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Abstract. In this paper, we present an efficient numerical method for
solving the electrical activity of the heart. We propose a second order
alternating direction implicit finite difference method (ADI) for both
space and time. The derivation of the proposed ADI scheme is based on
the semi-implicit backward differentiation formula (SBDF). Numerical
simulation showing the computational advantages of the proposed algo-
rithm in terms of the computational time and memory consumption are
presented.
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1 Introduction

Mathematical modeling of biological activities has been proven to be of high im-
portance in the modern computer age. It is an alternative tool to live experiments
and can provide solutions to several biomedical problems. In electrocardiology,
the most used mathematical models are the bidomain and monodomain models.
The monodomain is considered as a simplified version of the bidomain model and
although it lacks physiological foundation, it is widely used in the computational
electrophysiology community.

Mathematically, the monodomain model consists of a single parabolic par-
tial differential equation coupled with a system of nonlinear ordinary differential
equations modeling cell ionic activity. Solving the monodomain model requires
fine meshes and small time-steps as the cardiac electrical wave has a stiff wave
front, which makes the numerical simulation challenging. In the literature, there
are many methods to reduce the computational challenges of both the bido-
main and monodomain models. The spatial and temporal discretization effects
in cardiac electrophysiology have been numerically investigated in [1] and [2].
Anisotropic mesh adaptation techniques are presented in [3–5]. Operator split-
ting and high-order methods have been studied in [6–9] and parallel algorithms
for cardiac models have been investigated in [10–12].
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Recently, we demonstrated the efficiency of alternating direction implicit
(ADI) finite difference methods for solving the monodomain model [13]. The
computational advantages of ADI methods have been demonstrated in compari-
son with the standard finite difference method. The derivation of the ADI meth-
ods in [13] was based on the semi-implicit Crank–Nicolson/Adams–Bashforth
(CNAB) scheme. The main goal of this paper is to derive an ADI scheme based
on the semi-implicit backward differentiation formula (SBDF). The proposed
method will be referred to as SBDF-ADI scheme. The semi-implicit methods,
especially SBDF type methods, are considered among the best schemes for solv-
ing the bidomain and monodomain models (see [2] and [14]). The SBDF schemes
enable higher order time stepping that is needed for accurate numerical simula-
tions of the electrical waves of the heart.

In this paper, a second order SBDF-ADI method for the monodomain model
is derived. In Section 2, both SBDF and SBDF-ADI schemes are illustrated
in the two-dimensional case. In Section 3, numerical results are presented to
demonstrate the order of convergence and the computational advantages of the
proposed scheme in terms of the computational time and memory consumption.
In all our simulations, a comparison with the standard SBDF finite difference
method is presented.
2 Derivation of SBDF-ADI Method

2.1 Two-dimensional SBDF Method

The main governing equations of the monodomain model are given by the fol-
lowing system 

∂Vm

∂t
−∇ · (D∇Vm) = Iion(Vm,W ),

∂W

∂t
= g(Vm,W ).

(1)

Where Vm is the trans-membrane potential, W is the cellular states, and D =
diag(Dx, Dy) is the conductivity tensor. The functions Iion(V,W ), and g(V,W )
represents the single cell model. Before we derive the SBDF-ADI method, we
first present the second-order SBDF scheme by re-expressing the system (1) in
the following vector form:

∂U

∂t
= AU + F (U), (2)

where

U =
(
V
W

)
, A =

Dx
∂2

∂x2 +Dy
∂2

∂y2 0
0 0

 and F (U) =
(
Iion(V,W )
g(V,W )

)
.

The second-order SBDF requires to start from Un−1 at time tn−1 and Un

at time tn as follows:
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3Un+1 − 4Un + Un−1

2∆t = AUn+1 + 2F (Un)− F (Un−1) (3)

Using finite difference method, the continuous space domain must be dis-
cretized into a mesh with a finite number of grid points. To ensure second order
in space, we use the second-order central difference in all our numerical results.
For the two-dimensional case, the scheme (3) requires solving a linear system of
size ((M + 1)2, (M + 1)2), where M is the number of spatial steps. The main
idea about ADI-type method is to reduce this system to series of a linear system
of size ((M + 1), (M + 1)) as is presented in the next subsection.

2.2 Two-dimensional SBDF-ADI Method

To derive the two-dimensional SBDF-ADI algorithm proposed in this study, we
must first re-express system (2) as follows

∂U

∂t
= A1U +A2U + F (U), (4)

where

A1 =

Dx
∂2

∂x2 0
0 0

 and A2 =

Dy
∂2

∂y2 0
0 0

 .

The SBDF system (3) is therefore written as

3Un+1 − 4Un + Un−1

2∆t = A1Un+1 +A2Un+1 + 2F (Un)− F (Un−1) (5)

Rearanging (5) by taking Un+1 terms in one side and the rest terms in the other:

(
I − 2∆t

3 A1 −
2∆t

3 A2

)
Un+1 = 4

3Un − 1
3Un−1 + 2∆t

3
(
2F (Un)− F (Un−1)

)
.

(6)
The main idea for ADI is to use a perturbation of this equation. In our case,

the perturbed form used is

(
I − 2∆t

3 A1

)(
I − 2∆t

3 A2

)
Un+1 = 4

3Un−1
3Un−1+2∆t

3
(
2F (Un)− F (Un−1)

)
.

