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Abstract. In this paper, we present the framework for the multiscale
thermoelastic analysis of composites. Asphalt concrete (AC) was selected
to demonstrate the applicability of the proposed approach. It is due to
the observed high dependence of this material performance on the ther-
mal effects. The insight into the microscale behavior is upscaled to the
macroresolution by the multiscale finite element method (MsFEM) that
has not been used so far for coupled problems. In the paper, we present
a brief description of this approach together with its new application to
coupled thermoelastic numerical modeling. The upscaled results are com-
pared with the reference ones and the error analysis is presented. A very
good agreement between these two solutions was obtained. Simultane-
ously, a large reduction of the degrees of freedom can be observed for
the MsFEM solution. The number of degrees of freedom was reduced
by 3 orders of magnitude introducing an additional approximation error
of only about 6%. We also present the convergence of the method with
the increasing approximation order at the macroresolution. Finally, we
demonstrate the impact of the thermal effects on the displacements in
the analyzed asphalt concrete sample.

Keywords: Multiscale finite element method · Upscaling · Thermoelas-
ticity · Asphalt concrete.

1 Introduction

The placement of our research, divided into two parts, is presented in this Sec-
tion. Firstly, we describe the developed AC material models incorporating the
thermal effects. Secondly, we present selected multiscale approaches to the mod-
eling of asphalt concrete. Our study encompasses mainly the effects of the het-
erogeneous AC structure on its performance. In addition, we account for the
heat transfer within this material, which affects the mechanical response.

1.1 Asphalt Concrete

Asphalt concrete (AC) is a typical material used for the flexible or semi-rigid
pavement structure layers. In this paper, we use this term to describe the com-
posite made of two main ingredients: the mineral aggregate (90ö95% w/w, where
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w/w stands for the weight ratio) and the mastic (5ö10% w/w). The latter is
understood as a mixture of the asphalt binder and a very fine mineral filler.

For the sake of simplicity, we neglect in this study the presence of the air
voids, the modifiers and other possible additives since the paper focus is on the
multiscale analysis rather than on the materials science. The extension of the
presented in this paper framework to other asphalt mix types is possible and it
does not affect its routine. The only restriction is the analysis scale, which is the
continuum. We cannot directly incorporate e.g. the atomistic scale observations
to the whole analysis.

In Poland, the term asphalt concrete precisely refers to one of the asphalt
mix types, which is characterized by the uniform gradation curve. It means
that all particle fractions are represented in the aggregate mix with a similar
weight ratio. In this paper, we keep this Polish nomenclature. Some other asphalt
mixes include SMA (stone mastic asphalt). The comparison between exemplary
gradation curves for AC and SMA is shown in Fig. 1.
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Fig. 1. Exemplary grading curves (red solid line) for (a) AC and (b) SMA - blue dotted
lines denote bounding gradation curves according to Polish guidelines

We are able to model any gradation curves. However, in the numerical examples
we focus on AC only since its applicability is very broad comparing to other
asphalt mix types designed rather for specific pavement layers. Modifying the
gradation curve, the asphalt binder content and other properties, AC can be laid
for all asphalt pavement layers.

The performance of AC at the continuum scale is based on the mechanisms
that can be observed at lower scales. The overview of a number of complex phe-
nomena influencing the overall AC response is presented e.g. in [11,27]. They are
related either to external factors such as loading, temperature, aging, moisture,
to name only a few, or the internal material structure.

The very basic description of the AC performance is provided by the linear
elasticity equations. Namely, all the considered constituents are modeled as linear
elastic. In some cases, when the analysis period is very short, the subject load
is constant and the temperature is relatively low, such an approach may be
sufficient to capture the physical response of AC. Instead of the linear elastic
model, more realistic viscoelastic constitutive equations can be easily used. We
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MsFEM upscaling for the coupled thermo-mechanical problem 3

have already applied MsFEM for such model [13] but in this paper, we focus on
the novel MsFEM implementation, i.e. thermo-mechanical coupling.

