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Abstract. Neurodegenerative diseases are frequently associated with
aggregation and propagation of toxic proteins. In particular, it is well
known that along with amyloid-beta, the tau protein is also driving
Alzheimer’s disease. Multiscale reaction-diffusion models can assist in
our better understanding of the evolution of the disease. Based on a
coarse-graining procedure of the continuous model and taking advantage
of the brain data connectome, a computationally challenging network
mathematical model has been described where the edges of the network
are the axonal bundles in white-matter tracts. Further, we have modified
the heterodimer model in such a way that it can now capture some of
the critical characteristics of this evolution such as the conversion time
from healthy to toxic proteins. Finally, we have analyzed the modified
model theoretically and validated the theoretical findings with numerical
simulations.

Keywords: Alzheimer’s disease · coupled multiscale models · amyloid-
beta and tau proteins · neurodegenerative disorders · Holling type-II.

1 Introduction

Alzheimer’s disease (AD) is an example of a neurodegenerative disease, associ-
ated with aggregation and propagation of toxic proteins [1]. Initially, the “amy-
loid cascade hypothesis” has dominated for the treatments [2, 3]. However, due
to the failures of large clinical trials, researchers started focussing on some other
mechanisms. It is now well accepted that the tau-protein (τP ) is a viable alter-
native to the “amyloid cascade hypothesis”.

The τP plays a prominent role as a secondary agent in the disease develop-
ment. For example, (i) frontotemporal lobar degeneration is mostly dominated
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by τP spreading [4], (ii) neurofibrillary tangles (NFT) are correlated in brain
atrophy in AD [5, 6], (iii) lower τP concentration prevents neuronal loss [7],
(iv) τP also reduces neural activity [8], etc. This helps to explain the relative
lack of clinical improvements. There is an open debate in the literature on the
roles of Aβ proteopathy and τP tauopathy in AD but it is clear by now that
“the amyloid − β − τ nexus is central to disease-specific diagnosis, prevention
and treatment” [9]. In recent years, many researchers have focussed on Aβ and
τP interaction. Moreover, in neurodegenerative diseases, the protein-protein in-
teractions become a key for understanding both spreading and toxicity of the
proteins [10–13]. There are some crucial observations specific to AD [10, 14]: (i)
the seeding of new toxic τP is enhanced by the presence of Aβ, (ii) the toxicity
of Aβ depends on the presence of τP , and (iii) Aβ and τP amplify each other’s
toxic effects.

Mathematical models are widely used for the interpretation of biological pro-
cesses, and this field is not an exception. Building on earlier advances [15–20],
we analyze AD by a deterministic mathematical modelling approach and predict
the dynamics of the disease based on several novel features of our model. Recall
that the heterodimer model describes the interaction between the healthy and
toxic proteins [21–25]. In the heterodimer model, with an increase in the healthy
protein density, the toxic protein conversion increases. We have modified that
linear conversion term to include nonlinear effects via Holling type-II functional
response. In this case, the toxic protein’s conversion rate remains constant with
an increase in the healthy protein density. This modification incorporates the
reaction time (conversion from healthy protein to toxic protein). AD is itself
a complex and multiscale disease. The introduction of the reaction time, along
with the conventional wave propagation times, reflects a multiscale character of
the modified model. We have considered two modified coupled heterodimer sys-
tems for healthy-toxic interactions for both proteins, Aβ and τP , along with a
single balance interaction term. This study identifies two types of disease prop-
agation modes depending on the parameters: primary tauopathy and secondary
tauopathy.

