ising Hamiltonian
as stated in Eq. (1). According to the adiabatic theorem, if this transition is ex-
ecuted sufficiently slowly (i.e. τ is large enough), and the coherence domain is
large enough, the probability to stay in the ground state of the problem Hamil-
tonian is close to one [6].

However, due to a non-adiabatic anneal process the system can jump from
the ground to an excited state. The minimum distance between the ground
state and the first excited state — the one with the lowest energy apart from
the ground state — throughout any point in the anneal process is called the
minimum spectral gap gmin of H(t), and is defined as

gmin = min
0≤t≤T

min
j 6=0

[Ej(t)− E0(t)] (3)

where Ej(t) is any higher lying energy state and E0(t) the ground state [14]. The
adiabatic theorem states that staying in the ground state is enforced by setting
the change rate of the time-dependent Hamiltonian H(t) proportional to 1/gδmin,
with δ depending on the distribution of eigenvalues at higher energy levels. δ may
range from one to even three in some circumstances [12, 17, 26]. To understand
the efficiency of adiabatic quantum computing, we need to analyze gmin, but in
practice, this is a difficult task [7], which we try to approach experimentally in
this work.

For the sake of completeness, note that there exists an alternative and often
used formulation to the Ising spin glass system. The so called Quadratic Uncon-
strained Binary Optimization (QUBO) formulation [8], which is mathematically
equivalent and uses 0 and 1 for the spin variables [27]. The quantum annealer
is also able to minimize the functional form of the QUBO formulation xTQx,
with x being a vector of binary variables {0, 1} of size n, and Q being an n× n
real-valued matrix describing the relationship between the variables. Given the
matrix Q : n×n, the annealing process tries to find binary variable assignments
x ∈ {0, 1}n to minimize the objective function.

2.2 Knapsack Problem

In the NP-Complete Knapsack Problem [16], n items are given, each having a
certain weight wα and a certain value cα. The items must be picked in a way that
the total weight of the items is less than or equal to the knapsack capacity W , i.e.
n∑
α=1

wαxα ≤W , and the total sum of the item values
∑n
α=1 cαxα is maximized.

Variable xα is set 1 if the item is packed in the knapsack and 0 otherwise [19]. In
order to implement the KP on D-Wave’s quantum computer using QA, we need
to encode the objective function of the KP into a Hamiltonian which is diagonal
in the computational basis.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77980-1_5

https://dx.doi.org/10.1007/978-3-030-77980-1_5


4 C. Roch et al.

The weight constraint can be encoded in the following quadratic Hamiltonian,
as stated in [18]:

H1 = A

(
1−

W∑
n=1

yn

)2

+A

(
W∑
n=1

nyn −
N∑
α=1

wαxα

)2

(4)

while the objective function is straightforwardly

H2 = −B
N∑
α=1

cαxα. (5)

Here, yn for 1 ≤ n ≤W is a binary variable, which is set to 1, if the final weight
of the knapsack is n and 0 otherwise. H1 enforces that the weight can only take
exactly one value and that the weight of the items in the knapsack equals the
value we claimed it did. The parameters A,B are chosen according to

0 < B ·max(cα) < A (6)

in order to penalize violations of the weight constraint. Note that one can reduce
the number of binary variables using the so called log trick to N + b1 + logW c
[18].

2.3 Minimum Exact Cover Problem

The Minimum Exact Cover Problem is an NP-Hard constrained optimization
problem, where a set U = {1, ..., n}, and subsets Vi ⊆ U(i = 1, ..., N) are given,
such that U =

⋃
i

Vi.

The task is to find the minimum number of sets Vi with the elements of
those sets being disjoint, and the union of the sets is U . The Hamiltonians
H3 = H1 +H2 are stated in [18]:

H1 = A

n∑
α

(
1−

∑
i:α∈Vi

xi

)2

(7)

H2 = B
∑
i

xi (8)

In Eq. (7) α denotes the elements of U , while i denotes the subsets Vi. H1 = 0, if
every element is included exactly one time, which implies that the unions of the
subsets are disjoint. With the additional Hamiltonian H2 the smallest number
of subsets is sought. The ground state of this Hamiltonian will be m ∗B, where
m is the smallest number of subsets required for the complete union. The ratio
of the penalty values A and B can be determined by regarding the worst case
scenario which is that there are a very small number of subsets with a single
common element, whose union is U . To ensure this does not happen, one can
set

