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Abstract. When a molecular dynamics (MD) simulation and a com-
putational fluid dynamics (CFD) solver are coupled together to create
a multiscale, molecular-continuum flow simulation, thermal noise fluc-
tuations from the particle system can be a critical issue, so that noise
filtering methods are required. Noise filters are one option to significantly
reduce these fluctuations.
We present a modified variant of the Non-Local Means (NLM) algorithm
for MD data. Originally developed for image processing, we extend NLM
to a space-time formulation and discuss its implementation details.
The space-time NLM algorithm is incorporated into the Macro-Micro-
Coupling tool (MaMiCo), a C++ molecular-continuum coupling frame-
work, together with a novel flexible filtering subsystem. The latter can
be used to configure and efficiently execute arbitrary data-flow chains
of simulation data analytics modules or noise filters at runtime on an
HPC system, even including python functions. We employ a coupling to
a GPU-based Lattice Boltzmann solver running a vortex street scenario
to show the benefits of our approach. Our results demonstrate that NLM
has an excellent signal-to-noise ratio gain and is a superior method for
extraction of macroscopic flow information from noisy fluctuating parti-
cle ensemble data.

Keywords: Flow Simulation · Non-Local Means · LBM · GPU ·
Software Design · Denoising · Data Analytics · Transient · Two-way
Coupling · Molecular Dynamics · HPC · Molecular-Continuum

1 Introduction

Molecular dynamics (MD) simulations [16, 17] are used in many applications
within computational science, engineering or biochemistry. They can be cou-
pled to a computational fluid dynamics (CFD) solver, creating a multi-scale
molecular-continuum flow simulation [2, 15]. On MD side, Brownian motion re-
sults in thermal fluctuations. Despite their importance and impact on molecular
flow behavior, a direct incorporation of them into continuum-based simulations
is not always desirable. It is rather the extraction of smooth flow data (including
smoothed, i.e. averaged, Brownian effects) that might be sufficient here, i.e. to
improve stability and performance of the coupled simulation [8]. One way to
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obtain this smooth data is ensemble averaging using many MD instances [13].
However, since MD is the computationally most challenging part in molecular-
continuum setups, running many MD simulations is expensive. Various filtering
methods including anisotropic median diffusion [12] and proper orthogonal de-
composition (POD) [8, 9] have been proposed to handle molecular data. We
have presented noise reduction using POD in 2019 [11] and introduced a noise
reduction interface for the open source C++ coupling framework MaMiCo1.

However, our latest research shows that POD filtering is rather sub-optimal
in a molecular-continuum context: While POD is excellent for detecting tempo-
ral correlation in the input data, it does not fully exploit natural redundancy
that exists in every single time step, because it views the MD data values as
separate signal sources in the simulation space, without any information about
their neighborhood relationships. Thus, in this paper we will propose a more
advanced way to filter information from a particle system. Although the noise
reduction interface we presented in our last paper [11] was already quite flexible,
as it can be used to execute any noise filter or MD data analysis module, it could
only run one filter at a time. However, it has been shown that in many cases
a combination of more than one filter (e.g. POD + wavelet transform) results
in improved results, see e.g. [21]. If many filters are to be combined, they may
be interdependent and a free parametrization and reordering even at runtime
is desirable. From an HPC perspective, this can be very problematic, as many
challenges arise in terms of parallelization and communication or memory access
(e.g. avoiding unnecessary copy operations). While any such filter combination
can easily be hard-coded, it is desirable to strive for a more generic and flexible
solution, with the ability to execute many noise filters and data analysis modules
arranged in any data-flow diagram including multiple data paths, configurable
at runtime, but also with a strong focus on performance and scalability on HPC
clusters.