Finally, we note that a network mathematical model can be constructed
from the brain data by a coarse-graining procedure of the continuous model
(e.g., [14]). In this case, we need to define the network nodes in the region or
domain where we are interested to see the dynamics. The edges of the network
are the axonal bundles in white-matter tracts. Here, the network model in the
brain connectome becomes an undirected weighted graph, and the weights of the
graph are used to construct the adjacency matrix and hence the Laplacian of
the graph. Studying AD in the whole brain connectome is computationally very
challenging. One of the efficient and logical ways to proceed is to investigate AD
in the brain connectome by fixing some crucial nodes and edges, which we are
currently undertaking. In the current manuscript, we provide a brief description
of such a network model, but our main focus here is to establish the speed of
wave propagation of toxic fronts of the two modes of primary and secondary
tauopathies for the modified reaction-diffusion model.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_42

https://dx.doi.org/10.1007/978-3-030-77977-1_42


Multiscale analysis and pathology dynamics of neurodegenerative diseases 3

This manuscript is organized as follows. In Section 2, we briefly discuss the
heterodimer model and its modification. Temporal behaviour of the modified
model is analyzed in Section 3, focussing on possible stationary points and linear
stability. In Section 4, we provide results on the wave propagation described by a
simplified model, specific to stationary states. Section 6 is devoted to a detailed
analysis of the AD propagation in terms of primary and secondary tauopathies.
Concluding remarks are given in Section 7.

2 Mathematical Model

We first consider the usual heterodimer model for the healthy and toxic variants
of the proteins Aβ and τP . Let Ω be a spatial domain in R3. For x ∈ Ω and time
t ∈ R+, let u = u(x, t) and ũ = ũ(x, t) be healthy and toxic concentrations of
the protein Aβ, respectively. Similarly, we denote v = v(x, t) and ṽ = ṽ(x, t) the
healthy and toxic concentrations of τP , respectively. The concentration evolution
is then given by the following system of coupled partial differential equations [14,
22]:

∂u

∂t
= O · (D1Ou) + a0 − a1u− a2uũ, (1a)

∂ũ

∂t
= O · (D̃1Oũ)− ã1ũ+ a2uũ, (1b)

∂v

∂t
= O · (D2Ov) + b0 − b1v − b2vṽ − b3ũvṽ, (1c)

∂ṽ

∂t
= O · (D̃2Oṽ)− b̃1ṽ + b2vṽ + b3ũvṽ. (1d)

In system (1), a0 and b0 are the mean production rates of healthy proteins,

a1, b1, ã1 and b̃1 are the mean clearance rates of healthy and toxic proteins,
and a2 and b2 represent the mean conversion rates of healthy proteins to toxic
proteins. The parameter b3 is the coupling constant between the two proteins Aβ
and τP . Further, D1, D̃1, D2 and D̃2 are the diffusion tensors which characterize
the spreading of each proteins. For the isometric diffusion, the diffusion tensor
is O · (D1Ou) = D1∆u, the usual Laplacian operator (similarly for ũ, v and ṽ).
We assume that all variables and initial conditions are non-negative and also all
the parameters to be strictly positive.

Here, the healthy protein is approached by the toxic protein, and after tran-
sitions, a healthy protein is converted into a toxic state. In the current formula-
tion, we have assumed that the probability of a given toxic protein encountering
healthy protein in a fixed time interval Tt, within a fixed spatial region, de-
pends linearly on the healthy protein density. In this case, the total density of
the healthy proteins u converted by the toxic proteins ũ can be expressed as
ũ = aTsu, following the Holling functional response idea [26]. The parameter Ts
is the time to getting contact with each other and a is a proportionality constant.
If there is no reaction time, then Ts = Tt and hence we get a linear conversion
rate ũ = aTtu. Now, if each toxic protein requires a reaction time h for healthy
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proteins that are converted, then the time available to getting contact becomes
Ts = Tt − hũ. Therefore, ũ = a(Tt − hũ)u, hence ũ = aTtu/(1 + ahu), which is
a nonlinear conversion rate. So, we modify the above model (1) as follows:

∂u

∂t
= O · (D1Ou) + a0 − a1u−

a2u

1 + e1u
ũ, (2a)

∂ũ

∂t
= O · (D̃1Oũ)− ã1ũ+

a2u

1 + e1u
ũ, (2b)

∂v

∂t
= O · (D2Ov) + b0 − b1v −

b2v

1 + e2v
ṽ − b3ũvṽ, (2c)