In the number of papers, only the aggregate particles are modeled as linear
elastic, whereas the asphalt binder is described using a variety of viscoelastic-
ity [24,23,22,29,34], viscoelastoplasticity [18,33] or even more complex models
accounting for the accumulated damage [2,12,32]. In some studies, the adhesive
(interfacial) zone between the AC constituents is also encompassed in the analy-
sis [19,17,34]. Typically, a perfect bonding between the binder and the aggregate
particles, as it is the case in this paper, is assumed.

It should be also remarked that due to the increasing complexity of the
above models, not in all of the studies the heterogeneous AC microstructure was
considered. Contrary, the effective AC material model was developed.

Temperature, which is considered as one of the major factors influencing the
AC performance, is taken into account in a number of studies in several modes.
Firstly, the temperature distribution in AC can be regarded as a standalone
problem [9,26,31]. Its solution can be used in further specific analyses.

In this paper, we use the so-called sequential coupling of thermal-stress anal-
ysis. It is a basic approach to the solution of the thermoelasticity problem
that is weakly coupled, i.e. the displacement and stress fields are temperature-
dependent without the reverse relationship. This algorithm is implemented e.g.
in ABAQUS. Since its common application (c.f. [30]), including this study, it
is recapitulated below (Algorithm 1). When solving the final elasticity problem,
the thermal strain is applied in a form of a contribution to the right-hand side
of the governing differential equation.

Algorithm 1 Solve a sequentially coupled thermoelasticity problem

Require: define the problem (geometry, material parameters and boundary condi-
tions)

Ensure: the FE mesh complying with the material distribution
solve the heat transfer problem within the domain
for n=1 to NGP do {loop over Gauss points}

compute the thermal strains resulting from the temperature distribution
set material parameters for the computed temperature

end for
solve the elasticity problem with thermal strains and temperature-dependent mate-
rial parameters

In the fully coupled thermal-stress analysis, the displacement/stress fields are
computed simultaneously with the temperature field. It is used for the strongly
coupled fields affecting each other, contrary to the weakly coupled fields analyzed
using the sequential thermal-stress approach according to Algorithm 1. In order
to solve such a problem, the multiscale finite element method can be also used.
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1.2 Multiscale AC Analyses

As it was mentioned in the previous chapter, the complexity of the AC material
models considerably limits their application to the analysis with the heteroge-
neous microstructure considered. Therefore, homogenized AC effective responses
are needed in practice.

The multiscale modeling, that we use in this study, incorporates the infor-
mation from the lower scale (or scales) to the actual analysis scale. The main
goal of these approaches is to transfer this information effectively. Namely, we
want to reduce the computation cost by introducing as little additional modeling
error as possible.

A number of homogenization and upscaling techniques were developed for
the AC modeling [8,11,12,15,20,23,22,28]. Most of them are variants of the FE2

homogenization presented in [6]. This approach consists in a two-scale analysis
using the finite element method at each level. At the macroscale Gauss points,
auxiliary boundary value problems (BVP) are solved to account for the underly-
ing microstructure. The domain used for a single BVP is called the representa-
tive volume element (RVE) and should be constructed precisely to reveal the AC
microstructure. The advantage of the FE2 homogenization is that no material
model needs to be used at the macroscale. Instead, the effective quantity Q is
passed from RVE using the averaging over the RVE volume V :

〈Q〉 =
1

V

∫
V

Qdv (1)

In [28], the proper orthogonal decomposition (POD) was used to reduce the
problem order for the elastic AC computations. These two above-mentioned
approaches were combined in [8].

The effective values of the complex modulus and phase angle of the analyzed
AC specimen were obtained in [21] using the Generalized Self Consistent Scheme
- an analytical model of the idealized inclusion embedded in a matrix.

