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Abstract. We present SimNet, an AI-driven multi-physics simulation
framework, to accelerate simulations across a wide range of disciplines
in science and engineering. Compared to traditional numerical solvers,
SimNet addresses a wide range of use cases - coupled forward simula-
tions without any training data, inverse and data assimilation problems.
SimNet offers fast turnaround time by enabling parameterized system
representation that solves for multiple configurations simultaneously, as
opposed to the traditional solvers that solve for one configuration at
a time. SimNet is integrated with parameterized constructive solid ge-
ometry as well as STL modules to generate point clouds. Furthermore,
it is customizable with APIs that enable user extensions to geometry,
physics and network architecture. It has advanced network architectures
that are optimized for high-performance GPU computing, and offers
scalable performance for multi-GPU and multi-Node implementation
with accelerated linear algebra as well as FP32, FP64 and TF32 compu-
tations. In this paper we review the neural network solver methodology,
the SimNet architecture, and the various features that are needed for
effective solution of the PDEs. We present real-world use cases that range
from challenging forward multi-physics simulations with turbulence and
complex 3D geometries, to industrial design optimization and inverse
problems that are not addressed efficiently by the traditional solvers. Ex-
tensive comparisons of SimNet results with open source and commercial
solvers show good correlation. The SimNet source code is available at
https://developer.nvidia.com/simnet.

1 Introduction

Simulations are pervasive in every domain of science and engineering. However,
they become computationally expensive as more geometry details are included
and as model size, the complexity of physics or the number of design evaluations
increases. Although deep learning offers a path to overcome this constraint,
supervised learning techniques are used most often in the form of traditional
data driven neural networks (e.g., [1, 2]). However, generating data can be an
expensive and time consuming process. Furthermore, these models may not obey
the governing physics of the problem, involve extrapolation and generalization
errors, and provide unreliable results.
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In comparison with the traditional solvers, neural network solvers [3–5] can not
only do parameterized simulations in a single run, but also address problems not
solvable using traditional solvers, such as inverse or data assimilation problems
and real time simulation. They can also be embedded in the traditional solvers
to improve the predictive capability of the solvers. Training of neural network
forward solvers can be supervised only based on the governing laws of physics,
and thus, unlike the data-driven deep learning models, neural network solvers do
not require any training data. However, for data assimilation or inverse problems,
data constraints are introduced in the loss function.

Rapid evolution of GPU architecture suited for AI and HPC, as well as
introduction of open source frameworks like Tensorflow have motivated researchers
to develop novel algorithms for solving PDEs (e.g., [3, 5–8]). Recently, a number
of neural network solver libraries are being developed (e.g., TensorFlow-based
DeepXDE [9], Keras-based SciANN [10], and Julia-based NeuralPDE.jl [11]),
aiming at making these solvers more accessible. Although the existing research
studies and libraries played a crucial role in advancing the neural network solvers,
the attempted examples are mostly limited to simple 1D or 2D domains with
straightforward governing physics, and the neural network solvers in their current
form still struggle to solve real-world applications that involve complex 3D
geometries and multi-physics systems. In this paper we present SimNet, that aims
to address the current computational challenges with neural network solvers. As
an example, SimNet enables design optimization of a FPGA heat sink (see Figure
1) through a single network training without any training data. In contrast, the
traditional solvers are not capable of simulating geometries with several design
parameters in a single run.

Fig. 1: Design optimization of an FPGA heat sink using SimNet. The center and
side fin heights are the two design variables.

Our Contributions: Several research studies have recently been published demon-
strating solution of PDEs using neural networks. However, our experience has
shown that they do not converge well when used as forward solvers for industrial
problems due to the gradients, singularities and discontinuities introduced by
complex geometries or physics. Our main contributions in this paper are to offer
several novel features to address these challenges - Signed Distance Functions
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(SDFs) for loss weighting, integral continuity planes for flow simulation, advanced
neural network architectures, point cloud generation for real world geometries
using constructive geometry module as well as STL module and finally param-
eterization of both geometry and physics. Additionally, for the first time to
our knowledge, we solve high Reynolds number flows (by adopting the RANS
equations and the zero-equation turbulence model [12]) in industrial applications
without using any data.