In this paper, we present an approach in which we view CFD cells and cell-
wise MD data as ‘pixels’, execute various operations or chains of operations on
them, including the application of an image processing denoising method: Non-
Local Means (NLM) [4] first presented by Buades et al. [3] in 2004 is one of the
best algorithms in this area. The ability to detect fine structures and patterns in
images, sustaining them instead of averaging them away like many other filters
would, makes NLM perfect for MD data, where one wants to separate nano-scale
flow features from thermal noise. NLM has been successfully applied for medical
imaging [5], but to the authors’ knowledge it was never used in CFD/MD so far.
In this paper, we present a modified version of the NLM algorithm, optimized for
filtering particle data. Due to the non-local nature of the NLM method, perfor-
mance can be a critical issue. Coupé et al. [5] have presented approaches for fast
implementation of NLM, we optimize and extend them for higher-dimensional
data and execution on HPC clusters. We also extend the C++ framework Ma-
MiCo by new python bindings, our NLM implementation and we introduce a new
filtering system for configurable filter combinations, creating flexible data-flow

1 https://github.com/HSU-HPC/MaMiCo
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filter chains, based on cell-wise operations. This system also enables the reuse of
existing filters in MaMiCo, for instance from the python packages numpy and
scipy, in an efficient and parallel way.

In Section 2 we explain our methodology for molecular-continuum coupling.
Section 3 introduces the original Non-Local Means idea, some optimizations of
it, and presents our new variant of the NLM algorithm. We also present a more
flexible novel data-flow filtering subsystem for MaMiCo in Section 4, specify-
ing details on software design and supported types of filters (4.1). Section 4.2
presents a fast implementation approach for NLM. We analyze NLM and the
filtering subsystem more thoroughly by running a coupled molecular dynamics-
Lattice Boltzmann vortex street flow test scenario on a GPU that is described in
Section 5, giving simulation results, performance and signal-to-noise ratio mea-
surements in Section 5.1. Section 6 summarizes our work, leading to perspectives
for potential future research topics.

2 Coupled Simulation

Fig. 1. Domain decomposition of coupled
simulation. Zoom-out: 3D vortex street us-
ing 12.8 million Lattice Boltzmann cells.
Zoom-in: Yellow outline: Total coupling re-
gion with ghost layer of macroscopic cells
and outer MD cells. Green wireframe: In-
ner MD cells, where filtering is applied.

We consider transient, concurrent
coupling of MD and CFD, with nested
time stepping on MD side (ca. 50 MD
steps correspond to one CFD step).

On the molecular scale, our cou-
pled flow simulation employs a sim-
ple Lennard-Jones particle system, in-
tegrating the equations of motion di-
rectly via explicit time stepping in the
NVT ensemble. It is implemented us-
ing the linked cells method [7] and
MaMiCo’s built-in MD solver Sim-
pleMD, which is used only to test the
coupling algorithms and is representa-
tive for more sophisticated MD pack-
ages, such as LAMMPS [18] or ls1
mardyn [16]; see [14] for an overview
of MD packages supported in MaMiCo-based coupling.

The MD domain is covered by a regular grid of cells which are used by
MaMiCo for the coupling, called ‘macroscopic cells’. Note that macroscopic cells
neither have to match linked cells (they could even be used with a non-cell-based
MD code) nor do they have to correspond to the cells used by the CFD solver
internally. These cells are rather the main buffer data structure used for coupling
and build the basis for all operations described in Section 4, where filters are
always applied to multi-dimensional arrays of macroscopic cells.

On the continuum scale, similarly to the MD side MaMiCo can be coupled
to many different solvers, but in the scope of this paper we use the lbmpy [1]
package, which can automatically generate highly efficient GPU code for Lattice
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Boltzmann (LB) schemes. We employ a simple single-relaxation-time collision
operator and a D3Q19 stencil.

Figure 1 shows an exemplary domain decomposition, where a small MD do-
main is placed (overlapping) inside a much larger CFD domain to establish
molecular-continuum coupling [13, 15]. The outer MD cell layers serve as a
boundary condition to receive data from the continuum solver. We employ an
advanced boundary forcing term [20] to model the thermodynamic pressure at
the molecular scale at the continuum boundary and the USHER scheme [6] for
particle insertion. In the inner MD cells, we sample cell-wise quantities such
as density or average velocity out of the particle simulation instances, so that
this data can be sent to the continuum solver. In the following, we will restrict
considerations to these cells with regard to noise filtering.