Due to a number of its advantages, the FE2 approach is the most popular.
However, its limitation is the distinct separation of scales condition. In the con-
text of the AC numerical modeling, it can be a caveat for the thinner asphalt
layers. Namely, the upper pavement layers - wearing and binding course.

The upscaling approach, called the multiscale finite element method (Ms-
FEM), was used in [14,15] by us to model the elastic and viscoelastic response
of AC. A short description of MsFEM is provided hereinafter.

The upscaled/homogenized solutions for AC modeled as the thermoelas-
tic material are not very common in the literature. General approaches, as in
[3,10,25], are rather developed.

To our best knowledge, MsFEM has never been used for such a problem.
Thus, the present study aims to fill this gap, demonstrate the initial results and
perspectives for further research.
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2 Problem Formulation

In this study, we search for the solution of the weakly coupled thermoelasticity
problem in a heterogeneous domain using the set of equations recapitulated
below. For the sake of simplicity, we do not assume the time-dependency of
any of the present fields. As far as the mechanical AC response is considered,
the linear elasticity model is used. The temperature distribution is obtained
solving the steady-state heat transfer problem. The numerical computations are
performed according to Algorithm 1.

Find the displacements u(x) and the temperature Θ(x) such that

divσ +X = 0 ∀ x ∈ ωi ⊂ Ω
σ = C−1[ε(u)− ε∗] ∀ x ∈ ωi ⊂ Ω
ε = 1

2 [∇u+ (∇u)T ] ∀ x ∈ ωi ⊂ Ω

−k∆Θ = f ∀ x ∈ ωi ⊂ Ω
ε∗ = αIΘ ∀ x ∈ ωi ⊂ Ω
+ boundary & continuity or debonding conditions

(2)

where σ denotes the stress tensor, X are the body forces, C is the tensor of ma-
terial parameters for elasticity, k is the thermal conductivity, α is the coefficient
of thermal expansion and ε∗ is the thermal strain tensor.

Eqs. 2 IV,V , referring solely to the heat transfer problem, are solved first.
Then, the thermal strains ε∗ are transferred to the mechanical part contributing
to the right-hand side of Eq. 2 I . The weak formulation of the mechanical part,
used for the finite element computations, is presented below.

Find the displacements u(x, t) ∈ H1
0 (Ω) + û such that

∫
Ω

ε(v) : C−1ε(u)dω =

∫
Ω

v·Xdω+

∫
Sσ

v·̂tds+
∫
Ω

ε(v) : C−1ε∗dω ∀v ∈ H1
0 (Ω)

(3)
where v denotes test functions, t̂ are the known tractions, û are the known dis-
placements and H1

0 is the Sobolev space of the functions satisfying homogeneous
Dirichlet boundary conditions.

3 Multiscale Finite Element Method

MsFEM [4,5,7] is one of the upscaling methods. It enables to model the problem
at the macroresolution incorporating the lower resolution information. The core
of its idea is presented schematically in Fig. 2.

Firstly, regardless of the information on the microstructure, we discretize the
domain with the coarse mesh (blue quadrilateral elements in Fig. 2). Then, we
proceed element-wise. A fine mesh complying with the microstructure is gener-
ated within a given coarse element. Assembly within this subdomain delivers a
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Fig. 2. MsFEM scheme illustrated for a single coarse element

fine mesh stiffness matrix Kh and a load vector fh. Its effective counterparts
are computed using the following formulas:

KH = P TKhP

fH = P Tfh
(4)

Therein, matrix P stands for the prolongation operator. Its assessment requires
the solution to the auxiliary boundary value problem that is used for the search
of the modified coarse element shape functions. The degrees of freedom (dof) of
the solution for a given shape function constitute the corresponding column of
P .

In the case of the thermoelasticity problem, we need to solve two sets of
auxiliary BVP: for the elasticity and the heat transfer problems consequently.
For the detailed description of the BVP leading to the assessment of the modified
shape functions for the elasticity, we refer to our previous papers [14,15]. For the
sake of brevity, only the auxiliary BVP for the heat transfer is presented below.

