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Abstract. Multiscale simulations present a new approach to increase
the level of accuracy in terms of forced displacement forecasting, which
can help humanitarian aid organizations to better plan resource allo-
cations for refugee camps. People’s decisions to move may depend on
perceived levels of safety, accessibility or weather conditions; simulating
this combination realistically requires a coupled approach. In this paper,
we implement a multiscale simulation for the South Sudan conflict in
2016-2017 by defining a macroscale model covering most of South Su-
dan and a microscale model covering the region around the White Nile,
which is in turn coupled to weather data from the Copernicus project. We
couple these models cyclically in two different ways: using file I/O and
using the MUSCLE3 coupling environment. For the microscale model,
we incorporated weather factors including precipitation and river dis-
charge datasets. To investigate the effects of the multiscale simulation
and its coupling with weather data on refugees’ decisions to move and
their speed, we compare the results with single-scale approaches in terms
of the total validation error, total execution time and coupling overhead.

Keywords: Agent-Based Modelling · Multiscale Simulation · Refugee
Movements · Data Coupling.

1 Introduction

Internal conflicts, environmental disasters, or severe economic circumstances
force people to displace from their homes [1]. For instance, people still strug-
gling with the continuation of violence and instability which led to escalating
food insecurity and drastic economic decline in South Sudan after the civil cri-
sis in 2013. All these had resulted in the displacement of people who became
forced migrants to find safety in camps located in neighbouring countries [2].
By mid-December 2016, more than 3 million South Sudanese had been forced to
flee their homes. Hence, one in four people in South Sudan had been uprooted,
their lives disrupted, their homes destroyed, and their livelihoods decimated [3].
United Nations Office for the Coordination of Humanitarian Affairs (OCHA)
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identified 7.5 million people out of a population of 12 million in need of hu-
manitarian assistance [4]. Computational models can forecast refugees’ arrival
time and counts to the camps. It helps humanitarian aid organizations to allocate
enough resources for refugees [4]. Among the computational models, agent-based
modelling (ABM) can provide such insights and information [1].

ABM hybrid techniques are the best way to understand the complex decision-
making processes of social systems like agent behaviours and their relationships
[5,6,7]. A lot of efforts have been made in ABM to simulate forced displacement
[8,9,10,11]. More recent research in ABM’s hybrid techniques is integration and
data coupling in simulation, particularly their varied number of approaches.
Groen et al. [12] identified four popular approaches to couple and integrate sim-
ulation models including, multi-scale integration, multi-paradigm integration,
multi-platform/multi-architecture integration and multi-processing integration.
Among these approaches, multiscale simulations are more inherent for scientific
problems like forced displacement forecasting to create more accurate models.
However, multiscale simulations face several challenges. In general, formulat-
ing generic frameworks for multiscale modelling and simulation is a big chal-
lenge [13]. To study the effects of policy decisions on ABM, Gilbert et al. [14]
and Suleimenova et al. [15] examined ABM in complex systems, such as human
movement, to provide insights for governments, stakeholders and policymakers.
Searle et al. [16] proposed a generic framework by designing an ABM to sim-
ulate conflict instances and decisions behind the movement of refugees fleeing
conflict-affected areas.

In more detail, Alowayyed et al. [17] investigated computational challenges
regarding coupling between a range of scales. Incorporating external factors af-
fecting conflict events is another challenge that needs to be tackled [12]. Further-
more, due to incomplete or small size datasets, forecasting forced displacement
does still suffer major challenges like outdated statistical methods and poor
refugees arrival estimations [18,19]. Besides, despite the necessity of investigat-
ing the effects of climate, weather conditions and seasonal factors on refugees
movement, there is very limited research in the literature to identify how they
influence movements, particularly adverse conditions that might restrict possible
migration paths. A study showed the correlation coefficient between arrivals in
different countries and different weather-related variables [20]. Abel et. al [21]
stated that climate change will increase the number of refugees fleeing from con-
flicts and also low precipitation level will increase conflicts which in turn cause
rising the number of refugees. Black et al. [22] studied the drivers of refugees
movements through different climatic related problems, such as sea level, fluctua-
tions and intensity of storms and rainfall patterns, temperature rise and changes
in weather conditions.

In [23], we presented the FLEE agent-based simulation approach where a
complex system is modelled as a set of autonomous decision-making agents that
behave accordingly with their environment based on a set of rules. Each agent in
FLEE acts as a forcibly displaced person and tries to move between locations, at-
tempting to reach the safety zone (i.e., camps). In this paper, we focus on imple-
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menting coupling ability which allows us to connect simulations of multiple scales
of movement in different regions regarding their different circumstances like new
rules, policy decisions or weather conditions. To test the proposed coupling model
and investigate the effects of the aforementioned decisions and changes to our
FLEE ABM assumptions, we select the South Sudan conflict as our test scenario
and construct a multiscale (macro-scale and micro-scale) model to explore the
establishment of data coupling between such models.