A > n ·B. (9)
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2.4 Set Packing Problem

The Set Packing Problem is also an NP-hard constrained optimization prob-
lem. Given a setup as in section 2.3, its difficulty lies in finding the maximum
number of subsets Vi which are all disjoint. In [18] the following Hamiltonians
H3 = H1 +H2 are given:

H1 = A
∑

i,j:Vi∩Vj 6=∅

xixj (10)

H2 = −B
∑
i

xi (11)

H1 is minimized only when all subsets are disjoint, while H2 simply counts the
number of included sets. Choosing the penalty values

B < A (12)

ensures that it is never favorable to violate the constraint H1. Considering there
will always be a penalty of at least A per extra set included. Just as the Minimum
Exact Cover Problem the Set Packing Problem requires N spins.

2.5 Cross-Entropy Method

The Cross-Entropy method is a Monte Carlo method for importance sampling
and optimization, and is known to perform well on combinatorial optimization
problem with noisy objective functions [24,25].

We experimentally implement the method using a common CE algorithm (see
Alg. 1), as stated for example in [28]. In each step of the iterative optimization,
a set of points a1...an from the distribution p is sampled, based on its current
parameterization Φg−1 (line 3). To each point a1...an, the objective function f
of the optimization problem assigns values v1...vn (line 4). Finally, a fraction ρ
of elite samples is chosen based on a selection routine (line 5 and 6) and used to
compute a new parameterization of p, Φg.

Algorithm 1 Cross-Entropy

1: function OPTIMIZE(p, Φ0, f, ρ, n,G)
2: for g = 1→ G do
3: a1...an ∼ p(·|Φg−1),a← a1...an
4: v1...vn ∼ f(a1)...f(an),v← v1...vn
5: sort a according to v
6: Φg ← argmaxΦ

∏dnρe
i=1 p(ai|Φ)

return a1

The convergence rate of the algorithm critically depends on the distribution
p, as it determines the new sample points a for each generation. The initial
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distribution p(·|Φ0) should be chosen such that it reproduces optimal samples
as closely as possible. However, when this is not possible, a generally applicable
approach is to choose a distribution which covers the entire sample space. This
increases the probability for the algorithm to evolve towards a good solution
already in early generations.

After each iteration, a maximum likelihood estimate of the currently chosen
elite fraction is done to update the parameterization Φg according to the follow-

ing rule µg =
∑dnρe
i=1 Xi
dnρe , σ2

g =
∑dnρe
i=1 (Xi−µg)T (Xi−µg)

dnρe and Φg = 〈µg, σ2
g〉, which

is valid for a multivariate Gaussian distribution. Other critical parameters are
the selected fraction ρ of elite samples, the population size n and the number of
generations G, which must be carefully adjusted for a given problem in order to
maximize the likelihood of finding a good solution. In Section 4, we explain how
the CE method is adapted for our specific task.

3 Related Work

In 2017, Mark W. Coffey studied the Knapsack Problem within an Adiabatic
Quantum Computing (AQC) framework. He mapped the optimization problem
to an Ising model and used small problem instances to evaluate his approach.
He points the relevance of theoretical and numerical investigations regarding
the minimum spectral gap and its location in the anneal path out, in order to
improve AQC [11].

More insights brought Choi in 2019. She theoretically showed, that adjusting
the energy penalty of the Ising Maximum weighted Independent Set Problem,
one may change the quantum evolution from one that has an anti-crossing to
one that does not have, or the other way around, and thus drastically change the
minimum spectral gap [10]. Following this insight, we propose an adapted CE
method to automatically adjust the penalty values of constrained Hamiltonians
to influence the quantum evolution of D-Wave’s QA hardware, or more precisely
the size and location of the corresponding minimum spectral gap, so that D-
Wave’s quantum annealer has a higher chance of remaining in the ground state.

In previous work, we already applied CE in the field of gate based quantum
computers [22]. Similarly to this work, we shaped the solution landscape of the
Knapsack problem Hamiltonian, which allowed the classical optimizer of the
hybrid Quantum Approximate Optimization Algorithm (QAOA) to find better
gate parameter and hence resulted in an improved performance.