∂ṽ

∂t
= O · (D̃2Oṽ)− b̃1ṽ +

b2v

1 + e2v
ṽ + b3ũvṽ, (2d)

where e1 (= aβhβ) and e2 (= aτhτ ) are dimensionless parameters. We use no-
flux boundary conditions and non-negative initial conditions. Here, in model (2),
the rate of conversion of the healthy protein by the toxic protein increases as the
healthy protein density increases, but eventually it saturates at the level where
the rate of conversion remains constant regardless of increases in healthy protein
density. On the other hand, in model (1), the rate of conversion of the healthy
protein by the toxic protein rises constantly with an increase in the healthy
protein density.

3 Temporal Dynamics

For studying the wave propagation based on the reaction-diffusion model (2),
we will first find homogeneous steady-states of the system. The homogeneous
steady-states of the system (2) can be determined by finding the equilibrium
points of the following system

du

dt
= a0 − a1u−

a2u

1 + e1u
ũ, (3a)

dũ

dt
= −ã1ũ+

a2u

1 + e1u
ũ, (3b)

dv

dt
= b0 − b1v −

b2v

1 + e2v
ṽ − b3ũvṽ, (3c)

dṽ

dt
= −b̃1ṽ +

b2v

1 + e2v
ṽ + b3ũvṽ, (3d)

with non-negative initial conditions.

3.1 Stationary Points

The system (3) always has a disease-free state called a healthy stationary state.
Depending on the parameter values, the system may possess more stationary
points. We summarise each possible stationary state in the following:
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1. Healthy Aβ - healthy τP : It is the trivial stationary state and is given by

(u1, ũ1, v1, ṽ1) =

(
a0
a1
, 0,

b0
b1
, 0

)
. (4)

This stationary state is the same for both systems, (1) and (2), due to zero
toxic loads.

2. Healthy Aβ - toxic τP : The stationary state of “healthy Aβ - toxic τP” is
given by

(u2, ũ2, v2, ṽ2) =

(
a0
a1
, 0,

b̃1

b2 − e2b̃1
,
b0(b2 − e2b̃1)− b1b̃1

b̃1(b2 − e2b̃1)

)
. (5)

For the non-negativity of the stationary point (5), we must have b2 > e2b̃1
and b0/b1 ≥ b̃1/(b2 − e2b̃1).

3. Toxic Aβ - healthy τP : The stationary state of “toxic Aβ - healthy τP” is
given by

(u3, ũ3, v3, ṽ3) =

(
ã1

a2 − e1ã1
,
a0(a2 − e1ã1)− a1ã1

ã1(a2 − e1ã1)
,
b0
b1
, 0

)
. (6)

For the non-negativity of the stationary point (6), we must have a2 > e1ã1
and a0/a1 ≥ ã1/(a2 − e1ã1).

4. Toxic Aβ - toxic τP : Suppose (u4, ũ4, v4, ṽ4) is a stationary state of the
“toxic Aβ - toxic τP” type. In this case, we obtain u4 = u3, ũ4 = ũ3,
ṽ4 = (b0 − b1v4)/b̃1 and v4 satisfy the quadratic equation

b3e2ũ4v
2
4 + (b3ũ4 − e2b̃1 + b2)v4 − b̃1 = 0. (7)

The equation (7) always has a real positive solution. For the uniqueness of

v4, we must have b3ũ4− e2b̃1 + b2 ≥ 0. Also, for the positivity of ṽ4, we need
v4 < b0/b1.

Note that under small perturbations of any one of these stationary points,
the trajectories may or may not come to that stationary point. Next, we examine
this situation in more detail by the linear stability analysis.