The rest of the paper is set out as follows. In Section 2, we explain a multi-
scale Flee model. Section 3 discusses the effort on the coupling approaches for
multiscale simulations. We explain the South Sudan multiscale simulation and
coupling with weather datasets in Section 4. Section 5 presents the experimen-
tal preliminary results with discussion. Finally, Section 6 concludes and briefly
outlines future work.

2 Flee : A Multiscale Approach

The developed multiscale simulation prototype in this work is based on the Flee
code3[23]. The Flee code is an ABM kernel, written in Python 3, which predicts
the distribution of fleeing refugees across target camps. Flee is optimised for
simplicity and flexibility, and support simulations with 100,000s of agents on a
single desktop.

Our proposed prototype divides the whole model into two sub-models, namely,
macroscale and microscale models. Each sub-model is executed independently
and agents pass between them during the simulation. In this model, each lo-
cation in the location graph, where agents pass through the coupling interface,
should be registered as coupled locations. In addition to coupled locations, all
microscale model’s conflict locations should be added to the macroscale model
as ghost locations. It means that although they are added to the macroscale
model, they don’t have any link to other macroscale locations and this is why
they are named ghosts locations. They are a special type of coupling locations
where (a) the macroscale model inserts agents into these locations according
to the normal FLEE agent insertion algorithm and (b) at each time step, the
coupling interface transfers all agents from each ghost location to the microscale
model. Figure 1 illustrates the schematic scale Separation Map for data coupling
between macroscale and microscale models.

3 Coupling Approaches

In this section, we highlight the use of two different cyclic (two-way) coupling
approaches to interconnect macroscale and microscale models: coupling through
file I/O and coupling using MUSCLE3. We also describe the acyclic (one-way)
coupling with the ECMWF Climate Data Store, which we have used to incor-
porate weather data into the microscale model.
3 http://www.github.com/djgroen/flee
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Fig. 1: Scale Separation Map of our model. The macro- and micro-scale model
have identical time scales and overlapping spatial scales, and are coupled cycli-
cally. In addition, the micro-scale model receives data from the weather forecast
data source (or from ECMWF Climate Data Store in the case of historical data).

3.1 File Coupling

File I/O is a coupling approach to exchange data between two sub-models. By
establishing this approach, exchanged data, such as the number of new agents
added to each location, can be passed between sub-models models using a local
shared file system. In this work, the number of all agents passing between sub-
models through coupled and ghost locations are stored in the format of CSV
files. Both sub-models fill their coupled CSV files, in a parallel fashion, to make
sure that both sub-models are synchronized in terms of simulation time steps
when all necessary coupled inputs files are checked at the start of each iteration.
Compared to other approaches, this method is straightforward to implement
and debug and easy to maintain, but lacks flexibility and can lead to high I/O
overhead for large problems.

3.2 MUSCLE3 Coupling

MUSCLE3 [24], the Multiscale Coupling Library and Environment, aims to
simplify the scale-separated coupled simulation. It contains two main compo-
nents: the MUSCLE library, i.e., libmuscle, and the MUSCLE Manager. The
libmuscle handles the data exchange over the network between each sub-model
in a peer-to-peer fashion. The MUSCLE Manager sets up sub-model instances
configuration and coordinates the connections between them. A model can be
described to the Manager using yMMSL, a YAML-based serialisation of the
Multiscale Modelling and Simulation Language (MMSL). Figure 2(a) shows the
architecture of MUSCLE3 and figure 2(b) represents the used yMMSL in our
design.

To implement our coupling strategy with MUSCLE3, we defined two main
compute elements, macro and micro, which represent the macro and micro mod-
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els, and two manager elements, micro_manager and macro_manager, which han-
dle the inputs from multiple instances of each sub-models. By starting the sim-
ulation, each lunched sub-model will be registered into the coupling system by
MUSCLE3 manager. In this example, 10 concurrent macro and micro sub-model
will be executed. Each sub-model instance will simulate the agent’s movement
between locations on each day. To Exchange the data, since we have multiple
instances, we designed a manager sub-model to (a) gather data from each in-
stance of the sub-models, (b) combine the founded newAgents per location by
each instance into one, and (c) pass to the other model, e.g., macro_manager
will collect and combine data from all macro instances, and pass to all micro
instances.