Given Ψm, which is a coarse mesh standard scalar-valued shape function
(m=1,. . . ,M), we look for its scalar-valued counterpart Φm that is a discrete
solution of the following Dirichlet boundary value problem

∂
∂xi

(
k ∂Φm∂xi

)
= −kα ∂2

∂x2
i
Ψm ∀i =1,2,3, x ∈ Ωjs ⊂ Ωs ⊂ Ω

Φm = Φ̂m on ∂Ωs

+ interface continuity conditions

(5)

where k is the thermal conductivity of the material at a given location x, kα is the
arbitrary averaged thermal conductivity in Ωs, Ω

j
s denotes the j-th constituent

of the composite.
Problem 5 is solved using FEM, thus the corresponding variational formu-

lation needs to be stated. For the completeness of the problem statement, we
refer to the comprehensive discussion on the definition of the Dirichlet boundary
conditions for Φm in [14,15].

Illustration of the MsFEM routine is shown on a simple example of the 1D
bar. Let us consider a prismatic bar with a length of 2. Its left half is character-
ized with EA=1, the right one with EA=10. Using 2 linear finite elements, their
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stiffness matrices are equal to KL and KR, respectively. Their assembly gives
Kh. Computation of the effective matrixKH for one linear coarse element (occu-
pying the whole bar) requires solutions to the corresponding auxiliary problems
(see [1]) to obtain prolongation operator P , consequently. The above-mentioned
matrices are given below:

KL =

[
1 −1
−1 1

]
, KR =

[
10 −10
−10 10

]
, Kh =

 1 −1 0
−1 11 −10
0 −10 10

, P =

 1 0
0.09 0.91

0 1

,

KH =

[
0.91 −0.91
−0.91 0.91

]
.

4 Numerical Results

The proposed approach is illustrated with the numerical results for the idealized
AC specimen of dimensions 8 cmÖ20 cm. Material distribution for the arbitrary
gradation curve is shown in Fig. 3. As shown in Fig. 3 a, the whole upper edge is
subject to heating with q=30W/m, whereas temperature along the bottom edge
is equal to 20°C. The remaining edges are insulated. As far as the mechanical part
is concerned, the bottom edge is fixed and the load of intensity t = 100kN/m
is subject to the upper edge centrally for 1/5 of its length. Remaining edges are
free.

Respective material parameters are presented in Tab. 1. We neglect the
change in the Young modulus for the aggregate particles as a function of temper-
ature but we do account for this, crucial in the case of the mastic, phenomenon.
We use the Young modulus value measured at temperature 20°C for the pure
linear elastic case (see Fig. 6) and another value measured at temperature 50°C.
This temperature is approximately equal to the result of the heat transfer prob-
lem analyzed in Section 4.1. One can observe a dramatic decrease of the mastic
Young modulus value at this temperature. It is two orders of magnitudes smaller
than the value at the reference temperature (20°C). For the sake of simplicity,
we use only one value of the Young modulus for the whole matrix in the second
step of the sequentially coupled thermal-stress analysis. Practically, it is a func-
tion of the temperature distribution obtained in the first step (see Fig. 4) and it
changes also spatially.

4.1 The thermal part

In the sequentially coupled thermal-stress analysis, the first step is to solve the
heat transfer problem. The temperature and thermal strain distribution is shown
in Fig. 4. Since all non-zero thermal strain tensor components are equal, we
present only one of them.