3.2 Linear Stability Analysis

For the stability analysis, we linearize the system (3) about any of the stationary
points (u∗, ũ∗, v∗, ṽ∗). The coefficient matrix M of the resulting system is the
Jacobian matrix of the system (3) and is given by
−a1 − a2ũ∗

(1+e1u∗)2
− a2u∗

1+e1u∗
0 0

a2ũ∗
(1+e1u∗)2

a2u∗
1+e1u∗

− ã1 0 0

0 −b3v∗ṽ∗ −b1 − b2ṽ∗
(1+e2v∗)2

− b3ũ∗ṽ∗ − b2v∗
1+e2v∗

− b3ũ∗v∗
0 b3v∗ṽ∗

b2ṽ∗
(1+e2v∗)2

+ b3ũ∗ṽ∗
b2v∗

1+e2v∗
+ b3ũ∗v∗ − b̃1

 .
(8)
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Now, the eigenvalues of the Jacobian matrix M are given by

λ1 = −1

2
(B +

√
B2 − 4C), λ2 = −1

2
(B −

√
B2 − 4C),

λ3 = −1

2
(B̂ +

√
B̂2 − 4Ĉ), λ4 = −1

2
(B̂ −

√
B̂2 − 4Ĉ),

where B = a1 + ã1 +a2ũ∗/(1+e1u∗)2−a2u∗/(1+e1u∗), C = a1ã1 + ã1a2ũ∗/(1+

e1u∗)2−a1a2u∗/(1+e1u∗), B̂ = b1+b̃1+b3ũ∗(ṽ∗−v∗)+b2ṽ∗/(1+e2v∗)2−b2v∗/(1+

e2v∗) and Ĉ = b1b̃1 + b3ũ∗(̃b1ṽ∗− b1v∗) + b̃1b2ṽ∗/(1 + e2v∗)2− b1b2v∗/(1 + e2v∗).
For each of the stationary points, we find the Jacobian matrix M and all its

eigenvalues λi, i = 1, 2, 3, 4. Hence, the conclusion can be drawn easily, because
for a given stationary point, if all the eigenvalues have negative real parts, this
stationary point is stable, otherwise it is unstable.

4 Wave Propagation

We analyze travelling wave solutions of the spatio-temporal model (2) in one di-
mension (Ω = R) connecting any two stationary states (ui, ũi, vi, ṽi), i = 1, 2, 3, 4
[21]. First, we consider the travelling wave emanating from healthy stationary
state (u1, ũ1, v1, ṽ1) and connecting to (u2, ũ2, v2, ṽ2). For analysing the travel-
ling wave fronts, we linearize the spatio-temporal model (2) around the healthy
stationary state which leads to the following uncoupled system

∂ũ

∂t
= d̃1

∂2ũ

∂x2
+

a2u1
1 + e1u1

− ã1, (9a)

∂ṽ

∂t
= d̃2

∂2ṽ

∂x2
+

b2v1
1 + e2v1

− b̃1. (9b)

Firstly, for the travelling wave solution, we substitute ũ(x, t) = ũ(x − ct) ≡
ũ(z), ṽ(x, t) = ṽ(x − ct) ≡ ṽ(z) in (9) and will look for linear solutions of the
form ũ = C1exp(λz), ṽ = C2exp(λz). Then, the minimum wave speeds cmin are
given by

c
(12)
β = 0 and c(12)τ = 2

√
d̃2

(
b2v1

1 + e2v1
− b̃1

)
. (10)

Here, c
(ij)
β and c

(ij)
τ denote the speeds of the front from state i to the state j for

the Aβ fields (u, ũ) and τP fields (v, ṽ), respectively.
Similarly, the minimum wave speeds for the travelling wave fronts emanating

from healthy stationary state (u1, ũ1, v1, ṽ1) and connecting to (u3, ũ3, v3, ṽ3) are
given by

c
(13)
β = 2

√
d̃1

(
a2u1

1 + e1u1
− ã1

)
and c(13)τ = 0. (11)

Also, we have

c
(14)
β = c

(13)
β and c(14)τ = c(12)τ . (12)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_42

https://dx.doi.org/10.1007/978-3-030-77977-1_42


Multiscale analysis and pathology dynamics of neurodegenerative diseases 7

Secondly, we consider the travelling wave emanating from the stationary state
(u3, ũ3, v3, ṽ3) and connecting to (u4, ũ4, v4, ṽ4). We linearize the spatio-temporal
model (2) around (u3, ũ3, v3, ṽ3) and repeat the same techniques to deduce that

c
(34)
β = 0 and c(34)τ = 2

√
d̃2

(
b2v3

1 + e2v3
+ b3ũ3v3 − b̃1

)
. (13)