MUSCLE3
      ManagerInput

yMMSL
file

Macro Model
Multiple Instances

Macro
Manager

Micro Model
Multiple Instances

Micro
Manager

libmsucle

(a) architecture

ymmsl_version: v0.1
model:

name: mscalecity_test
compute_elements:

micro_manager: micro_manager
macro_manager: macro_manager
macro:

implementation: macro
multiplicity: 10

micro:
implementation: micro
multiplicity: 10

conduits:
micro.out : micro_manager.in
micro_manager.out : macro.in
macro.out : macro_manager.in
macro_manager.out : micro.in

(b) yMMSL file

Fig. 2: Implemented Macro-Micro coupling approach by MUSCLE3

In particular, MUSCLE 3 provides valuable features: coupling different sub-
model instances, spatial and temporal scale separation and overlap, settings
management, and combining features. At the time of writing, we have established
these features and we are scrutinizing the simulation to ensure coupling rules
are scientifically robust. We plan to perform a performance test of the different
coupling approaches once this scrutiny exercise has concluded.

4 South Sudan Multiscale Simulation

For the South Sudan multiscale simulation, we use a cyclic (two-way) coupling
between a more approximate model that captures most of South Sudan as a
macroscale model (see Fig.3(a)) comprising 8 regions of South Sudan and 14
camps in 4 neighbouring countries, including Uganda, Kenya, Sudan and Demo-
cratic Republic of Congo (DRC), and a more detailed model that captures the
region around the White Nile as a micro model (see Fig.3(b)). In the microscale
model, we aim to capture key walking routes, roads, and river crossings in the
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mountainous areas in eastern South Sudan. We also increase the level of detail in
terms of locations and incorporate a broader range of relevant phenomena, such
as weather conditions. The microscale model focuses on forced migrant move-
ments from Upper Nile and Jonglei regions towards Ethiopian camps in Gambela.
We create both models for the same conflict period between 1 June 2016 and 31
July 2017. More detailed maps of macroscale and microscale models’ locations
are depicted in Figures 3(a) and 3(b) wherein each, red points represent con-
flict locations, yellow points are towns and green points show camps. Besides, to
couple macroscale and microscale models, four coupled locations co-exist in both
models for passing agents between both models. Moreover, as described before,
the microscale model has additional algorithm assumptions which include three
types of routes: drive, walk and river that affect the agents’ movement speed.
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Fig. 3: South Sudan Location Graphs

4.1 Weather Coupling in South Sudan Microscale Model

South Sudan experiences a tropical climate, characterized by a rainy season
which differs by location but generally falls between April and November, fol-
lowed by a drier season. Annual rainfall ranges from 700 - 1,300 mm in the north
of the country, to 1,200 - 2,200 mm in the southern upland areas. Most of this
rainfall occurs in the wet season, therefore monthly rainfall averages less than
10 mm in the dry season and above 200 mm in the rainy season in the Bahr
el Ghazal and Eastern Equatoria. The temperature averages are normally high,
above 25°C, and exceeding 35°C in March which is the hottest month which is

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_40

https://dx.doi.org/10.1007/978-3-030-77977-1_40


Towards a coupled migration and weather simulation: South Sudan conflict 7

depicted in Figure 4. Since freezing temperature is non-existent in a tropical
climate, and storms and strong winds are rare, floods and droughts represent
South Sudan most frequent natural disasters in the past decades. They are also
the most damaging natural disasters in South Sudan in terms of the number of
affected people, as seen in Figure 5. Flooding mainly occurs between July and
September, when heavy rains fall in most parts of the country, leading to the
flooding of the Nile River tributaries [25]. Therefore, we consider using precipita-
tion and river discharge most influential on refugee movement in our simulation.
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Fig. 4: Average Monthly Temperature and Rainfall of South Sudan for 1991-2016
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Fig. 5: Key Natural Hazard Statistics of South Sudan for 1985-2018

The purpose of coupling with ECMWF’s weather forecasts is to improve
the simulation model forecasts through the inclusion of such data. Therefore,
to couple the microscale model with weather datasets like river discharge and
precipitation levels and study their effects on agents’ movement, we have to
answer how they can affect refugees’ decision to move from a location and their
speed?. More importantly, all these assumptions need to be reflected in a rule set
for coupling microscale model with weather datasets. For this aim, we examine
our prototype in the real case of South Sudan’s conflict with real data provided
by UNHCR, ACLED, and of course weather data provided by ECMWF.
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To couple the microscale model with the weather datasets, the overall strat-
egy is the static file coupling. We have analysed 40 years of precipitation data
for South Sudan and surrounding areas, to identify the precipitation range for
each location. This range is used to set the thresholds which trigger the agents’
movement speed changes accordingly. The data is retrieved from the Climate
Data Store (CDS) by using CDSAPI for the years 2016 and 2017. Daily aggre-
gations and conversion from m/day to mm/day were calculated for the period of
simulation 01/06/2016 to 31/07/2017 using xarray Python library. The data is
prepared for three smaller regions of interest: Upper Nile, Jonglei and Gambelais
which is saved as CSV files - one file for each day to be compatible with other
input files for the microscale model (see Fig 6).

