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Abstract. We perform a comparative study of different supervised ma-
chine learning time-series methods for short-term and long-term tem-
perature forecasts on a real world dataset for the daily maximum tem-
perature over North America given by DayMET. DayMET showcases a
stochastic and high-dimensional spatio-temporal structure and is avail-
able at exceptionally fine resolution (a 1 km grid). We apply projection-
based reduced order modeling to compress this high dimensional data,
while preserving its spatio-temporal structure. We use variants of time-
series specific neural network models on this reduced representation to
perform multi-step weather predictions. We also use a Gaussian-process
based error correction model to improve the forecasts from the neural
network models. From our study, we learn that the recurrent neural net-
work based techniques can accurately perform both short-term as well
as long-term forecasts, with minimal computational cost as compared to
the convolution based techniques. We see that the simple kernel based
Gaussian-processes can also predict the neural network model errors,
which can then be used to improve the long term forecasts.

Keywords: Data-driven forecasting ·Geophysical Systems ·Deep Learn-
ing · LSTM · Gaussian Process Regression

1 Introduction
Forecasting the maximum temperature is a crucial capability for several applica-
tions relevant to agriculture, energy, industry, tourism and the environment. Im-
proved accuracy in short and long-term forecasting of the air temperature has sig-
nificant implications for cost-effective energy policy, infrastructure development,
and downstream economic consequences [1,2]. Existing state of the art tempera-
ture forecasting methods rely on solving large scale partial differential equations
(PDE), which generally requires the utilization of large computing resources and
are therefore limited by access and considerations of energy-efficiency.

? This material was based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research (ASCR) under
Contract DE-AC02-06CH11347.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_35

https://dx.doi.org/10.1007/978-3-030-77977-1_35


2 V. Katti Sastry et al.

Machine learning methods promise to provide forecasts whose accuracy is
comparable to the traditional methods at a much lower computational cost.
This also allows for the possibility of using large ensemble-based forecasts that
provide confidence intervals, which was hitherto considered expensive and im-
practical due to the large computational costs associated with the PDE-based
methods. For these reasons, there has been a great degree of interest in build-
ing machine learning ‘emulators’ or ‘surrogate models’ for various geophysical
data sets. There have been several studies on the use of machine learning for
accelerating geophysical forecasts in recent times. Several rely on using machine
learning methods to devise parameterizations for processes that contribute a sig-
nificant cost to the numerical simulation of the weather and climate [3–7]. Other
studies have looked at complete system emulators (i.e., forecasting from data
alone) with a view to forecast without any use of and consequent limitations
of equation based methods [8–13]. Other studies have looked at utilizing histor-
ical information for forecasting specific processes using data from the process
alone [14–16]. Opportunities and perspectives for the use of data-driven meth-
ods for the geosciences may be found in [17, 18]. In this paper, we introduce a
purely data-driven method for forecasting the maximum air temperature over
the North American continent. In addition, we also provide an interpretable ex-
tension for improving the accuracy of these models using probabilistic machine
learning. We achieve this by obtaining a low-dimensional affine subspace of the
temperature on which a reduced system is evolved. Both dimensionality reduc-
tion and system evolution are performed using data-driven techniques alone with
the former requiring a proper-orthogonal decomposition (POD) and the latter
using a variety of time-series emulation methods. Among the methods inves-
tigated in this study, we include the long short-term memory (LSTM) neural
network [19] which has previously been used for surrogate modeling of vari-
ous geophysical and engineering applications [15, 20, 21]. In addition, we assess
the viability of competing time-series forecast methods such as the bidirectional
LSTM, previously deployed for a shallow-water equation surrogate [22]. In con-
trast to previous literature, we assess, for the first time, novel methods such as
the sequence-to-sequence encoder-decoder model and the temporal convolutional
network for geophysical emulation. These approaches forecast the evolution of
POD-coefficients in the truncated POD space. Previously, extensive studies of
this method with the LSTM have revealed issues related to stability when using
observation data sets due to a relatively low signal to noise ratio. Therefore, we
also introduce a error-correction module based on Gaussian process regression
(GPR) that extends the viability of these compressed emulation methods and
thereby obtain a more accurate forecast for a longer time into the future. Our
experiments ascertain that the use of a probabilistic model to learn the bias in
the neural network further enhances fidelity of forecasts in comparison to the
standard, deterministic, neural network based approach.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_35