3 Non-Local Means Algorithm

Buades et al. [3] proposed the Non-Local Means (NLM) algorithm after an exten-
sive series of denoising experiments on natural images. It is inspired by various
local smoothing methods and frequency domain filters, such as Gaussian con-
volution, anisotropic filtering, total variation minimization, Wiener filtering and
wavelet thresholding. Already a very simple Gaussian filtering yields a power-
ful noise reduction by averaging away high-frequency noise, but it also removes
high-frequency components of the original data; for instance sharp edges in an
image are blurred. More advanced methods like an anisotropic filter can preserve
large-scale geometrical structures like sharp edges, but all of these previously
known methods still smooth out fine-scale textures. NLM on the contrary is
constructed with the aim to preserve details and fine structures which behave
like high-frequent noise in an image. This means that systematic patterns in
particle data, for instance recurrent flow vortices or nano membrane diffusion
structures will be retained by the filter instead of being averaged away.

For a noisy image v = {v(i) | i ∈ I}, NLM can be written as:

NLM [v](i) = 1
Ci

∑
j∈I

w(i, j)v(j) (1)

We can see in Eq. (1) that the filtered result for the pixel at position i is always a
weighted sum of all other pixel values v(j) in the image. The weights w(i, j) are
defined for all pairs of pixel positions i and j; however, with the optimizations
introduced in Sec. 4.2, w(i, j) is sparse. The normalizing factor is chosen as

Ci =
∑
j∈I

w(i, j) (2)

so that the sum of weights is 1. Let Ni denote a subset of I that is a local
neighborhood centered at position i. In [3] these neighborhoods in 2D images
are often called similarity windows and have a size of, for instance, 7× 7 pixels.
On the other hand, [5] uses neighborhood windows in 3D images of size 3×3×3
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voxels. Here, we use the term patch for the small data array v(Ni) in such a
local neighborhood window Ni around i. Our patches of MD data will normally
have a size of 3 × 3 × 3 × 3 cells, corresponding to space-time windows, simply
because a size of 3 is the smallest reasonable choice for both, space and time.
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Fig. 2. NLM principle, illustrated for noisy
1D wave propagation: To compute the fil-
tered value of a cell i at (x=4,t=0), its
patch is compared with patches around ev-
ery other cell j. Here, (2,-7) is more similar
and thus gets a higher weight, while (5,-5)
is less similar and has less influence on i.

In the temporal dimension, we re-
strict the filtering to a time window
size of T coupling cycles (for example
T = 10 in Fig. 2). We typically re-
quire filter results for the present cy-
cle at t = 0, with data from past cy-
cles t < 0 available, but before MD
data for future time steps at t > 0 can
be computed. Thus, the patches which
are centered on their cell in space have
to be shifted in time, as illustrated in
Fig. 2. Additionally, we introduce a
temporal fade-out of weights (see Eq.
(5)), so that recent data is more sig-
nificant than older information.

To compare patches, we use
a squared Euclidean distance (L2
norm), as recommended by [4]. The
norm can be understood as a similar-
ity metric used to measure the sim-
ilarity of i and j by comparing their
local neighborhood patches:

(i, j) = ((xi, 0), (xj , t)), t ∈ {0,−1,−2, ...,−T + 1} (3)
dist(i, j) = |v̂(Ni)− v̂(Nj)|2 (4)

This distance can be used to define the weights as:

w(i, j) = exp
(
−max(dist(i, j)− 2σ2

N , 0)
h2

)
· 1

1− t (5)

Note that the expression exp(− d
h2 ) with d ≥ 0 in Eq. (5) guarantees that all

weights are in [0, 1] and that h is a filtering parameter that controls the decay
of the exponential function. The second filtering parameter σN that corresponds
to the expected standard deviation of the noise, so that the weight of a patch
with a distance smaller than 2σ2

N is always 1, as described in [4].
Unlike previously described NLM versions, in our variant we introduce an

additional pre-filtering function F (Eq. 6) into the similarity computation, in-
spired by regularization that is commonly used in a Perona-Malik filter. F can
be any existing simple noise filter with a low gain of signal-to-noise (SNR) ratio,
such as a Gaussian kernel. It is used to improve the quality of the similarity
metric in high noise / low SNR scenarios.

v̂ = F [v] (6)
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Note that F is not restricted to a Gaussian kernel, but we allow any reasonable
pre-filter. This has the advantage that either a computationally cheap F may
be used or a filter with a higher SNR gain can be used, which improves the
significance of the similarity metric. Especially, POD [8] can be applied here to
exploit temporal correlation in v, and we show in Sec. 5.1 that this yields good
results.