5 Network Mathematical Model

Based on a coarse-graining procedure of the continuous model and taking advan-
tage of the brain data, a network mathematical model can be constructed where
the edges of the network are the axonal bundles in white-matter tracts (e.g.,
[14]). The choice of the network nodes is carried out in the region of interest and
in what follows we describe the network mathematical model corresponding to
the modified continuous model (2) for the brain data connectome [27]. The latter
can be modelled by the coarse-grain model of the continuous system. Specifically,
it is a weighted graph G with V nodes and E edges defined in a domain Ω. The
weights of the graph G are represented by the adjacency matrix W which pro-
vides a way to construct the graph of the Laplacian. For i, j = 1, 2, 3, . . . , V , the
elements of W are

Wij =
nij
l2ij
,

where nij is the mean fiber number and l2ij is the mean length squared between
the nodes i and j. We define the graph of the Laplacian L as

Lij = ρ(Dii −Wij), i, j = 1, 2, 3, . . . , V,

where ρ is the diffusion coefficient and Dii =
∑V
j=1Wij is the elements of the

diagonal weighted degree matrix. Now, we are ready to build a network mathe-
matical model in the graph G.
At the node j, let (uj , ũj) be the concentrations of healthy and toxic Aβ pro-
teins, respectively, whereas (vj , ṽj) be the concentrations of healthy and toxic
τP proteins, respectively. Then, for all the nodes j = 1, 2, 3, . . . , V , the network
equations corresponding to the continuous model (2) is a system of first order
differential equations and it is given by

duj
dt

= −
V∑
k=1

Ljkuk + a0 − a1uj −
a2uj

1 + e1uj
ũj , (14a)

dũj
dt

= −
V∑
k=1

Ljkũk − ã1ũj +
a2uj

1 + e1uj
ũj , (14b)

dvj
dt

= −
V∑
k=1

Ljkvk + b0 − b1vj −
b2vj

1 + e2vj
ṽj − b3ũjvj ṽj , (14c)

dṽj
dt

= −
V∑
k=1

Ljkṽk − b̃1ṽj +
b2vj

1 + e2vj
ṽj + b3ũjvj ṽj , (14d)
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with non-negative initial conditions.

6 Results and Discussion

A “healthy Aβ - healthy τP” stationary state satisfies ũ = ṽ = 0. The non-
existence of a physically relevant healthy state occurs due to a failure of healthy
clearance, which is either with an Aβ clearance or with a τP clearance. To start
with, we consider the following balance of clearance inequalities:

a0
a1

<
ã1

a2 − e1ã1
,
b0
b1
<

b̃1

b2 − e2b̃1
. (15)

Now, if (15) holds for the stationary point (u1, ũ1, v1, ṽ1) in (4), then all the
eigenvalues corresponding to the Jacobian matrix M have negative real parts.
So, given the small amounts of the production of toxic Aβ or toxic τP , or excess
amounts of the production of healthy Aβ or healthy τP , the system would be
approaching towards the “healthy Aβ- healthy τP” stationary state.

Due to the failure of the clearance inequality (15), a transcritical bifurca-
tion occurs for the homogeneous system (3). Hence, all the other stationary
states (ui, ũi, vi, ṽi), i = 2, 3, 4 are physically meaningful and a pathological de-
velopment becomes possible. Motivated by [14], we fix the parameter values
as a0 = a1 = a2 = b0 = b1 = b2 = 1 and e1 = e2 = 0.1. Now, we fix
ã1 = 3/4, b̃1 = 4/3 and we take b3 as the bifurcation parameter. For b3 < 1.575,
the system has only two stationary points (u1, ũ1, v1, ṽ1) and (u3, ũ3, v3, ṽ3). The
equilibrium point (u1, ũ1, v1, ṽ1) is saddle and (u3, ũ3, v3, ṽ3) is stable. A non-
trivial stationary point (u4, ũ4, v4, ṽ4) is generated through a transcritical bifur-
cation at b3 = 1.575. Then (u3, ũ3, v3, ṽ3) changes its stability to (u4, ũ4, v4, ṽ4)
and becomes saddle (see Fig. 1).