Fig. 6: Coupled Weather and Migration Simulation

The datasets used for these calculations include:

– Daily average precipitation data per month, calculated from 40 years ERA5
climate reanalysis, for the South Sudan simulation locations. It consists of
two parameters:
• N - number of rainy days within that month
• tp - Total precipitation

– Daily precipitation data (ERA5 climate reanalysis [26]) for the microscale
model for the South Sudan area:
• Latitude range = 11.75 - 6.0, Longitude range = 31.0 - 35.25
• Time range: 01-06-2016 till 31-07-2017

Day Bor_Akobo Juba_Bor Renk_Alwaral ...

0 0.1 0.465 3.6 ...

1 ... ... ... ...

... ... ... ... ...

Table 1: Sample structure for precipitation input file
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The steps of the implemented weather coupling are as follows:

1. Using Precipitation data for 40 years to identify total precipitation range
the given date and location’s latitude and longitude.

2. Calculating midpoint location for all routes in input data.
3. Creating precipitation.csv in the format as shown in table 1, including the

total precipitation for each microscale model routes midpoints.
4. Going through the precipitation.csv to find total precipitation for each link

at the given time step.
5. Calculating the movement speed by using two thresholds. The first threshold

is 5mm which means if total precipitation is below this amount, the speed
will not change. For the second threshold, if the total precipitation is bigger
than 75% of the average level of that location and bigger than 15 mm, the
link will be considered closed. Any other precipitation levels which will be
in the middle of these thresholds means the route distance will be doubled.
Table 2 summarizes these assumptions.

Move_speed No change in speed Double the distance Close the link

tp < X1 X1 < tp < X2 X2 < tp

Low Level High Level Vey High Level

Table 2: Level of Precipitation vs Move_speed

Furthermore, we use daily river discharge data from Global flood forecasting
system (GloFAS [27]) to explore the threshold for closing the route considering
values of river discharge for return periods of 2, 5 and 20 years. Currently, because
of having only one crossing route, we only use a simple rule with one threshold
to define the river distance. If the river discharge at the midpoint of the given
route is more than the average of that point in history, 8000 m3/s, the link will
be closed (see Fig. 7). The datasets used in this part are:

– River discharge data (GloFAS historical reanalysis dataset) for the same
temporal and horizontal range as total precipitation

– River discharge data for 2, 5 and 20 years return period filtered to White
Nile area, also calculated from GloFAS historical reanalysis dataset

In summary, to couple the South Sudan multiscale model with weather
datasets, we take the following steps. We construct macroscale and microscale
models individually for the South Sudan conflict. We incorporate more location
types in the microscale model to increase the level of detail (e.g. forwarding hubs
and marker locations). We also add new route types, such as key walking routes,
driving roads, and crossing rivers. Then, we interlink the two models, using two
coupling approaches, File Coupling and Model coupling with MUSCLE3. Then,
we integrate the weather datasets into the microscale model, including precipi-
tation level and river discharge provided by Copernicus Climate Change Service
(C3S) and ECMWF.
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Fig. 7: River discharge values at Malacal city crossing for the period between
2014 and 2019

5 Results and Discussion

To demonstrate a highly detailed model of the South Sudan conflict and forecast
forced displacement, we take five approaches to investigate the coupling within
multiscale simulations and also coupling with external datasets like weather
datasets and their effects on refugees’ speed and their decisions to move or stay.
These approaches are:

1. Singlescale Simulation (Uncoupled Serial Mode)
2. Multiscale Agent-based Simulation (File Coupling)
3. Multiscale Agent-based Simulation (MUSCLE3 Coupling)
4. Multiscale Agent-based Simulation + Weather Coupling (File Coupling)
5. Multiscale Agent-based Simulation + Weather Coupling (MUSCLE3 Cou-

pling)

In the first approach, we only simulate the whole South Sudan location graph
using FLEE rule set 2.0 in serial mode or singlescale only for comparison with
multiscale approaches. It means that the serial mode doesn’t follow the multiscale
ruleset which needs dividing the whole model into sub-models. In approaches 2
and 3, we investigate multiscale simulations without weather coupling by using
File I/O and MUSCLE3 coupling between sub-models. In approaches 4 and 5, we
incorporate weather data into our multiscale simulations and again we use File
I/O and MUSCLE3 coupling to pass agents between sub-models. The simulation
is performed on a node with 32 cores, and a total of 12GB of memory. For the
comparison, table 3 illustrates the results of these simulations on the Eagle
supercomputer, including the total execution time, total validation error and
coupling overhead for the aforementioned approaches.