4 Implementation and Software Design

One of the most central concepts we developed with regard to creating a modular
thus flexible filtering environment for MaMiCo is the notion of filter sequences.
Let F be a set of filters operating on the same spatial domain. Then one can
view a filter sequence S as a nonempty tuple or list (f0, .., fn : fi ∈ F) in which
for all i ≥ 1 the input of fi shall be the output of fi−1. The output of fn is
the sequence output of S. Similarly, the input of f0 is the sequence input of S.
The sequence input of all sequences must be defined before execution, it can be
either MD data or another sequence.

In some cases, being restricted to unary functions as filters poses a problem.
For example, our NLM algorithm asks for two sets of input (unfiltered/prefiltered).
We thus implemented a generalization of the sequence concept, allowing for mul-
tiple in- and outputs: filter junctions. Filters that operate not in sequences but
in junctions are called junctors. An exemplary filtering configuration using both
junctors and filters is depicted in Fig. 4.

Sequences are managed by FilteringService, which also acts as an in-
terface to the MacroscopicCellService (MCS). During MaMiCo startup, one
MCS per MD instance gets initialized. It immediately constructs an instance
of FilteringService. This service now interprets an XML configuration file,
creating all FilterSequences specified. Every sequence is now instructed which
cells will be the input for f0 and where to write the output of fn. Then, filter
instantiation begins. Internally, each sequence stores two cell vectors V1 and V2.
Let I(fi) denote the input and O(fi) the output of a filter fi respectively. Then,

I(fi) =
{
V1 if i is even
V2 if i is odd

; O(fi) =
{
V2 if i is even
V1 if i is odd

.

This way, space required for cell vectors is constant in n.

4.1 Supported Types of Filters

For a D-dimensional scenario, any function applicable to both scalar and D-
dimensional floating point in- and outputs can be utilized as a filter or junctor.
This also means that read-only utilities can easily be wrapped in filters. For
example, saving cell data to files is implemented as a WriteToFile filter, cf. Fig.
3. Such filters simply copy input cell data to corresponding output cells without
prior modification.
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Coupling

MaMiCo

Filtering

Filters

MacroscopicCellService

- fp : FilteringService
...

addFilterToSequence(...) : void
...

FilteringService

- sequences : FilterSequence[0..*]
- config: tinyxml2::XMLDocument
...

+ operator()() : void
- loadSequencesFromXML() : void
...

FilterSequence

- domainCellVector{1,2} :
MacroscopicCell[0..*]
- filteredValues : bool[7]
- filters : FilterInterface[0..*]
...

+ addFilter(...) : void
+ getFilters() : FilterInterface[0..*]
- loadFiltersFromXML() : void
...

SequentialFilter

- filter : FilterInterface
...

+ operator()() : void
- Sequential(bool sequential) : void
- contribute() : void

�interface�
FilterInterface

- inputCells : MacroscopicCell[0..*]
- outputCells : MacroscopicCell[0..*]
- cellIndices : unsigned int[dim][0..*]
...

+ operator()() : void
...

�interface�
FilterInterfaceReadOnly

# copyInputToOutput() : void

Gauss NLM FFF Copy WriteToFile

Macro Solver Interface

Coupling

MD Solver Interface

Fig. 3. Software design of the new filtering system for MaMiCo: Every filter implements
the FilterInterface, they are combined together in FilterSequences and managed by the
FilteringService.