These results could lead to a number of important observations. For example,
due to the instability of the healthy stationary state of the system (3), a pro-
teopathic brain patient would be progressing toward a disease state. The actual
state would depend on the parameter values. If b0/b1 ≥ b̃1/(b2−e2b̃1) holds, then
(u2, ũ2, v2, ṽ2) exists and if a0/a1 ≥ ã1/(a2−e1ã1) holds, then (u3, ũ3, v3, ṽ3) ex-
ists. Sometimes both the relations hold simultaneously. Also, the proteopathic
state (u4, ũ4, v4, ṽ4) exists if b0/b1 > v4 holds. Since, ũ4 = ũ3, we can choose b3
in such a way that b3ũ4 − e2b̃1 + b2 ≥ 0. Therefore, to produce tau proteopathy,
the stationary state (u2, ũ2, v2, ṽ2) is not needed. So, we study only two types of
patient proteopathies: (i) primary tauopathy and (ii) secondary tauopathy.

For the primary tauopathy, which is usually related to neurodegenerative
diseases such as AD, all the four stationary states exist i.e., both the condi-
tions b0/b1 ≥ b̃1/(b2 − e2b̃1) and a0/a1 ≥ ã1/(a2 − e1ã1) hold. In this case,
we have plotted the dynamics of the system (3) in Fig. 2(a). Also, for the
secondary tauopathy, only three stationary states exist. Here, the inequality
a0/a1 ≥ ã1/(a2− e1ã1) is true and the other inequality fails. An example of sec-
ondary tauopathy is shown in Fig. 2(b). Comparing the homogeneous systems
corresponding to (1) and (2), the modified system requires less toxic load.
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Fig. 1: Transcritical bifurcation diagram of the stationary points for the system
(3). (Parameter values: a0 = a1 = a2 = b0 = b1 = b2 = 1, ã1 = 3/4, b̃1 =
4/3, e1 = e2 = 0.1.)

Fig. 2: Phase plane (ũ, ṽ) with four and three stationary points for the system

(3): (a) b̃1 = 3/4, b3 = 0.5 and (b) b̃1 = 4/3, b3 = 3. (Parameter values: a0 =
a1 = a2 = b0 = b1 = b2 = 1, ã1 = 3/4, e1 = e2 = 0.1.)
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For the wave propagation, we consider the spatial domain in one dimension
[−100, 100] as an example. However, the results are robust for a wide range of
intervals. We take the initial condition (u(x, 0), ũ(x, 0), v(x, 0), ṽ(x, 0)) for the
primary tauopathy as (u3, ũ3, v3, ṽ3) for −100 ≤ x ≤ −95, (u1, ũ1, v1, ṽ1) for
−95 < x < 95 and (u2, ũ2, v2, ṽ2) for 95 ≤ x ≤ 100. On the other hand, the initial
condition (u(x, 0), ũ(x, 0), v(x, 0), ṽ(x, 0)) for the secondary tauopathy has been
taken as (u3, ũ3, v3, ṽ3) for −100 ≤ x ≤ −95, (u1, ũ1, v1, ṽ1) for −95 < x < 95
and (u2, ũ2, v2, 10−6) for 95 ≤ x ≤ 100.

Fig. 3: Front propagations of ũ and ṽ for the system (2) at different time steps:
(a) t = 50, (b) t = 150, (c) t = 180 and (d) t = 220.