2 Neural Network Solvers

A neural network solver approximates the solution to a given PDE and a set
of boundary and initial constraints using a feed-forward fully-connected neural
network. The model is trained by constructing a loss function for how well the
neural network is satisfying the PDE and constraints. A schematic of the structure
of a neural network solver is shown in Figure 2.

Fig. 2: A schematic of the structure of a neural network solver.

Let us consider the following general form of a PDE:

Ni[u] (x) = fi (x) , ∀i ∈ {1, · · · , NN },x ∈ D,
Cj [u] (x) = gj (x) , ∀j ∈ {1, · · · , NC},x ∈ ∂D,

(1)

where Ni’s are general differential operators, x is the set of independent variables
defined over a bounded continuous domain D ⊆ RD, D ∈ {1, 2, 3, · · · }, and u(x)
is the solution to the PDE. Cj ’s denote the constraint operators and usually cover
the boundary and initial conditions. ∂D also denotes a subset of the domain
boundary that is required for defining the constraints. We seek to approximate
the solution u(x) by a neural network unet(x) that, in it’s most simple form,
takes the following form:

unet(x; θ) = Wn

{
φn−1 ◦ φn−2 ◦ · · · ◦ φ1 ◦ φE

}
(x) + bn, φi(xi) = σ (Wixi + bi), (2)
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where x ∈ Rd0 is the input to network, φi ∈ Rdi is the ith layer of the network,
Wi ∈ Rdi×di−1 ,bi ∈ Rdi are the weight and bias of the ith layer, θ denotes the
set of network’s trainable parameters, i.e., θ = {W1,b1, · · · ,bn,Wn}, n is the
number of layers, and σ is the activation function. We suppose that this neural
network is infinitely differentiable, i.e. unet ∈ C∞. φE is an input encoding layer.
More advanced architectures will be introduced in Section 3.3.

In order to train this neural network, we construct a loss function that
penalizes over the divergence of the approximate solution unet(θ) from the PDE
in equation 1, and such that the constraints are encoded as penalty terms. To
this end, we define the following residuals:

r
(i)
N
(
x;unet(θ)

)
= Ni[unet(θ)] (x)− fi (x) ,

r
(j)
C
(
x;unet(θ)

)
= Cj [unet(θ)] (x)− gj (x) ,

(3)

where r(i)N and r(j)C are the PDE and constraint residuals, respectively. The loss
function then takes the following form:

Lres(θ) =
∑NN

i=1

∫
D λ

(i)
N (x)

∥∥∥r(i)N (x;unet(θ))∥∥∥
p
dx+

∑NC
j=1

∫
∂D λ

(j)
C (x)

∥∥∥r(j)C (x;unet(θ))∥∥∥
p
dx, (4)

where‖·‖p denotes the p-norm, and λ(i)N , λ
(j)
C are weight functions that control the

loss interplay between within and across different terms. The network parameters θ
are optimized iteratively using variants of the stochastic gradient descent method.
At each iteration, the integral terms in the loss function are approximated using
a regular or Quasi-Monte Carlo method, and using a batch of samples from the
independent variables x. Automatic differentiation is commonly used to compute
the required gradients in ∇Lres(θ).

3 SimNet Overview

SimNet is a Tensorflow based neural network solver and offers various APIs
that enable the user to leverage the existing functionality to build their own
applications on the existing modules. An overview of SimNet architecture is
presented in Figure 3. The geometry modules, PDE module, and data are used to
fully specify the physical system. The user also specifies the network architecture,
optimizer and learning rate schedule. SimNet then constructs the neural network
solver, forms the loss function, and unrolls the graph efficiently to compute the
gradients. The SimNet solver then starts the training or inference procedure using
TensorFlow’s built-in functions on a single or cluster of GPUs. The outputs are
saved in the form of CSV or VTK files and can be visualized using TensorBoard
and ParaView.