Statically and Dynamically Linked Filters As mentioned before, the main
way of defining filters in a FilterSequence is via a configuration file. Naturally,
the tree-like node structure of XML is very close to the structure of interlinked
FilterSequences, cf. 4. Filters specified before runtime using this configuration
file are called statically linked. These filters are written in C++, implementing
the FilterInterface or expanded interfaces thereof. Dynamically linked filters
on the other hand are linked at runtime by calling the method addFilter() of a
FilterSequence. This method takes arbitrary std::function objects (of signa-
tures fitting our definition of filters above) and constructs a FilterFromFunction
(FFF) C++ object using that information. Since there are interfaces between
std::function and other programming languages, this design omits the limi-
tation of filters to be written in C++. For example, the pybind11 library [10]
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Input from MD simulation

Save unfiltered data

SciPy: Gaussian Filter

NLM junctor Save filtered data:
Gaussian onlyPOD filter

Save filtered data:
Gaussian, then PODOutput to Macro Solver

Fig. 4. Visualization of an exemplary FilteringService configuration diagram. Setups
like this enable comparison between any number of filtering strategies with ease, e.g.
between Non-Local Means, Gaussian and Gaussian followed by POD. Note that NLM
is implemented as a junctor: it uses both, unfiltered data and POD output.

allows for python functions to be passed as std::function at runtime. Listing
1 gives an example as to how one could make use of SciPy2 filters in MaMiCo.

1 from scipy.ndimage import gaussian_filter
2

3 def gaussSigmaOne(data):
4 print("Applying gaussian filter. sigma_G = 1.")
5 return gaussian_filter(data, sigma = (1,1,1))
6

7 mcs = self.multiMDCellService.getMacroscopicCellService(0)
8

9 #Add scipy's gaussian filter in FilterSequence 'mySequence'
10 #at filter index 0, filtering scalar properties.
11 mcs.addFilterToSequence(filter_sequence = "mySequence", filter_index =

0, scalar_filter_func = gaussSigmaOne, vector_filter_func = None)↪→

Listing 1: Example showing how to use the MaMiCo python interface in order to
add an arbitrary function as a filter at runtime. In this case, the SciPy package is
utilized to apply a Gaussian filter to all scalar properties "mySequence" (defined
via XML) operates on. With "filter_index=0" the filter is placed at f0. mcs is
the overarching MacroscopicCellService, cf. Fig. 3

Sequentialized Filters in a Parallel Environment One of MaMiCo’s pri-
mary design goals is to support massively parallel solvers and thus be highly scal-
able. In particular, the MD simulation will usually be MPI-parallel. In that case,
each MPI rank will have a unique instance of MCS and thus of FilteringService,
managing filters entirely independent of other ranks. These filters will then only

2 https://www.scipy.org/
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have a fraction of all cells in the global filtering domain, which can, depending
on individual use cases, have either a negative or positive effect:

Some filter algorithms treat cells independently, in which case parallel fil-
tering can imply performance gain. In other cases this separation is either sub-
optimal or entirely incompatible with the filter algorithm in use.

For the latter case we introduced the concept of sequentialized filters. If a
filter is marked as sequential, that filter will not be applied in rank-wise inde-
pendence. Instead, it has only one dedicated processing rank, while all other ranks
are contributors. For application of a sequentialized filter, the FilteringService
uses MPI_Gather and MPI_Bcast to manage the necessary communication steps.
Although sequentialized filters represent only a special case within our method-
ology, they allow for simple incorporation of off-the-shelf filter implementations.
E.g. a dynamically linked Gaussian filter can be used without having to manually
manage MPI communication for neighbor information.

4.2 Non-Local Means: Optimized Implementation

Despite the name ‘non-local’, NLM is in practice not executed on the global
domain, but the similarity comparison of patches is restricted to moving search
windows. This means that j in Eq. (1) is not actually in I, but xj is in a local
neighborhood of constant spatial size (2M + 1)3, centered at i. Thus, since only
a constant number of operations has to be performed in this local research zone,
the computational complexity of the NLM implementation is asymptotically
linear in the global number of domain cells.

To speed up the implementation, as described in [5], the computation of
w(i, j) can be skipped if dist(i, j) is expected to be large, without the expensive
evaluation of |v̂(Ni) − v̂(Nj)|2. This is achieved by pre-computing and storing
characteristic values of v̂(Ni) for every cell i, such as mean and standard devia-
tion of this patch. Only if the relative differences of these values are small enough,
i.e. inside configured bounds, then dist(i, j) is computed, otherwise w(i, j) is set
to zero.

