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Abstract

Efficient execution of large-scale and extremely demanding computational sce-
narios is a challenge for both the infrastructure providers and end-users, usually
scientists, that need to develop highly scalable computational codes. Neverthe-
less, at this time, on the eve of exa-scale supercomputers, the particular role has
to be given also to the intermediate software that can help in the preparation of
applications so they can be efficiently executed on the emerging HPC systems.
The efficiency and scalability of such software can be seen as priorities, however,
these are not the only elements that should be addressed. Equally important
is to offer software that is elastic, portable between platforms of different sizes,
and easy to use. Trying to fulfill all the above needs we present QCG-PilotJob, a
tool designed to enable flexible execution of numerous potentially dynamic and
interdependent computing tasks in a single allocation on a computing cluster.
QCG-PilotJob is built on many years of collaboration with computational scien-
tists representing various domains and it responses to the practical requirements
of real scientific use-cases. In this paper, we focus on the recent integration of
QCG-PilotJob with the EasyVVUQ library and its successful use for Uncer-
tainty Quantification workflows of several complex multiscale applications being
developed within the VECMA project. However, we believe that with a well-
thought-out design that allows for fully user-space execution and straightforward
installation, QCG-PilotJob may be easily exploited in many other application
scenarios, even by inexperienced users.

1 Introduction

The success of scientific research can be evaluated based on its applicability for
solving real-world problems. Not surprisingly, before computational simulation
codes are used in production, their robustness needs to be strictly proven. This
applies to both, the quality of the code itself and, even more importantly, the
reliability of the generated results. To this end, scientists employ VVUQ proce-
dures to verify, validate, and precisely quantify the uncertainty of calculations.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_39

https://dx.doi.org/10.1007/978-3-030-77977-1_39


2 B. Bosak et al.

The inherent characteristic of the majority of available techniques is multiple
evaluations of models using different input parameters selected from the space
of possible values. This is a computationally demanding scenario even for evalu-
ations of traditional single-scale applications, but in the case of multiscale simu-
lations that consist of many coupled single-scale models, the problem becomes a
real challenge. There is a need to support simultaneous execution of single-scale
models that may have extremely large and different resource requirements, some
single-scale models may need to be attached dynamically, the number of evalu-
ations of single-scale models may not be known in advance, to name just a few
difficulties. Within the VECMA project4 we are trying to resolve all these issues
with efficient and flexible tools. One of key elements in VECMA toolkit5 [4] is
EasyVVUQ6 [8], the user-facing library that brings VVUQ methods to many
different use-cases. However, EasyVVUQ itself abstracts from the aspects of ex-
ecution of model evaluations on computational resources and outsources this
topic to the external tools. One of them is QCG-PilotJob7 (QCG-PJ) developed
by Poznan Supercomputing and Networking Center as part of QCG (Quality
in Cloud and Grid) middleware [7]. Its functionality, based on the idea of so
called Pilot Job, which manages a number of subordinate tasks, is essential for
the flexible and efficient execution of VVUQ scenarios that inherently consists
of many tasks, from which some may be relatively small.

The rest of this paper is structured as follows. In Section 2 we present a brief
overview of related work. In Section 3 we describe basic objectives and function-
ality of QCG-PJ. Next, in Section 4, we introduce a few schemes of integration
between EasyVVUQ and QCG-PJ that have been developed in the VECMA
project and then we present a range of application use-cases that already use
QCG-PJ. The results of performance tests conducted so far are outlined in Sec-
tion 5. Finally, in Section 6, we conclude and share main plans for the future.

2 Related work

The problem of efficient and automated execution of a large-number of tasks on
computing clusters managed by queuing systems is known from decades. One
of the most recognized systems that deal particularly with the pilot job style
of execution on computing resources is RADICAL-Pilot[6], being developed as
part of the RADICAL-Cybertools suite. In contrast to QCG-PJ, which can be
easily installed in a user’s home directory, RADICAL-Pilot is not a self-contained
component and needs to be integrated with external services. There are also
several solutions having some commonalities with the QCG-PJ idea, but they
are focused primarily on the workflow orchestration rather than on the efficiency
and flexibility of computing on HPC machines. An example of a mature system
is here Kepler[2], which addresses the need for the HTC execution of parts of

4 https//www.vecma.eu
5 https://www.vecma-toolkit.eu
6 https://github.com/UCL-CCS/EasyVVUQ
7 https://github.com/vecma-project/QCG-PilotJob
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the workflows on clusters. Further examples are Swift-T[9] and Parsl[1], which
share a common goal to effectively support data-oriented workflows, or Dask8,
which aims to enable parallel processing for analytical workflows.