3.1 Geometry modules

SimNet contains Constructive Solid Geometry (CSG) and Tessellated Geometry
(TG) modules. With SimNet’s CSG module, constructive geometry primitives

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_36

https://dx.doi.org/10.1007/978-3-030-77977-1_36


NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework 5

Fig. 3: SimNet structure.

can be defined and Boolean operations performed. This allows the creation and
parameterization of a wide range of geometries. The TG module uses tesselated
geometries in the form of STL or OBJ files to work with complex geometries.
One area of considerable interest is how to weight the loss terms in the overall
loss function. SimNet offers spatial loss weighting, where each weight parameter
can be a function of the spatial inputs. In many cases we use the Signed Distance
Function (SDF) for this weighting. Assuming Dx is the spatial subset of the input
domain D with boundaries ∂Dx, the SDF-based weight function is defined as

λ(xs) =

{
d(xs, ∂Dx) xs ∈ Dx,

−d(xs, ∂Dx) xs ∈ Dc
x.

(5)

Here, xs is the spatial inputs, and d(xs, ∂Dx) represents the Euclidean distance
between xs and it’s nearest neighbor on Dx. If the geometry has sharp corners
this often results in sharp gradients in the solution of the PDE. Weighting by
the SDF tends to mitigate the deleterious effects of sharp local gradients, and
often results in an improvement in convergence speed and accuracy. Both of
the SimNet geometry modules allow for the SDF and its spatial derivatives
to be computed. CSG uses SDF functions to implicitly define the geometry.
To accelerate the computation of the SDF on tessellated meshes of complex
geometries, we developed a custom library that leverages NVIDIA’s OptiX
for both inside/outside (sign) testing and distance computation. The sign test
uses ray intersection and triangle normal alignment (via dot product). The
distance testing is done by using the bounded volume hierarchy (BVH) interface
provided by OptiX, which yields excellent performance and accuracy for distance
computations.
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3.2 PDE module

The PDE module in SimNet consists of a variety of differential equations including
the Navier-Stokes, diffusion, advection-diffusion, wave, and elasticity equations.
To make this module extensible for the user to easily define their own PDEs,
SimNet uses symbolic mathematics enabled by SymPy [13]. A novel contribution
of SimNet is the adoption of the zero-equation turbulence model [12], and this is
the first time a neural network solver is made capable of simulating flows with
high Reynolds numbers, as shown in the next section. Moreover, for fluid flow
simulation, we propose the use of integral continuity planes. For some problems
involving channel flow, we found that, in addition to solving the Navier-Stokes
equations in differential form, specifying the mass flow (for compressible flows)
or volumetric flow rate (for incompressible flows) through some of the planes
in the domain helps in satisfying the continuity equation better and faster and
improving the accuracy further. Assuming there is no leakage of flow, we can
guarantee that the flow exiting the system must be equal to the flow entering the
system, and also equal to the flow passing from any plane parallel to the inlet
plane throughout the channel.

3.3 Network architectures

In addition to the standard fully connected networks, SimNet offers more advanced
architectures, including the Fourier feature and Modified Fourier feature networks,
and Sinusoidal Representation Networks (SiReNs) [14] to alleviate the spectral
bias [15] in neural networks and improve convergence. The Fourier feature network
in SimNet is a variation of the one proposed in [16] with trainable encoding, and
takes the form in equation 7 with the following encoding

φE =
[
sin (2πf × x) ; cos (2πf × x)

]T
, (6)

where f ∈ Rnf×d0 is the trainable frequency matrix and nf is the number of
frequency sets. The modified Fourier feature network is SimNet’s novel archi-
tecture, where two transformation layers are introduced to project the Fourier
features to another learned feature space, and are then used to update the hidden
layers through element-wise multiplications, similar to its standard fully con-
nected counterpart in [8]. It is shown in the next section that this multiplicative
interaction between the Fourier features and hidden layers can improve the
training convergence and accuracy. The hidden layers in this architecture take
the following form