Also, we deliberately avoid minimizing the validation error by calibrating
existing model parameters against data. Because, it might lead to over-fitting
which not only reduces the reusability of our simulations in new contexts, but
also makes it highly sensitive to the (often incomplete) validation data sources we
use. Therefore, we mostly incorporate data sources as model input, and combine
them with our general knowledge and qualitative data about human behaviour.
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Approaches
Total Validation Total Execution Coupling

Error Time (hh:mm) Overhead

Whole South Sudan (Serial Mode) 0.431 02:21 1

Multiscale Simulation
File Coupling 0.507 01:25 0.60

MUSCLE3 Coupling 0.507 01:25 0.56

Multiscale Simulation File Coupling 0.510 09:01 3.83

+ Weather Coupling MUSCLE3 Coupling 0.509 09:17 3.95

Table 3: Comparison of the Simulation Approaches
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Fig. 8: Overview of the averaged relative differences for the taken approaches

As results show, the total validation error of the serial mode approach, which
is 0.431, is lower than multiscale approaches (0.507). However, the total execu-
tion time of multiscale approaches, which is 01:25 for both second and third
approaches, is lower than serial mode (02:21) and they are pretty much lower
than the approaches coupled with weather datasets (09:01 and 09:17). Hence,
we can claim that despite having slightly higher validation error, multiscale ap-
proaches are much faster than the serial mode approach. Furthermore, to explain
the reasons for high execution time for the weather coupled approaches, we have
to point out that they ran longer in the early versions, and after a lot of opti-
mizations we got to this time. To justify this, it can be said that perhaps due to
the coupling and integration with static datasets and repeated reading of such
data at each time step, the execution time of these approaches increases. The
third column in table 3 demonstrates these as the Coupling Overhead which
assumes the serial mode as a benchmark to calculate the deviations of other
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Fig. 9: Sample camps simulation results for 426 days from 1 Jun 2016 till 31 July
2017

approaches. Therefore, the coupling overhead for serial mode is 1. The values
0.60 and 0.56 complying faster pace of multiscale approaches without weather
coupling, and values 3.83 and 3.95 are for weather coupled approaches which
comply with their lower pace comparing to the serial mode.

Nevertheless, the overall validation error for the South Sudan simulation is
relatively high, because many people do not use the main routes and their choice
of destination is strongly affected by the weather conditions. We are in the pro-
cess of incorporating these phenomena in these simulations, and the validation
errors presented for the multiscale simulations represent preliminary, not final,
results.

The overview plots for the averaged relative differences for Serial mode (un-
coupled) simulation (black line), file coupling (red line), file coupling (green
line) file coupling + weather (red line), MUSCLE3 coupling (violet line) and
MUSCLE3 coupling + weather (blue line) for the aggregated macroscale and
microscale models are illustrated in figure 8. However, because both file and
MUSCLE3 coupling approaches do the same data exchange and the weather
coupled models are very limited in this case, all the coupled results are are
overlapping in this figure. Besides, the simulation results for sample camps at
both macro (Kakuma) and micro level (Okugo) regions are depicted to show the
difference between taken approaches at the camp arrival forecasting level (see
Fig. 9(a) and 9(b)).

6 Conclusion

In this paper, we presented a multiscale simulation approach for modelling forced
migration in South Sudan, and described how different coupling approaches have
an effect on the total execution time, validation error and coupling overhead. We
investigated file I/O based and MUSCLE3 based coupling approaches. Also, we
integrated a weather data source with our microscale model, to determine re-
alistic agent movements e.g. the changes in road accessibility due to flooding.
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Our multiscale models result in a higher validation error than our single-scale
models, which points towards the need to add further details in our coupling
implementation and do a larger-scale validation exercise. Besides, the location
graph needs to be revised and the coupled locations should be reconsidered to
properly simulate refugees’ movement in multiscale models. In terms of run-
time, we find out that the macro-micro model coupling outperforms the weather
coupling, that needs to be improved considerably.

In general, modelling the South Sudan conflict while taking all these aspects
into account is a highly demanding endeavour, mainly because the collection
of input and validation data is often very challenging. We, therefore, see this
work as a first major step in a sequence of iterations towards a highly detailed
population displacement model of this conflict.
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