https://dx.doi.org/10.1007/978-3-030-77977-1_35


Data-driven deep learning emulators for geophysical forecasting 3

2 Proper orthogonal decomposition
Projection-based reduced order models (ROMs) can effectively compress a high
dimensional model while still preserving its spatio-temporal structure. The di-
mensionality reduction is performed through the projection step where the high
dimensional model is projected onto a set of optimally chosen bases [23,24]. The
mechanics of a POD-ROM (POD-based ROMs) can be illustrated for a state
variable t ∈ RN , where N represents the size of the computational grid. The
POD-ROM then approximates t as the linear expansion on a finite set of k or-
thonormal basis vectors {φi ∈ RN , i = 1, . . . , k}, alternatively called as POD
bases. That is,

t ≈
k∑

i=1

t̃iφi, (1)

where t̃i ∈ R is the ith component of t̃ ∈ Rk, which are the coefficients of
the basis expansion. The {φi} are the POD modes. POD modes in Equation 1
can be shown to be the left singular vectors of the snapshot matrix (obtained by
stacking M snapshots of t), T = [t1, . . . , tM ], extracted by performing a singular
value decomposition (SVD) on T [25, 26]. That is,

T =
svd

UΣV>, (2)

where U ∈ RN×M and Φk represent the first k columns of U after truncating
the last M − k columns based on the relative magnitudes of the cumulative sum
of their singular values. The total L2 error in approximating the snapshots via
the truncated POD basis is then given as

M∑
j=1

∥∥tj − (ΦkΦ>k )tj
∥∥2
2

=

M∑
i=k+1

σ2
i , (3)

where σi is the singular value corresponding to the ith column of U and is also the
ith diagonal element of Σ. It is well known that the POD bases are L2-optimal
and present a good choice for an efficient compression of high-dimensional data.

An important point to note is the effect of premature truncation when repre-
senting dynamics in the POD space. For real-world problems that are advection-
dominated, an impractically high number of POD-bases need to be retained to
faithfully represent the flow-field. However, this limits the gains of data-driven
or equation-based surrogate modeling from the perspective of computational ef-
ficiency as well as accuracy. Therefore, it is necessary to devise evolution strate-
gies that can preserve the effects of the truncated scales on the resolved ones.
In reduced-order modeling parlance, this is often referred to as a model that
is equipped with closure. In this study, we leverage ideas from the application
of time-delay embedded machine learning techniques with analogs to the Mori-
Zwanzig formalism to account for closure implicitly [27,28]. We remind the reader
that the Mori-Zwanzig formalism proposes the use of memory to account for
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errors due to coarse-graining of systems. In the following sections, we shall in-
troduce time-delay embedded forecasting techniques to handle forecasting in the
reduced-space spanned by truncated POD basis vectors.

3 Models
Figure 1 represents a block diagram of the two-stage model, with the first stage
comprising of a neural network based forecasting model, followed by a second
stage error correction model based on GPR. The neural network model is trained
on the POD coefficients of the training set to obtain an m−step forecasting. The
predicted data is compared against the true coefficients to get the error e. The
true POD coefficients of the training set and the corresponding error e from the
neural network model are used in the error correction model to develop a function
mapping between the two entities. This function mapping is used to estimate the
“predicted error” e′ which is then added to the predicted coefficients from the
neural network model during the deployment phase. This results in an improved
m-step forecasting of the POD coefficients. First, we briefly describe different
machine learning approaches that we use within our two-stage model.

Fig. 1. Block diagram of the two-stage forecasting model.