We have shown the wave propagation for the primary tauopathy in Fig. 3
at different time steps t = 50, 150, 180 and 220. Motivated by Thompson et
al., we have chosen the parameter values as a0 = a1 = a2 = b0 = b1 = b2 =
1, ã1 = b̃1 = 3/4, b3 = 0.5, e1 = e2 = 0.1, d1 = d̃1 = d2 = d̃2 = 1 and no-flux
boundary conditions for all the variables. For these parametric values, we obtain

c
(14)
β = c

(12)
τ = c

(14)
τ = 0.798 and c

(34)
τ = 1.068. In the simulation, we have

considered the toxic Aβ front on the left side of the domain and toxic τP on

the right. Initially, the toxic Aβ front propagates to the right with speed c
(14)
β

and toxic τP propagates to the left with speed c
(12)
τ . After overlapping both the

fronts, τP increases its concentration and connects to ṽ4. Then, the left front

of the wave of τP boosts its speed to c
(34)
τ and moves to the left. On the other
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hand, the right front of the wave of τP moves with speed c
(14)
τ , it eventually fills

the domain and the entire system converges to the stable equilibrium solution
(u4, ũ4, v4, ṽ4).

In Fig. 4, we plot wave propagation for the secondary tauopathy at different
time steps t = 60, 250, 400 and 425. We have chosen the parameter values as
a0 = a1 = a2 = b0 = b1 = b2 = 1, ã1 = 3/4, b̃1 = 4/3, b3 = 3, e1 = e2 =

0.1, d1 = d̃1 = d2 = d̃2 = 1 and no-flux boundary conditions for all the variables.

For these parametric values, we obtain c
(14)
β = 0.798 and c

(34)
τ = 1.153. Here,

the toxic Aβ front propagates to the right with speed c
(14)
β and fills the domain

ũ4 with negligible toxic τP (see Fig. 2(b)). However, we note that after filling
toxic Aβ in the entire domain, toxic τP starts to increase its concentration and

connects to ṽ4. It moves with the speed c
(34)
τ and fills the domain. Finally, the

entire system converge to the stable equilibrium solution (u4, ũ4, v4, ṽ4).

Fig. 4: Front propagations of ũ and ṽ for the system (2) at different time steps:
(a) t = 60, (b) t = 250, (c) t = 400 and (d) t = 425.

For the network model, brain connectome data is available with different
resolutions in, e.g., [14]: the lowest resolution consists of 83 nodes, and the highest
resolution consists of 1015 nodes. However, there is some difference in the staging
area of Aβ and τP in the brain connectome. A more general approach to the
analysis of brain hubs in human connectomes has recently been proposed in [27].
In the context of our research on the pathology dynamics, the network model (14)
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can be solved numerically for the given number of nodes with non-negative initial
conditions. Furthermore, we can extend our analysis on primary and secondary
tauopathies for the network model as well. Finally, we note that in the analysis
currently being undertaken, not only we can choose uniform parameter values
for all the nodes but also different parameter values in different regions in the
brain connectome, as required by a more detailed study.

7 Conclusion

We have studied a modification of the heterodimer model, which captures the
conversion time from healthy to toxic proteins. For the temporal dynamics, we
have carried out the linear stability analysis of all the stationary points. We
have also investigated the wave speeds of the travelling wavefronts for the spatio-
temporal model. Further, a computationally challenging network mathematical
model has been described based on a coarse-graining procedure of the contin-
uous model and taking advantage of the brain data connectome. In this latter
model the edges of the network are the axonal bundles in white-matter tracts.
We have highlighted an efficient way to analyze such models in the context of
neurodegenerative diseases such as AD.

We have obtained two clinically interesting patient proteopathies for further
detailed analysis: primary and secondary tauopathies. For the case of primary
tauopathy, a possible invasion of τP exists independent of the invasion of Aβ.
On the other hand, for the secondary tauopathy, the sustained presence of toxic
τP requires the company of toxic Aβ. These conclusions are similar for both the
models (heterodimer and the modified version). However, for the same paramet-
ric values, the introduction of Holling type-II functional response decreases the
concentrations of toxic τP and toxic Aβ compared to the original model.
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