At the expense of extra memory consumption, the NLM execution can be
further accelerated if patches are stored in a redundant, linearized way: This
allows for a cache-efficient contiguous memory access and vectorization of the
patch distance determination. Our implementation exploits this in a natural way
– using the concept of flowfield and patchfield data structures. We define a field
as a four-dimensional space-time array. Then, a flowfield is a field of quantities
sampled from the particle system. A patch is a small flowfield together with char-
acteristic values; and a patchfield is a field of patches. Our NLM implementation
only constructs and accesses a patchfield, so that for the similarity computation,
it does not have to use a cell stencil or compute any neighbor indices. In our
experiments we measured a speed-up of 20 % compared to direct neighbor cell
accesses without linearized patch storage.

Since the filtering system of MaMiCo executes the filter only on the subdo-
main of inner macroscopic cells that belongs to this rank, the NLM implementa-
tion is MPI-parallel and can easily be scaled up to runs on large HPC-clusters.
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Fig. 5. Sound wave extraction test case: even with a very high level of noise in the
input, our NLM implementation (using POD as pre-filter) can reconstruct the original
pattern in the density data. NLM params used: σN = 0, h2 = 0.45

However, since we did not incorporate ghost layers for the patchfield initializa-
tion so far, the filtering quality at inter-rank boundaries can be slightly reduced
due to missing neighbor values. For simplicity, we test NLM sequentially here.

4.3 NLM Test: Nano-Pattern (Sound Wave) Extraction

Fig. 6. NLM parametrization study: MSE
against original signal (Fig. 5) over h2

To test the filters under challeng-
ing conditions and demonstrate
the ability of NLM to detect fine
structures in MD data, we created
a 3D flow scenario where ultra-
high-frequent pressure wavefronts
propagate at speed of sound (one
cell per coupling cycle) in X di-
rection through the domain. For
simplicity, and to have an original
true signal for comparison, we did
not execute a real particle simulation here, but constructed synthetic pseudo-
MD data by adding normally distributed artificial noise (σ = 0.2) to analytical
oscillations (amplitude 0.05). Figure 5 shows the density values in four inner cells
of the synthetic MD domain over time, and compares the noisy input with the
respective filter outputs. Since we normalized the wavelength to two cell sizes,
the original signal shows a checkerboard pattern in the x− t plot. The filtering
parameters N ,kmax,σG,T and F are exactly the same as in Sec. 5.1. While it
can be observed that the Gaussian filter and POD [11] deliver blurry results, the
new NLM approach captures the spatially varying pattern very well. Figure 6
shows the same test setup again, but evaluates the mean squared error (MSE)
of the NLM output for various choices for the filtering parameter h2. Each MSE
value is computed over 64 cells and 50 coupling cycles here. We can identify an
optimal value of h2 ≈ 0.25 for this scenario, and discover that too large values
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of h are less critical, while with too small values the filtering results fall off in
quality much faster.

5 Simulation Results

Vortex Street Test Scenario We chose a well-known vortex street setup for
testing the filtering system and the NLM implementation in a transient one-
way LB → MD coupled simulation, i.e. without sending data from MD to the
macroscopic solver, so that we obtain reproducible results for validation and
quantification of the denoising.

We use lbmpy [1] as macroscopic solver to set up the test case 3D-2Q from
[19] that models a flow around a cylinder with square cross-section, but we scale
it down to a channel of size 663 nm× 108 nm× 108 nm. We keep the Reynolds
number of Re = 100 and thus the flow properties constant, so that the flow is
laminar and unsteady. More details defining the scenario precisely can be found
in [19]. To validate the flow scenario, we measured the forces acting on the obsta-
cle to compute drag and lift coefficients. Our experimentally determined values
of cDmax = 4.39; cLmax = 0.066, as well as the Strouhal number we measured of
St = 0.37±0.03 are in very good compliance with the results given in [19], which
were obtained by multiple different research groups and using other numerical
methods, such as finite element solvers. The LB simulation uses 780× 127× 127
cells and runs with a performance of 1937 MLUPS on a NVIDIA Tesla V100.

Using the novel MaMiCo python bindings, we couple lbmpy to a single MD
instance placed at the position 332 nm× 80 nm× 54 nm in the vortex street, as
shown in Fig. 1. We ensure that the dynamic viscosity is configured consistently
between both solvers and for simplicity, we choose the same cell size for both
MD and LB. Note that while the vortex street is not a common scenario in
nanofluidics, it yields a multidimensional transient flow in the coupled simula-
tion, which is excellent for studying the filtering methods on sufficiently complex
particle data.