3.1 Forecasting neural network models
In this paper, we consider a set of neural network models and compare the
forecasting abilities of those models against each other. We consider two major
families of neural network models. The first is Recurrent Neural Network (RNN)
based algorithms such as vanilla LSTM, Bi-directional LSTM, and a sequence-
to-sequence (Seq2Seq) Encoder-Decoder model. We also consider convolution
neural network (CNN) based algorithms such as one-dimensional convolutional
neural network (1D-CNN) and its variations such as vanilla-temporal convolu-
tional neural network (TCN) and stacked-TCN. We briefly discuss these models
below.
Recurrent Neural Network based models: RNNs have been the most obvious
choice in recent times to model sequential data given their ability to charac-
terise the temporal dependencies [29,30]. LSTMs are by far the most well known
variant of RNNs [31], where the gated structure helps in learning long-term de-
pendencies, by allowing the flow of information across several time steps. For
this reason, they have been extensively used in time series predictions especially
applications such as weather forecasting [32–34]. Bi-directional LSTM is a vari-
ant of LSTM, where one set of LSTMs is used across the forward direction of
the sequential data, while another set is applied to the same sequence in the
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reverse direction. Bi-LSTM is known to outperform vanilla LSTM [32, 35, 36],
due to the fact that they tend to capture the temporal structure better than
the latter by considering correlations in both forward and backward directions.
For a prediction task, which is framed as generating a window of outputs in the
future based on a window of inputs from the past, the bi-directional element
of the modeling strategy ensures all components of the input contribute to the
forecast of all components of the output. Though Seq2Seq encoder-decoder mod-
els traditionally have been associated with natural language processing (NLP)
applications [37], they have been shown to be well suited for time series based
forecasting problems too [38].
Convolutional network based models : Though traditionally convolutional neural
networks have been applied to image data [39, 40], there are several variants
of CNNs adapted to learn the temporal information from time series data [41].
Among them, the 1d-CNN is the simplest of the CNN models where the output
is the convolution of input and the convolutional kernel over a single temporal
dimension. We also use the more advanced TCNs that employ dialated causal
convolution [42,43]. Such a network is seen to have information propogated over a
larger number of time steps as compared to the recurrent models [44]. We further
use a stacked-TCN architecture by stacking multiple TCN residual blocks.
3.2 Error Correction model
The predictions from the neural network model can be improved upon with a
error correction model. This is espcially helpful in long term forecasting using
neural network models with feedback, as discussed in detail in the following
sections [45]. We use GPR as the primary error correction tool to improve the
forecasts from the neural network models. The Gaussian process (GP) model is
a well known non-parametric supervised learning method especially for regres-
sion problems [46]. Instead of point estimates, GP takes a Bayesian approach to
providing a probability distribution for a set of possible functions that fit the
training data. It specifies a prior distribution over the functions that character-
izes the assumptions we make about the underlying functionality of the data yet
to be seen. Upon observing the training data, the prior distribution is updated
through their likelihood function. This resultant distribution, called the posterior
distribution can be used to compute the predictive posterior distribution on the
new unobserved (test) data. The prior distribution that we assume is completely
defined by the choice of the kernel. We use a simple squared exponential kernel
which can effectively forecast the errors, while being computationally efficient.
We use the sklearn, a machine learning toolbox in Python, to implement GPR
for our purposes.