φi(xi) =
(
1− σ (Wixi + bi)

)
� σ (WT1φE + bT1) + σ (Wixi + bi)� σ (WT2φE + bT2), (7)

where i > 1 and {WT1
,bT1
}, {WT2

,bT2
} are the parameters for the two trans-

formation layers.
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4 Use Cases

In this section, we present four use cases for SimNet to illustrate its capabilities.
Although SimNet is capable of simulating transient flows using the continuous-
time sampling approach [3], the first three use cases are time-independent. A more
efficient and accurate approach based on the convolutional LSTMs for transient
simulations as well as integration of two-equation turbulence models for turbulent
simulations are under development. For the entire networks in this section, the
architectures consist of 6 layers, each with 512 units. Swish [17] nonlinearities
are used in the fully connected, Fourier feature, and modified Fourier feature
networks (except for the Fourier layers). For the simulations presented in Sections
4.2 to 4.4, the standard fully connected architecture is used. Adam optimizer with
an initial learning rate of 10−4 and an exponential decay is used. We use Monte
Carlo integration for computing the loss function in equation 4. Moreover, we use
integral continuity planes for channel flows. For the simulations in use cases 4.1
to 4.3, we use the SDF for weighting the PDE residuals. It must be noted that
use cases 4.1 to 4.3 are solved in the forward manner without using any training
data. Please refer to the SimNet user guide for details of the problem setup.

4.1 Turbulent and multi-physics simulations

Using an FPGA heat sink example, we demonstrate the SimNet’s capability in
accurately solving multi-physics problems involving high Reynolds number flows.
The heat sink geometry placed inside a channel is depicted in Figures 4a, 4b. This
particular geometry is challenging to simulate due to thin fin spacing that causes
sharp gradients that are difficult to learn for a neural network solver. Using the
zero-equation turbulence model, we solve a conjugate heat transfer problem with
a flow at Re = 13, 239. Generally, simulation of high-Re flows are particularly
difficult due to the chaotic fluctuations of the flow field properties that are caused
by instabilities in the shear layer. Due to the one-way coupling between the heat
and incompressible flow equations, two separate neural networks are trained for
flow (trained first) and the temperature (trained next) fields. This approach is
useful for one-way coupled multi-physics problems to achieve significant speed-up.

We simulate this conjugate heat transfer problem with different architectures
and also with symmetry boundary conditions. Loss curves are shown in Figure 5.
This figure also includes the flow convergence results for a Fourier feature model
without SDF loss weighting and a standard fully connected model, showing that
they fail to provide a reasonable convergence and highlighting the importance of
SDF loss weighting and advanced architectures. The streamlines and temperature
profile obtained from the modified Fourier feature model are shown in Figure 4c. A
comparison between the SimNet and OpenFoam results for flow and temperature
fields is also presented in Figure 6. Results for the pressure drop and peak
temperature are presented in Table 1. The OpenFoam simulation was performed
using a conjugate heat solver based on the SIMPLE algorithm and the differences
between the commercial solver and OpenFoam peak temperatures are likely due
to the differences in the solvers and the schemes used in these two simulations.
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(a) (b) (c)

Fig. 4: FPGA heat sink example. (a) heat sink geometry; (b) Simulation domain
(with symmetry plane); (c) SimNet results for streamlines and temperature.

(a) FPGA flow training (b) FPGA heat training

Fig. 5: Loss curves for FPGA training using different architectures.

(a) u (SimNet) (b) u (OpenFOAM) (c) u (Difference)

(d) T (SimNet) (e) T (OpenFOAM) (f) T (Difference)

Fig. 6: A comparison between the SimNet (with modified Fourier feature network)
and OpenFoam results for FPGA on a 2D slice of the domain.