5.1 Vortex Street Filtering Results

We initialize the scenario described in Sec. 5 for only 2× 104 LB time steps, so
that there is no fully developed flow, but a start-up phase can be observed. At
that point we enable coupling, sample and filter particle data for 1000 coupling
cycles (with 100 MD time steps per cycle). The resulting values for the velocity
in Y direction in one of the cells in the center of the inner MD domain are
shown in Fig. 7. The main flow in X direction is not shown here, but instead
only unsteady oscillating transversal fluid movements behind the obstacle (cf.
Fig. 1).

It can be seen in Fig. 7 that without filtering, there is a high level of thermal
noise in the values sampled from MD. With all filtering methods, the results
are much closer to the CFD values. We can quantify this precisely with the
signal-to-noise ratio (as defined in [11]) in this cell: While the raw MD data has
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Fig. 7. Velocity data from particle system, compared to macroscopic flow, in only one
single cell (center of MD domain). Red: raw MD (1 instance). Green: POD filtered,
N = 40, kmax = 2. Yellow: Gaussian, σG = (1, 1, 1). Purple: NLM, T = 5, F=POD.

an SNR of -3.16 dB, this is improved to 6.06 dB with POD, 9.62 dB with the
Gaussian filter and 10.57 dB with NLM. NLM is configured to use POD as pre-
filter F . Compared to Sec. 4.3, the Gaussian performs better here, because in
this example the flow has rather a large-scale structure instead of fine patterns,
but NLM is still superior. Note that the time window size used is 40 coupling
cycles for POD but only 5 for NLM, so that POD has 8 times more data available
to use for filtering. Nevertheless, NLM achieves an increased SNR gain of 4.51
dB, corresponding to 2.82 times stronger noise reduction compared to POD.

The performance impact of the filtering system on the overall coupled sim-
ulation is minimal. For the configuration in Fig. 7 we measured the following
average filter execution times per cycle, for all cells: POD 1.03 ms, Gaussian
0.33 ms, NLM 6.98 ms. This corresponds to less than 0.2 % of total simulation
runtime spent in the filtering system in the worst case. For more details on per-
formance and scaling tests on up to 512 cores of the coupled simulation including
POD the reader is referred to [11].

6 Conclusions

We have discovered that the NLM algorithm from image processing is by design
well suited to filter flow data from a MD system. When we generalized NLM to
higher-dimensional and time series data, the problem of missing information from
the future was solved by introduction of a time-shift (Fig. 2) in the definition
of patches. We allow an additional pre-filtering step for an improved similarity
metric in high noise setups and provided a formal definition of our new NLM
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variant. Although it operates on 4D data structures, it is efficient, especially
compared to multi-instance MD computations, but some questions such as more
elegant boundary handling and good parallelization strategies still have to be
investigated. To be able to execute many data analysis or noise filtering modules
in freely configurable combinations, we introduced a more flexible novel filter-
ing system into MaMiCo and gave details on the new software design. We have
shown how NLM can be efficiently implemented and provide an optimized im-
plementation as junctor in MaMiCo. To allow for dynamically linked filters and
reuse of existing python packages in the C++ framework, we extended MaMiCo
by new python bindings. We introduced a coupling to lbmpy, validated a GPU-
based vortex street test scenario, and used the vortex street flow to investigate
NLM results and quantify the noise reduction, showing that NLM is superior to
POD in a molecular-continuum context, at minimal performance expenses.

A prediction of the deviations between microscopic and continuum quantities
is important for consistency in the coupling, i.e. to guarantee conservation of en-
ergy. This can easily be derived from statistical mechanics for raw MD data and
ensemble averaging, but for filtering results such a generic error estimation tool
constitutes a major challenge. Machine learning methods may be an approach
to solve this. Other open questions for future work would be further investiga-
tion of possible limitations and drawbacks of the pattern extraction by NLM, as
well as automatic dynamical selection of optimal filtering parameters to obtain
a balanced ratio between and performance and accuracy.
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