4 Dataset and Numerical Results
We use the DayMET Version 3 model data which provides estimates of daily
weather parameters for the North America region [47]. The data has 1x1-km spa-
tial resolution and a temporal resolution of 1 calendar day. For most methods,
we use the 2014-2015 data for training and 2016 data for validation purposes.
The test forecasts are performed for the year 2017. For experimental study, we
choose the maximum air temperature abbreviated as tmax to be the quantity
of interest. We note that this procedure can be seamlessly extended to other
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phyiscal quantities too. The raw data is preprocessed to remove all the oceanic
points, leaving us with a snapshot of 201928 grid points mapping to the North
American continental land mass. The POD basis set is computed on the snap-
shot data through the truncated SVD procedure with length k. The goal of POD
is to contruct the orthogonal basis such that the resulting linear subspace can ef-
fectively represent the spatial and the temporal dynamics of tmax. A truncation
of length k=5 results in 92% of the energy being conserved, implying the need
for some time-delay based prediction model to account for unresolved scales.
The coefficient matrix generated from the POD procedure is of dimension Txk,
where T represents the number of temporal observations in the time series and
k is the number of modes. Since we consider approximately two years of training
data, Ttrain = 730. Tvalidation = Ttest = 365, mapping to one year of temporal
data for validation and test procedure respectively. The data is preprocessed
using a traditional minmax scaler to scale each of the modes in the training data
individually. Then the same scaling parameters are used to project the validation
and test data. Figure 3 presents the histogram of the POD coefficients across
the primary mode (mode 0) and the successive secondary modes (modes 1-3)
for the DayMet data. As seen from the figure, the primary mode has a multi-
modal character, while all the secondary modes appear to be Gaussian. Figure
4 shows the autocorrelation plot for each of the 0th-3rd modes, which suggests
that the primary mode observes a higher degree of autocorrelation compared to
the secondary modes. This coefficient matrix, which holds the temporal infor-
mation across different modes, is the input to the neural network models. We
transform this time series dataset into a supervised learning problem by using
the standard sliding window walk-forward method and perform a multivariate
multi-step forecasting. We structure each sample of the training and validation
data to have n time steps of input data (known as the window length) and to
have the next m timesteps (n + 1 to n + m) be the labelled output data. We
consider two scenarios for building the training data required for the supervised
learning models.
Without feedback: Here we scan through the entire training and validation
datasets and build the samples by the sliding window method. For example, the
input of the first sample consists of data from 1 : n timesteps, and the corre-
sponding output is the data from n+ 1 : n+m timesteps. The second sample’s
input data is the data from 2 : n + 1 timesteps, and its correspoding output is
from n+2 : n+m+1, and so on. This input-output structure is used to train dif-
ferent neural network models. For the prediction phase, the input is structured
similarly to the one in the training phase. The model forecasts are evaluated
and compared against the true values. This method can be effectively used to
perform short-term forecasting, as the model deployment is made completely on
the historical true values.
With feedback: This method has a training phase similar to the one above. It
differs from the above method during the deployment phase, where the model
forecast of the previous window is fed as the input to the next window. For ex-
ample, to begin with the first n timesteps are input to the model, to forecast the
next m timesteps. These m timesteps of predicted data are evaluated against
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Fig. 2. Input-Output samples for a) no feedback b) with feedback

Fig. 3. Histogram of POD coefficients for primary mode (mode 0) and three
secondary modes(mode 1-3).

Fig. 4. Autocorrelation plots of POD coefficients for primary mode and sec-
ondary modes for test data.
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the true values and input to the model to produce the next set of predictions
and so on. Such a method helps in long-term forecasting where the entire fore-
casting window is broken down into smaller forecasting periods. For the sake of
simplicity, we consider a sliding interval of 1 while building the input samples
for the model, and the number of input and output timesteps, that is, the win-
dow length, is n = m = 7 so that we are conducting weekly forecasts. We use
a batch size of 32 and a learning rate of 0.0001 with the Adam optimizer, and
these parameters are kept constant across the different neural network models.

Fig. 5. Comparision of error density of test
data without feedback over different models
across the primary and secondary modes.

At first, we compare the forecast er-
rors across the different models, with-
out feedback. Figure 5 shows the error
distributions for the test data for the
different models, namely - LSTM, Bi-
LSTM, Encoder-Decoder LSTM, 1D-
Convolution, TCN, and STCN. The
error distribution of each mode is
shown seperately. We see that, while
a simple Encoder-Decoder LSTM ar-
chitecture is able to forecast quite ac-
curately over the short term, the dif-
ference in the relative error for each of
the modes is marginal over the differ-
ent models. Therefore, we take a look
at the training and the validation loss
to evaluate the performance of the dif-
ferent models. Figure 6 and Figure 7 present the training and validation loss (we
use mean squared error as the loss function) respectively during the training
phase. It can be seen from the figures and table 1 that the Bi-LSTM, Encoder-
Decoder, LSTM and 1D-Convolution are faster and more efficient to train than
the other temporal convolution models that take longer to train with a very
noisy training loss.