3 Objectives

The access to HPC systems is regulated by the policies of resource providers and
restricted by local resource management system configurations as well as their
implementations. For example, the policy at SuperMUC-NG cluster installed at
the Leibniz Supercomputing Centre9, in order to promote large-scale computing,
allows users to submit and run only a small number of jobs at the same time.
Smaller HPC installations may be less restrictive, but in general, the large tasks
have a priority over small tasks, and the rule remains the same: there is no way
to flexibly schedule many jobs with basic mechanisms. If users want to efficiently
run a huge number of conceptually different tasks they need to employ solutions
that can mitigate the regulations on a level of single allocation. One of the
possible approaches is to define a processing scheme in a scripting language,
but this is neither generic nor flexible and possibly prone to many bugs and
inefficiency. The other, recommended approach is the utilisation of specialised
software, like QCG-PJ.

Functionality

The basic idea of QCG-PJ is to bring an additional tasks management level
within the already created allocation. As it is presented in Figure 1, from the
queuing system’s perspective, QCG-PJ is only a single regular task, but for a
user, it is a second-level lightweight resource management system that can be
administered and used on an exclusive basis.

QCG PILOT JOB EXECUTOR

MULTI-CPU
JOB

SINGLE-CPU JOB

2-CPU
JOB

PILOT JOB = SINGLE QUEUING SYTEM JOB

Fig. 1. The general computation scheme in QCG-PilotJob

As SLURM manages resources of a cluster, QCG-PJ manages resources of
an allocation and ensures that tasks are scheduled efficiently. That being said,

8 https://dask.org
9 https://doku.lrz.de/display/PUBLIC/Job+Processing+with+SLURM+on+SuperMUC-NG
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users or alternatively client software components can interact with it in a similar
way as with any queuing system. Through a dedicated lightweight service called
QCG-PJ Scheduler, they can submit new tasks with specific requirements, list
submitted tasks or cancel them.

In order to enhance usability, QCG-PJ offers two ways of submission of tasks:
firstly, it is possible to provide task definitions in a form of JSON file and submit
this file from a command line at startup of the QCG-PJ, and secondly, it is
possible to use the provided python API for dynamic creation and management
of jobs directly from a running python program.

Moreover, the tool provides a few supplementary built-in features that can be
recognised as particularly useful for selected scenarios. Among others, it allows
defining dependencies between tasks as well as it offers resume mechanism to
support fault tolerance at a workflow level.

Architecture towards exascale

One of the biggest challenges at the very beginning of QCG-PJ development was
to ensure its ability to meet requirements defined by extremely demanding mul-
tiscale applications. In order to reach the performance of hundreds of petaflops
or even higher, these applications ultimately call for, it was particularly impor-
tant to design an appropriate architecture. First of all, such architecture should
be scalable: the system should be easy to use, even on a laptop, but also easily
extendable, portable and efficient once the use-cases grow up to require HPC
resources. Consequently, the natural choice was to propose a hierarchical struc-
ture of components, where top-level services are released from the high-intensive
processing that can be performed in a distributed way by low-level services. In
consequence, the QCG-PJ architecture includes a concept of partition, which
reflects a subset of resources that are managed separately and can be dynami-
cally attached to the optional top-level QCG-PJ Scheduling Queue service. This
is presented in Figure 2.

In the presented full-scale deployment scenario, QCG-PJ Scheduling Queue
is an entry point to the system and keeps global information about all tasks that
should be processed. One or multiple QCG-PJ Scheduler services, associated
with the elementary partitions, can request Scheduling Queue for a portion of
tasks to execute. Once the tasks are completed, the schedulers report this infor-
mation back to the central service. Consequently, resources coming from a single
or many allocations, also from a single or many HPC clusters, can be robustly
integrated and offered as a single logical concept, while the communication over-
head is minimised.

Having a closer look at the logic present within a single partition, two ele-
ments should be noted. The first of them is the possibility to reserve a core for
QCG-PJ Scheduler. This option is useful when processing done by the Scheduler
service significantly influences the actual computations. The second element is
the Node Launcher service. This component is designed to improve the startup
efficiency of single-core tasks.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_39

https://dx.doi.org/10.1007/978-3-030-77977-1_39


Title Suppressed Due to Excessive Length 5

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

Node 1

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Partition Manager QCG-PJ Partition Manager QCG-PJ Partition Manager QCG-PJ Scheduler

QCG-PJ Scheduling Queue 

Allocation A1

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Partition Manager QCG-PJ Partition Manager QCG-PJ Partition Manager QCG-PJ Scheduler

...