Table 1: FPGA pressure drop and peak temperature from various models.
Case Description Pdrop (Pa) Tpeak (°C)
SimNet: Fourier network (axis spectrum) 25.47 73.01
SimNet: Fourier network (partial spectrum) with symmetry 29.03 72.36
SimNet: Modified Fourier network 29.17 72.52
SimNet: SiReN 29.70 72.00
OpenFOAM Solver 27.82 56.54
Commercial Solver 24.04 72.44
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4.2 Blood flow in an Intracranial Aneurysm

We demonstrate the ability of SimNet to work with STL geometries from a
CAD system. Using the SimNet’s TG module, we simulate the flow inside a
patient specific geometry of an aneurysm depicted in Figure 7a. The SimNet
results for the distribution of velocity magnitude and pressure developed inside
the aneurysm are shown in Figures 7c and 7d, respectively. Using the same
geometry, the authors in [18] solve this as an inverse problem using concentration
data from the spectral/hp-element solver Nektar. We solve this problem as a
forward problem without any data. When solving the forward CFD problem with
non-trivial geometries, one of the key challenges is getting the flow to develop
correctly, especially inside the aneurysm sac. The streamline plot in Figure 7b
shows that SimNet successfully captures the flow field very accurately.

(a) Geometry (b) Streamlines

(c) Velocity magnitude comparison (d) Pressure comparison

Fig. 7: SimNet results for the aneurysm problem, and a comparison between the
SimNet and OpenFOAM results for the velocity magnitude and pressure.

4.3 Design optimization for multi-physics industrial systems

SimNet can solve several, simultaneous design configurations in a multi-physics,
design space exploration problem much more efficiently than traditional solvers.
This is possible because unlike a traditional solver, a neural network trains with
multiple design parameters in a single training run. Once the training is complete,
several geometry or physical parameter combinations can be evaluated using
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inference as a post-processing step, without solving the forward problem again.
Such throughput enables more efficient design optimization and design space
exploration tasks for complex systems in science and engineering. Here, we train
a conjugate heat transfer problem over the Nvidia’s NVSwitch heat sink whose
fin geometry is variable, as shown in Figure 8 (nine geometry variables in total).
Details on the problem setup and training can be found in SimNet user guide.
Forward solution of parameterized, complex geometry with turbulent fluid flow
between thinly spaced fins and no training data makes this problem extremely
challenging for the neural networks. Following the training, we perform a design
optimization to find out the most optimal fin configuration that minimizes the
peak temperature while satisfying a maximum pressure drop constraint. The
fluid and heat neural networks in this example consist of 12 variables, i.e. three
spatial variables and nine geometry parameter variables. Using SimNet, we train
these two parameterized neural networks, and then use the trained models to
compute the pressure drops and peak temperatures corresponding to 4 million
random geometry realizations. Figure 9 shows the streamlines and temperature
profile for the optimal NVSwitch geometry.

(a) Base geometry (b) Design parameters

Fig. 8: NVSwitch base geometry and design parameters.

Fig. 9: SimNet results for the optimal NVSwitch geometry.
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By parameterizing the geometry, SimNet accelerates this design optimization
task by several orders of magnitude when compared to traditional solvers, which
are limited to single geometry simulations. This also suggests that SimNet can
provide significant time savings when other design optimization methods, such as
gradient-based design optimization, are used. The total compute time required
by OpenFOAM, a commercial solver, and SimNet (including the training time)
for this design optimization task is reported in Table 2. The OpenFOAM and
commercial solver runs are run on 22 CPU processors, and the SimNet runs are
on 8 V100 GPUs. To confirm the accuracy of the SimNet parameterized model,
we take the NVSwitch base geometry and compare the SimNet results (obtained
from the parameterized model) for pressure drop and peak temperature with the
OpenFOAM and commercial solver results, reported in Table 3.

Table 2: Total compute time for the NVSwitch heat sink design optimization.
Solver OpenFOAM Commercial Solver SimNet
Compute Time (x 1000 hrs.) 405935 137494 3

Table 3: A comparison for the solver and SimNet results for NVSwitch pressure
drop and peak temperature.
Property OpenFOAM Single Run Commercial Solver Single Run SimNet Parameterized Run
Pressure Drop (Pa) 133.96 128.30 109.53
Peak Temperature (◦C) 41.55 43.57 39.33

4.4 Inverse problems

Many applications in science and engineering involve inferring unknown system
characteristics given measured data from sensors or imaging for certain dependent
variables describing the behavior of the system. Such problems usually involve
solving for the latent physics using the PDEs as well as the data. This is done in
SimNet by combining the data with PDEs to decipher the underlying physics.