Model Mean epoch time(s) Total epochs Total time to train(s)

LSTM 0.60 923 553.8

Bi-LSTM 1.146 655 750.6

Enc-Dec 0.81 624 505.4

1D-Conv 0.21 547 114.8

TCN 1.70 1033 1756

STCN 3.28 1797 5894

Table 1. Training time statistics for different models with early stopping enabled

Next, we consider the prediction with feedback models that provide long term
forecasts. Figure 8 provides a comparision of the distributions of the relative
errors across the different neural network models. It is natural to see an increase
in the relative errors compared to the models without feedback (an increase of
almost an order of magnitude). Across the different models, notice that the TCN
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w/o feedback w/ feedback, before EC w/ feedback, before EC
Train. Val. Test Train. Val. Test Train. Val. Test

Mode 0 0.05 0.04 0.05 0.15 0.15 0.16 0.10 0.10 0.09

Mode 1 0.11 0.10 0.10 0.13 0.10 0.12 0.03 0.02 0.03

Mode 2 0.11 0.09 0.10 0.11 0.12 0.12 0.03 0.03 0.03

Mode 3 0.12 0.11 0.12 0.13 0.10 0.14 0.04 0.04 0.04

Table 2. Mean absolute error statistics for training, validation and test data over
different modes for i) without feedback, ii) with feedback and before error correction,
iii) with feedback and error correction

Fig. 6. Mean squared error training loss
for the various models

Fig. 7. Mean squared error validation loss
for the various models

based models exibit higher standard deviations in their error distributions. The
relative errors for each of the secondary modes exhibit a normal distribution, and
we observe a bi-modal distribution for the primary mode, which encourages us to
use an error correction model over the errors generated from the neural network
model. Figures 9 and 10 compare the error distribution and mean absolute error
for the Bi-LSTM model with feedback, before and after the error correction is
applied. As seen in figures 3 and 9, for mode 0, both the coefficients and the
errors from the neural network forecasts exhibit a bi-modal distribution, due
to which the GPR does not fit the error data well for the first few days. But
for long-term forecasting, we see that the GPR fits the error data well and the
overall error distribution for each of the modes is more concentrated around
the mean (0) after the error correction model is deployed, as compared to the
error distribution from the neural network model forecasts that have a higher
variance. Notice from table 2, that the mean absolute error for the no-feedback
case is relatively small compared to the with-feedback scenario, which can be
reduced by using an error correction model.

Figure 11 shows the viablity of the forecast frameworks in physical space
where the GPR-based error correction is seen to enhance accuracy particularly
when the emulator is applied recursively with feedback.
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Fig. 8. Comparision of error density of
test data with feedback over different
models across the primary and secondary
modes.

Fig. 9. Comparision of error density of
test data with feedback for Bi-LSTM
model across the primary and secondary
modes, before and after error correction
model is applied.

5 Conclusion
In this work, we present multiple data-driven approaches for forecasting maxi-
mum air temperature in the North-American region. We combine dimensionality
reduction and system evolution using different flavors of deep learning models
and deploy these techniques on real data. We mainly consider two scenarios in
training and validating the supervised learning models. First, we consider a sce-
nario where the training data is continuously enriched with new measurements
(without feedback), which is useful for producing short-term forecasts. The second
scenario is developed for a longer forecast horizon (with feedback).

Fig. 10. Error of test data for the first 300 days of Bi-LSTM model with feedback,
across the primary and secondary modes before and after the error correction is
applied.
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In this scenario, the output of the supervised learning model from one cy-
cle is used as the input in the next cycle and, as expected in such cases, the
errors tend to accumulate and the method suffers from higher inaccuracies and
instabilities than in the ‘without feedback’ case. We improve the ‘with feedback’
case by deploying a error correction term using GPR, and this vastly improves
the forecasts. The forecast error in both primary and secondary modes is much
smaller and hence allows for accurate forecasts for a much longer horizon. We
have demonstrated these methods by carrying out extensive tests on DayMet
data. In the future we will study the evolution of the discrete Lyapunov expo-
nents to understand the stability of these methods and improve them. Addi-
tionally, we will also deploy state-of-the-art machine learning models to study
multiple correlated physical quantities. Finally, we will also explore the use of
Gaussin-mixtures as an error correction model to improve the error forecasts.
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