4 QA with Cross-Entropy

In our approach we use an adapted CE method to optimize the penalty values A
and B of our problem Hamiltonians. Varying those values significantly changes
the energy landscape of the corresponding constrained optimization problem,
and therefore also influences the pathway of the Quantum Annealing algorithm.
By adjusting those penalty values it is possible to scale and shift the minimum
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spectral gap gmin and hence improve the probability of staying in the ground
state throughout the anneal process.

An example can be seen in Fig. 1. In Fig. 1a the time-dependent eigenspec-
trum of a Minimum Exact Cover Hamiltonian with randomly selected penalty
values is visualized. The same setup, but with optimized penalty values, found
by CE, can be seen in Fig. 1b. The histograms in Fig. 1c and 1d show the
corresponding solution qualities w.r.t the best known solution (BKS). The so-
lution quality is associated with the approximation ratio, which is calculated as
follows: Approx. ratio = #BKS

#Measurements with #BKS being the number of mea-
suring the BKS and #Measurements being the total number of measurements
(default 100).

In Fig. 1a the minimum spectral gap gmin is ≈ 1 and located in the middle
of the anneal process, while in Fig. 1b the gap gmin is ≈ 3 and shifted to the
beginning of the anneal process. The impact of scaling and shifting gmin also re-
flects in an improved quantum annealing solution quality in Fig. 1d. Therefore,
optimizing the penalty values of the problem Hamiltonian, in a way that gmin

increases, decreases the likelihood of (thermal) excitations out of the instanta-
neous ground state, and consequently allows the quantum annealer to reach a
better solution quality.

Regarding the problem Hamiltonians, the choice of penalty values are re-
stricted by Eq. (6),(9) and (12), respectively for the Knapsack, Minimum Exact
Cover and Set Packing Problem [18]. To satisfy those constraints, we use a mod-
ified CE optimization scheme (see Alg. 2), in which the penalty values A,B are
sampled from truncated normal distributions p. Since the allowed values for A
depend on the choice of B, we first draw a value for B (line 3) with an appro-
priately chosen sampling range ΓB . Afterwards, the value for A is drawn over a
sampling range ΓA(B), such that the penalization constraint of the correspond-
ing optimization problem is satisfied (line 5). This is done for n samples. For
each sample, we construct the corresponding Hamiltonian, as described in [18]
and run D-Wave’s QA heuristic to assign a value v1...vn corresponding to the
approximation ratio of the best found solution for each Ai, Bi-pair (line 7). This
is done iteratively for a specified number of generations G. In Fig. 2, the pro-
cess of CE with QA and the fitness of each generation for the MEC problem
Hamiltonian A is shown.

5 Evaluation

5.1 Experimental Setup

For the experimental evaluation, we used D-Wave’s 2000Q quantum annealer
(solver name: DW 2000Q 6 (lower noise)). We used the standard anneal sched-
ule with 20µs and the standard energy scales A(t) and B(t), as stated in [4],
which are required to compute the energy of a problem at a specific point in the
annealing process. For embedding the problem instances on the D-Wave QPU,
we used the the minorminer library [9], which tries to find an efficient embed-
ding of the logical problem graph to the physical architecture, called chimera
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Fig. 1: Eigenspectra and solution qualities for MEC problem instance A.
Problem A consists of four subsets with numbers ranging from 1 to 4,
[(1, 2), (1, 3), (1, 2, 4), (3)]. The BKS (marked in dark blue) is 0011, i.e. sets with
index 2 and 3 are in the solution. The gmin = δ marks the minimum spectral
gap, which is ≈ 1 for random penalty values A and B and ≈ 3 for optimized
ones, see Figs. 1a and 1b, respectively. Figs. 1c and 1d show the corresponding
solution qualities, i.e. the state probability of the BKS compared to the other
solutions.