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

Node N1A1P1

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Node Launcher

CPU CPU CPUCPU

CPUCPUCPUCPU

QCG-PJ Partition Manager QCG-PJ Partition Manager QCG-PJ Partition Manager QCG-PJ Scheduler

P
ar

ti
ti

o
n

 P
1

A
1

...

P
ar

ti
ti

o
n

 P
N

A
1

Node NNA1P1

Node N1A1PN

Allocation AN

Node NNA1PN

P
ar

ti
ti

o
n

 P
N

A
N

Node NNA1PN

Fig. 2. QCG-PilotJob Architecture Overview

4 Use cases

Integration with EasyVVUQ

EasyVVUQ is a tool for domain experts who work on concrete VVUQ scenarios
related to their applications. We argue that these experts shouldn’t spend their
valuable time to set-up the logic of execution of EasyVVUQ workflows on com-
puting resources. Rather, they should focus on purely scientific or engineering
aspects. To this end, VECMA toolkit provides a few approaches for the inte-
gration of EasyVVUQ with QCG-PJ so it can be efficient and natural for the
domain scientist. Currently, there are the following possibilities:

Direct integration with EasyVVUQ: It is the most straightforward type
of integration, where QCG-PJ is transparently employed in EasyVVUQ as
one of its internal execution engines. Although at the moment of writing,
this type of integration is not yet completed and doesn’t benefit from more
advanced features offered by QCG-PJ, e.g. iterative tasks, it is expected to
be the preferred one at some point in the future.

Integration through the EQI library: EQI10, which stands for EasyVVUQ-
QCGPilotJob Integrator, is a lightweight library designed to bring optimised
processing schemes to selected types of highly-demanding EasyVVUQ work-
flows. It makes use of advanced functionalities of QCG-PJ, like resume mech-
anism and iterative jobs.

Integration through FabSim3: QCG-PJ has been integrated with the Fab-
Sim3 automation toolkit11 in order to support demanding application cam-
paigns. Since FabSim3 internally uses EasyVVUQ, the combined execution
of EasyVVUQ and QCG-PJ is also possible.

10 https://github.com/vecma-project/EasyVVUQ-QCGPJ
11 https://github.com/djgroen/FabSim3
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Applications

At the moment of writing, there are already several application teams from
VECMA that use QCG-PJ for their professional research. For instance, scientists
from Max-Planck Institute for Plasma Physics use EasyVVUQ to quantify the
propagation of uncertainty in a fusion turbulence model which is computationally
expensive. It is a 3D parallel code and needs 512 to 16384 MPI cores [5]. Running
a UQ campaign on such models require a very large number of jobs. Thanks
to EQI and QCG-PJ, it was possible to execute the required simulations in a
single batch allocation. In a similar way, the QCG-PJ tool has been employed
for UQ of the UrbanAir application developed by PSNC [10]. It is also worth
mentioning recent studies, where FabSim3 and QCG-PJ have been employed for
UQ performed on the CovidSim epidemiological code [3].

5 Performance evaluation

Ultimately, the performance of QCG-PJ will be the most determining factor for
its usability. Since the early days of its development, scalability and accessibility
are evaluated repeatedly on large European supercomputers such as SuperMUC-
NG at LRZ and Eagle/Altair at PSNC.
Thus far, test runs involving 100 dual-socket nodes, which equates to around
5000 CPU cores, showed very promising results, with more than 99% of time
spent in the user-defined pilot jobs. More specifically, 20.000 pilot jobs with a
runtime of five minutes each kept 99.2% of the available resources occupied.
With these promising results, we plan on conducting experiments with actual sci-
entific applications which involve much larger node counts, alongside an exhaus-
tive scalability study. Additionally, these tests were conducted by users which
are not directly involved in the development of QCG-PJ, which in turn further
contributed to the accessibility of the API.

6 Summary and future work

In this paper, we shortly introduced the concepts and features of QCG-PilotJob
system and depicted how it is used by VECMA project to support demanding
VVUQ scenarios. The progress made to several large-scale applications, when
they successfully employed QCG-PJ, allows us to rank the current usability of
QCG-PJ relatively high. Nevertheless, there are still ongoing works aimed to
enhance the quality and functionality of the software. In regards to the former,
since individual SLURM configurations can pose challenges for QCG-PJ and re-
quire its adaptation and customization, we are in the process of extensive tests
of the tool on high-end European clusters. For instance, PSNC is in the process
of deploying QCG-PJ to SURF (Amsterdam) and ARCHER2 (Edinburgh). Ulti-
mately, we want to ensure that QCG-PJ is easily deployable and works efficiently
on a large variety of machines and configurations. In terms of new functional-
ity, our aim is to complete the implementation of the global Scheduling Queue
service as well as to provide a dedicated monitoring solution.
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