As it can be observed, the discrepancies between the reference fine mesh
solution and the upscaled one are extremely small. The reference solution was
obtained using more than 113 000 degrees of freedom (about 220 000 finite
elements) and the linear approximation was used. The upscaled solution was

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_45

https://dx.doi.org/10.1007/978-3-030-77977-1_45


8 M. Klimczak and W. Cecot

(a) (b)

Fig. 3. Neumann boundary conditions for (a) heat transfer and (b) mechanical part

Table 1. Material parameters

Parameter Unit Value

Young modulus - inclusion Pa 80e9
Young modulus - matrix (at 20°C) Pa 10e9
Young modulus - matrix (at 50°C) Pa 10e7
Poisson ratio - inclusion - 0.3
Poisson ratio - matrix - 0.3

thermal conductivity - inclusion W/(mK) 0.8
thermal conductivity - matrix W/(mK) 4.2
coefficient of linear thermal expansion - inclusion 10−6/°C 8
coefficient of linear thermal expansion - matrix 10−6/°C 190

obtained for a regular mesh of 2Ö5 coarse elements with the increasing approx-
imation orders (p=1ö5). The convergence of the temperature and the thermal
strain errors measured in L2 norm is shown in Fig. 5 using the logarithmic scale.

Increasing the approximation order, we observe the reduction of the L2 error
norm for this problem. It drops from about 1.4% (strain) or 1.5% (temperature)
for 18 dof to about 1% (both fields) for about 300 dof (instead of about 113
000 fine mesh dof used for the reference solution). This behavior needs a short
discussion. Whereas the p-convergence observed at the macroscale is a typical
property of many upscaling methods, it can be observed rather for the primary
field (temperature for this problem). It is not very common for other fields,
derived from the primary one. Thus, this p-convergence observed for both present
fields can be regarded as the MsFEM advantage. Thermal strain tensor is a
linear function of temperature. However, coefficients of thermal expansion for
the matrix (asphalt mastic) and inclusions (mineral aggregate) are significantly
different (see Tab. 1). Obtaining such satisfactory results could be cumbersome
for a number of upscaling methods. Such a good performance of MsFEM is
possible due to the reversible relationship between macro- and microscale degrees
of freedom. Thus, after obtaining macroscale ones, we can easily compute in the
post-processing also the microscale degrees of freedom and proceed with this
more detailed information.
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(a) (b)

(c) (d)

Fig. 4. Maps of temperature (aöb) and thermal strain (cöd) - the left column shows
the upscaled solution (for p=5) and the right one shows the reference fine mesh solution
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Fig. 5. Error convergence for (a) temperature and (b) thermal strain

Reduction of degrees of freedom compared to the reference fine mesh solution
spans from about 6300 (p=1) to about 400 (p=5) times with the corresponding
temperature error values ranging from about 1% (p=5) to about 1.5% (p=1).

4.2 The mechanical part

The results of the elastic analysis are shown in Fig. 6. We used for this case ma-
terial parameters for temperature equal to 20°C for the mastic (matrix). A very
good agreement between the reference and upscaled solutions can be observed.
The p-convergence (Fig. 7) shown both for the L2 and energy norms demon-
strates the benefits of the higher order approximation used at the macroscale.
Increasing the approximation order, we reduce the errors measured in L2 and
energy norms from about 20% to about 6% and from about 60% to about 20%,
respectively. The corresponding reduction of the fine mesh reference solution de-
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grees of freedom (about 220 000) spans from 18 (p=1) to 572 (p=5) degrees of
freedom.

In Fig. 7 (cöd), one can observe also the error convergence measured in the
same norms with respect to the relative time, i.e. the ratio of the computational
time necessary for the upscaled and reference solutions. It demonstrates the
applicability of the MsFEM. The time used for the auxiliary problem solution is
the price of the method. Thus, the observed speed-up is not as spectacular as the
reduction of the NDOF compared to the reference fine mesh solution. The speed-
up of about 40 times was obtained in this test for p=5 with the corresponding
error norms equal to about 6% (L2 norm) or 20% (energy norm). For a more
detailed discussion on the MsFEM computational efficiency, we refer the reader
to [13,15]. Some crucial aspects of the discussion presented therein are:

– MsFEM is ready for the parallelization, the auxiliary problems can be solved
independently

– formally cumbersome computations (associated with the auxiliary problems
repeated for every standard shape function) reduce to the system of the
algebraic equations with multiple right-hand sides

– locally assembled fine mesh stiffness matrix Kh used in 4I can be directly
taken from the local auxiliary problem, no additional computational effort
is necessary.