graph, of the D-Wave quantum annealer. Since not every problem graph fits
directly to the architecture, due to the sparse connectivity of the qubits on the
QPU, physical ancillary qubits need to be used to represent one logical qubit.
Additionally, it is known that not every qubit of the D-Wave QPU has the same
physical quality. Thus, the embedding has an influence on the solution quality of
the problem, as stated in [21]. That means, the same graph structure embedded
on different physical qubits of the QPU leads to different solution qualities. In
Fig. 3 one graph structure of the MEC problem instance A is embedded ten
times, each time on different qubits of the QPU. For every embedding we used
the same 100 individuals (penalty value pairs), their fitness was averaged over
three runs per individual, to draw a fair comparison. One can see, that in the
best embedding (the third one) the mean solution quality is around 71%, while
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(a) CE optimization (best penalty value
pair found: A=10.38,B=2.25)
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(b) Fitness of each individuum per gen-
eration

Fig. 2: Example CE optimization with G = 10 is shown in Fig. 2a. The ellipses
represent the µg and σ2

g of generation g. The filled circles correspond to the best
ρ fraction of individuals. The best values found by CE, for this specific MEC
problem instance A, were 10.38 and 2.25 for A, respectively B. In Fig. 2b the
fitness of each individuum per generation (population size is 100) computed with
D-Wave’s 2000Q annealer is represented by the boxplots.

Algorithm 2 Cross-Entropy Energy Penalty Optimization

1: function OPTIMIZE(p, Φ0, f, ρ, n,G)
2: for g = 1→ G do
3: B1...Bn ∼ p(·|Φg−1, ΓB)
4: B← B1...Bn
5: A1...An ∼ p(·|Φg−1, ΓA(B))
6: A← A1...An
7: v1...vn ∼ QA(A1, B1)...QA(An, Bn)
8: v← v1...vn
9: sort A, B according to v

10: Φg ← argmaxΦ
∏dnρe
i=1 p(Ai, Bi|Φ)

return A1, B1

in the worst embedding (the second one) the mean solution quality is around
50%. Consequently, the embedding can not be influenced directly and thus may
also impact the overall solution quality of the CE optimization.

In Tab. 1 the parameter settings of the CE method are listed. Since we
are using a truncated normal distribution to sample from, we need to specify
additional clipping parameters for both penalty values A and B. The sampling
range of A is computed according to the corresponding problem constraints.

We used four problem instances for each optimization problem to test our CE
approach with D-Wave’s QA algorithm. The instances per optimization problem,
named A, B, C and D range from 4 to 7 logical qubits, respectively. Since D-
Wave’s quantum annealing hardware is still in its infancy regarding the number
of qubits and their connectivity, those logical problems already led to physical
ancillary qubits to enable a valid embedding. Those ancillary qubits are coupled
by a chain strength parameter to ensure that by measuring they collapse to the
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Fig. 3: Different D-Wave embed-
dings for MEC problem instance A.

Table 1: Cross-Entropy Parameter Set-
tings

CE Attributes
G n ρ γ∗ min σ2 σ2

0 µ0 B sample range

10 100 0.1 0.5 0.1 1.0 0.0 [0.1, 10.0]
∗The learning rate specifies the amount
of changes from Φg−1 to Φg.

same basis state. However, this additional parameter also influences the overall
solution quality and makes it harder for CE to optimize large problem instances.
That is why we rather used small instances, to demonstrate the effect of CE.
However, our approach is theoretically also applicable to larger problems.

5.2 Results & Discussion

In Fig. 4 the linear correlation of the approximation ratio to the BKS and the
minimum spectral gap is plotted. The number in the upper left corner is the
Pearson product-moment correlation coefficient, which assumes values in the
range of −1 to +1, where the extrema occur in case of a strong negative or
positive correlation, while a value of 0 indicates uncorrelated variables. The
first row represents the KP instances A − D, while the second and third row
represents the MEC and SP instances, respectively. The blue circles represent
the individuals (penalty value pairs) over ten generations of the CE method (in
total 1000 individuals). The solution quality is given by the approximation ratio
of the BKS and can be calculated by dividing the BKS counts by the number
of measurements (default 100). Note that we averaged the approximation ratio
for each individual of the population over three runs on the D-Wave hardware
to compensate the stochasticity of the quantum system.

The results show that for each problem instance (perhaps with the exception
of MEC C), there exists a correlation between the approximation ratio computed
with D-Wave’s quantum annealer and the minimum spectral gap. Notice that,
within the broadest range of the minimum spectral gap, the approximation ratio
is in general much higher and in some cases near to 1.0 (see MEC problem
instance A and B), while in cases, where the minimum spectral gap is small the
approximation ratio is also comparatively lower and more variance occurs (see
MEC problem instance C).