Here, we demonstrate the ability of SimNet to solve data assimilation and
inverse problems on a transient flow past a 2D cylinder example. This example is
adopted from [19]. Given the data consisting of the scattered concentration of a
passive scalar in the flow domain at different times, the task is to infer the flow
velocity and pressure fields as well as the entire concentration field of the passive
scalar. In reality, the data is collected using measurements but for the purpose
of this example, synthetic data generated by OpenFOAM is used. We construct
a model with a hybrid data and physics-driven loss function. Specifically, we
require the neural network prediction for the passive scalar concentration to fit
to the measurements, and also satisfy the governing laws of the system that
includes the transient Navier-Stokes and advection-diffusion equations. Here, the
quantities of interest are also modeled as trainable variables, and are inferred by
minimizing the hybrid loss function. A comparison between the SimNet results
and the ground truth for a snapshot of the flow velocity, pressure, and passive
scalar concentration fields is presented in Figure 10.
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(a) c (OpenFOAM) (b) u (OpenFOAM) (c) v (OpenFOAM) (d) p (OpenFOAM)

(e) c (SimNet) (f) u (SimNet) (g) v (SimNet) (h) p (SimNet)

Fig. 10: A comparison between the SimNet and OpenFOAM results for a snapshot
of the flow velocity, pressure, and passive scalar concentration fields. This example
is adopted from [19].

5 Performance Upgrades and Multi-GPU Training

SimNet supports multi-GPU/multi-node scaling to enable larger batch sizes while
time per iteration remains nearly constant, as shown in Figure 11a. Therefore,
the total time to convergence can be reduced by scaling the learning rate linearly
with the number of GPUs, as suggested in [20]. Doing so without a warmup
would cause the model to diverge since the initial learning rate can be very large.
Figure 11b shows the Limerock results for large batch training acceleration on
A100 using learning rate scaling. SimNet also supports TensorFloat-32 (TF32), a
new math mode available on NVIDIA A100 GPUs. Based on our experiments
on the FPGA problem, using TF32 provides up to 1.6x and 3.1x speed-up over
FP32 on A100 and V100 GPUs, respectively. Moreover, SimNet supports kernel
fusion using XLA that, based on our experiments, can accelerate a single training
iteration in SimNet by up to 3.3x.

(a) Time per iteration weak scaling (b) Large batch training acceleration

Fig. 11: SimNet’s scaling performance results.
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6 Conclusion

SimNet is an end-to-end AI-driven simulation framework with unique, state-of-art
architectures that enables rapid training of forward, inverse, and data assimilation
problems for real world geometries and multiple physics types with or without
any training data. SDF is used for loss weighting, which is shown to significantly
improve the convergence in cases where the geometry has sharp corners and
results in sharp solution gradients. SimNet’s TG module enables the import
tessellated geometries from CAD programs. For channel flow problems, continuity
is imposed globally and locally to further improve the convergence and accuracy.
SimNet enables the neural network solvers to simulate high Reynolds number
flows for industrial applications. To the authors knowledge, this is the first such
application of neural network solvers for RANS simulation of turbulent flows.

SimNet is designed to be flexible so that users can leverage the functionality in
the existing toolkit and focus on solving their problem well rather than re-creating
the tools. There are various APIs that enable the user to implement their own
equations to simulate the physics, their own geometry primitives or importing
complex tessellated geometries, or a variety of domains/boundary conditions.
The geometry parameterization in the CSG module allows the neural network to
address the entire range of all given parameters in a single training, as opposed to
the traditional simulations that run one at a time. The inference for any design
configuration can then be completed in real time. This accelerates the simulation
with neural network solvers by orders of magnitude.
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