It should be remarked that the overall MsFEM computational efficiency de-
pends mostly on the implementation, the problem being solved and the dis-
cretization at both scales. The obtained speed-up can be, thus, different at var-
ious applications.

The results of the linear elastic analysis are presented to illustrate subse-
quently the effect of the heat transfer within the AC sample on its overall re-
sponse. The presented results are used for the forthcoming comparative study.

In the second step of the sequentially coupled thermal-stress analysis, i.e. the
mechanical part, we use the temperature distribution obtained at the first step
in a twofold manner. Firstly, we modify the material parameters according to
the temperature distribution (in this study, we used the same parameters for
the whole domain). Secondly, we compute the thermal strains according to the
formula 2 V and use them to contribute to the right-hand side as presented in
Eq. 3. The final results (displacements) are presented in Fig. 8. The error norms
are approximately equal to those presented for the linear elastic case, which can
be considered as the MsFEM advantage.

A short discussion on the accuracy of the results presented in this section
is necessary. Firstly, the error convergence presented in Fig. 5 and 7 does not
support strongly the idea of the higher order approximation. Particularly, in Fig.
5, the results obtained for the higher p are very similar to those for p=1. It is
due to a relatively smooth solution that can be efficiently captured using only
the linear approximation at the macroscale. In our previous papers [1,13,15,14],
we demonstrated a number of results in favor of the higher order approximation.
Secondly, further improvement of the MsFEM accuracy can be obtained using
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(a) (b)

(c) (d)

Fig. 6. Displacement maps: (aöb) ux component and (cöd) uy component - the left
column shows the upscaled solution (for p=5) and the right one shows the reference
fine mesh solution

e.g. error estimates based on the residual, which is the topic of our forthcoming
paper. Using this approach, a significantly better p-convergence can be observed.

Comparing the results presented in Figs. 6 and 8, one can observe a large
modification in the AC sample response. Firstly, both of the displacement com-
ponents increased substantially. Secondly, due to the applied heating, the hor-
izontal displacements approximately equaled with the vertical ones up to the
order of magnitude. Thirdly, the predominant vertical displacement of the up-
per edge reflects a very common failure of the asphalt pavement structure (or
the wearing course solely). Namely, the rut is observed together with the bulged
neighborhood. The upscaled solution captures this response almost as precisely
as the reference one but with the large reduction of the degrees of freedom.

5 Concluding remarks

In the paper, we presented a novel approach to upscaling for the coupled ther-
moelastic modeling of composites. The framework was tested on the example
of asphalt concrete. However, it is general and not limited to the materials of
a similar class. Our previous studies [1,13,16] refer also to other kinds of het-
erogeneous materials. Herein, we combined the well-known sequentially coupled
thermal-stress analysis with the developed version of MsFEM. The convergence
error confirmed the benefits of the higher order approximation. Reduction of
about 220 00 dof to about 600 introduced modeling error of only about 6%.
This error can be further reduced using the hp-adaptivity (c.f. [13]) or other ap-
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Fig. 7. Error convergence measured in (a) L2 norm and (b) energy norm with respect
to NDOF and the same convergence types (cöd) with respect to the relative time
(by the relative time, we mean the ratio of the computational time necessary for the
upscaled and the reference fine mesh solutions)

(a) (b)

(c) (d)

Fig. 8. Displacement maps: (aöb) ux component and (cöd) uy component - the left
column shows the upscaled solution (for p=5) and the right one shows the reference
fine mesh solution

proaches. To our best knowledge, MsFEM with the higher order shape functions
has never been used previously for the thermoelastic analysis.
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Our further research effort is to apply this framework to the unsteady heat
transfer problem and thermoviscoelastic analysis of asphalt concrete. This can
be very useful in the reliable modeling of flexible pavement structures.
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