In Fig. 5 the results of QA with CE and the conventional QA approach
are compared against each other. We tested both methods on different problem
instances as stated in Section 5.1. The results are shown in Fig. 5a-5c for the
KP, MEC, and SP, respectively.

CE was initialized with the parameter setting of Tab. 1 and D-Wave’s QA al-
gorithm was used as explained in Section 5.1. W.r.t the classical QA approach,
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Fig. 4: Correlation plots of the approximation ratio to the BKS and the minimum
spectral gap. The blue circles represent the individuals (penalty value pairs)
over ten generations of the CE method (in total 1000 individuals). The first row
represents the KP instances A − D, while the second and third row represents
the MEC and SP instances, respectively. The red number is the correlation
coefficient.

we randomly sampled five penalty value pairs of the same sampling range as
stated in Tab. 1. Each penalty value pair was executed 10 times on D-Wave’s
2000Q quantum annealer and the corresponding solution qualities (approxima-
tion ratio) are represented in the respective box plot “random”. For the QA
with CE box plots, named “optimal”, we used the ρ fraction of the penalty value
population of the last CE generation and calculated their fitness, i.e. solution
quality.

The results show, that for the KP in Fig. 5a, the solution quality, w.r.t the
mean could be increased by around 500% in the best case (see problem B) and by
around 85% in the worst case (see problem D), by using the optimized penalty
values.

Also for the MEC problem in Fig. 5b, the solution qualities were increased
by around 170% in problem C) in the best case and by 30% in the worst case in
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Fig. 5: Solution qualities for the four problem instances A-D of the KP, MEC
and SP problem instances are represented in 5a-5c, respectively. The “random”
boxplots represent the approximation ratio of five randomly sampled penalty
value pairs (each run 10 times), while the “optimal” boxplots represent the
approximation ratio of the ρ fraction of the penalty value pair population of the
10th generation of the CE method.

problem A. Furthermore note, that in problem A and B an approximation ratio
of nearly 100% could be reached with the optimized penalty values.

In Fig. 5c a significant growth in the quality of the solution can be seen, too,
for the SP problem. In the best cases (problem B and D) an increase of around
600% could be achieved while in the worst case (problem A) the optimized
penalty values still led to an 80% increase in solution quality.

The overall solution quality in general decreases with the size of the problem
instances. However, this is obvious since the number of possible solution and
therefore the whole solution space increases.

Another feature is the comparatively small variance of the approximation
ratio of the optimized penalty values, over all problem instances, which can be
seen in Fig. 5. That is due to the values being picked from the best ρ fraction
of individuals of the last CE generation, while the randomly sampled energy
penalty value pairs may contain disadvantageously ones. However, this does not
detract from the fact that our CE approach is quite stable w.rt. the stochastic
quantum system.
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6 Conclusion

In this paper we have presented a Cross Entropy approach to shape constrained
Hamiltonians by optimizing their penalty values. We showed by the numerical
computation of the eigenspectrum that this optimization leads to a scaling and
shifting of the minimal spectral gap and thus makes it easier for D-Wave’s quan-
tum annealing algorithm to stay in the ground state during the anneal process.
Consequently, this results in an improved overall solution quality (approxima-
tion ratio). The experiments were conducted based on the Knapsack-, Minimum
Exact Cover- and Set Packing Problem. For all three constrained optimization
problems we could show a significantly better solution quality compared to the
conventional approach. Moreover, using the optimized penalty values of the last
generation of CE results in a lower variance of the solution quality, meaning that
less averages have to be taken to find good solutions. However, since the penalty
values found by the CE method differed in the used problem instances, we want
to use machine learning techniques in order to investigate correlations between
the optimized penalty value pairs and be able to reuse them for other problem
instances. Due to this fact, we currently see the strength of our approach in
the optimization of the overall solution qualities, but less in achieving compu-
tational speedups. Furthermore, we want to study our approach also for larger
problem instances and take the hyperparameter of the physical qubit chains and
the embedding into account to even improve this approach.
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