(7)
Both equations, (3) and (7), are equivalent and preserve the same time or-

der of accuracy. Now, based on the Douglas–Gunn time splitting scheme, our
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proposed SBDF-ADI scheme consists of the following system of equations:

(
I − 2∆t

3 A1

)
U∗ = ∆t

3 A2Un + 4
3Un − 1

3Un−1 + 2∆t
3
(
2F (Un)− F (Un−1)

)
,

(
I − 2∆t

3 A2

)
Un+1 = U∗ − 2∆t

3 A2Un.

(8)
The second-order central difference is used for spatial discretization. Each

linear system corresponding to each spatial direction in this scheme is of size
((M + 1), (M + 1)), which allows a great gain in the computational time as is
presented in the next section.

All the simulations were performed using MATLAB. All the linear systems
obtained in this paper were solved by using decomposition MATLAB built-in
function. This function returns the same results as mldivide (backslash operator)
but in a much faster way for the presented iterative algorithms. All our MATLAB
functions are optimized compared to our previous work presented in [13].

3 Numerical Results
In this section, we discuss the order of convergence in time of the proposed SBDF-
ADI (8) and the standard SBDF (3) schemes. Then we discuss the performance
of both methods in term of computational time and memory consumption. In
all our numerical results, we will use the Mitchell–Schaeffer ionic model, given
by:

Iion(Vm,W ) = 1
τin

WV 2(1− V )− 1
τout

V,

G(Vm,W ) =


1−W
τopen

for V < vgate,

− W

τclose
for V ≥ vgate.

The convergence in time is demonstrated using similar technique presented in
[13] where a regular electrical cardiac wave is considered. The parameter values
used provide a fast action potential upstroke and are given in Table 1.

Table 1: Parameters used in Mitchell–Schaeffer model
Constant Value Constant Value

τin 0.05 τout 1
τopen 95 τclose 162
vgate 0.13(mV) Dx = Dy 0.001

We use the following discrete norms:
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eL∞ = ‖Vh − Vr‖L∞ and eL2 = ‖Vh − Vr‖L2 ,

where Vr is a reference solution for the transmembrane potential obtained with
a spatial discretization of 401 points (M = 400) in each direction and small time
step (N = 2× 106). Vh is the numerical solution obtained with the same spatial
mesh. In this example, the final time is T = 330. The result of this convergence
test is presented in Figure 1, where it is clearly demonstrated the second order
convergence for both methods. These numerical results can be supported by
analytical work similar to the work presented in [13] to show that indeed both
systems are of second order in time.

Fig. 1: Convergence order for SBDF and SBDF-ADI using Mitchell–Schaeffer
model.

Now to demonstrate the performance of the proposed scheme SBDF-ADI (8),
we investigate the computational time required for the simulations using both
methods SBDF (3) and SBDF-ADI (8) for different values of space resolution
(M) and for a fixed time step size (N = 1.5 × 104). We consider a spiral wave
dynamic in the Mitchell–Schaeffer model for the simulations. Different parameter
values have been used in this case that are presented in Table 2.

Table 2: Parameters used in Mitchell–Schaeffer model
Constant Value Constant Value

τin 0.3 τout 6
τopen 120 τclose 150
vgate 0.13(mV) Dx = Dy 0.001

.
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The spiral wave is obtained with a similar method presented in [15, 16], where
the initial conditions are given as follows

V (x, y, 0) =


1 if y ≤ 4,

0 otherwize,
and W (x, y, 0) =


0.75/2 if x ≤ 4.5,

0.75/2 otherwize.

The final time in this example is T = 1500. The time evolution of the trans-
membrane potential is presented in Figure 2.

a) V at time t = 600 b) V at time t = 900

c) V at time t = 1200 d) V at time t = 1500

Fig. 2: Time evolution of spiral wave in Mitchell–Schaeffer model
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It is well known that this type of spiral wave requires extremely fine mesh
resolution. Therefore, the computational time required for the simulation corre-
sponding to various space resolutions, M , is presented in Figure 3. As can be
seen, the computational time required by the proposed SBDF-ADI scheme is
clearly lower than the required time for the standard SBDF method. This gain
is mainly because of the size of the linear system involved in each method. In
fact, the SBDF-ADI scheme involves matrices of size (M+1,M+1), whereas the
standard SBDF scheme requires a matrix of size ((M + 1)2, (M + 1)2). This also
affects the memory requirement, where, for instance, in the case where M = 600
the memory required for the simulation using the SBDF-ADI is around 0.6 GB
while the memory needed for SBDF is 1.6GB.

Fig. 3: Comparison of CPU time for SBDF and SBDF-ADI

4 Conclusion

In this paper, a second order alternating direction implicit finite difference
method for both space and time was presented. The proposed ADI scheme was
based on the semi-implicit backward differentiation formula. We showed that the
proposed SBDF-ADI scheme provides the desired results while using less compu-
tational time. The advantage of the proposed SBDF-ADI scheme is that it can be
extended to three-dimensional case, where the gain in computational resources
will be clear as SBDF-ADI scheme involves matrices of size much smaller than
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the size of the matrix required for the standard SBDF scheme. The proposed
SBDF-ADI scheme has also the advantage to be extended to include higher-
order time and space difference schemes. This could provide accurate prediction
of the cardiac electrical wave. Finite difference method has been previously used
for solving the bidomain and monodomain models coupled with a realistic ionic
model while using a computational geometry of a human heart. Therefore, the
presented methodology can be extended to study realistic cardiac electrophysi-
ology simulations which will be the subject of a future work.
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