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Abstract. In recent years, Machine Learning (ML) algorithms have
proved to be very helpful in several research fields, such as engineering,
health-science, physics etc. Among these fields, Astrophysics also started
to develop a stronger need of ML techniques for the management of big-
data collected by ongoing and future all-sky surveys (e.g. Gaia, LAMOST,
LSST etc.). NASA’s Transiting Exoplanet Survey Satellite (TESS) is
a space-based all-sky time-domain survey searching for planets outside
of the solar system, by means of transit method. During its first two
years of operations, TESS collected hundreds of terabytes of photometric
observations at a two minutes cadence. ML approaches allow to perform
a fast planet candidates recognition into TESS light curves, but they
require assimilated data. Therefore, different pre-processing operations
need to be performed on the light curves. In particular, cleaning the
data from inconsistent values is a critical initial step, but because of the
large amount of TESS light curves, this process requires a long execution
time. In this context, High-Performance computing techniques allow to
significantly accelerate the procedure, thus dramatically improving the
efficiency of the outliers rejection. Here, we demonstrate that the GPU-
parallel algorithm that we developed improves the efficiency, accuracy
and reliability of the outliers rejection in TESS light curves.
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1 Introduction

Machine Learning (ML) can be defined as computational methods exploiting
experience to improve performance or to make accurate predictions. Experience
refers to the past ground-truth available to the learner. Typically, ML approaches
are based on two main steps: the pre-processing phase - retrieve and assimilate
specific information by starting from an initial raw dataset; training phase - where
an ad-hoc model is trained by using the above standardized data. In order to
compute an adequate forecast, several data assimilation techniques are performed.
In order to avoid any inconsistency in the results, anomalous values in the raw
data must be detected and removed.

This is achieved by using specific data-cleaning techniques, such as removal
of inconsistent observations, filtering-out outliers, missing data handling. In
exoplanets surveys, pre-processing procedures are very helpful due to random
nature of retrieved data [1]. In particular, the NASA’s Transiting Exoplanet
Survey Satellite, TESS, collected a large dataset of high-precision photometric
observations for more than 200,000 stars [2, 3].

Given the low signal to noise ratio (SNR) that characterizes transit signals,
dataset are often corrupted by different instrumental systematic error, which
needs to be removed, in order to perform a correct analysis. In this work, we
focus on the rejection of outliers in TESS light curves by adopting the Z−Score
method, one of the most effectively and widely adopted to this purpose.

Most pre-processing pipelines including outliers rejection are currently imple-
mented by following a sequential approach that, due to the huge data dimension,
requires several waiting hours prior to the training phase.

It is well-known that High-Performance Computing (HPC) offers a powerful
tool to overcome this issue, thanks to its advanced parallel architectures. In
particular, the high computational power of Graphics Processing Units (GPUs)
allows to analyse a huge data volume by following the Single Instruction Multiple
Thread (SIMT) paradigm. Moreover, thanks to novel GPUs architectures, the
numerical stability of each computation is more guaranteed with respect to any
CPU computations [4].

In this work, we propose a GPU-parallel algorithm based on the Z−Score
method for outliers detection in TESS light curves. The parallel implementation
exploits the Compute Unified Device Architecture (CUDA) framework [5] for
achieving an appreciable gain of performance. Therefore, a consistent workload
distribution has been performed by an ad-hoc Domain Decomposition (DD)
approach. Moreover, in order to accelerate the reading-writing memory operations,
a suitable memory strategy has been designed.

The paper is organized as follows. In section 2 related works are reviewed.
Section 3 recalls some preliminaries about TESS light curves and the Z−Score
method. In Section 4, the underlying domain decomposition strategy and the
GPU-CUDA parallel algorithm are provided. The experiments discussed in
Section 5 confirm the efficiency of the proposed implementation in terms of
performance. Finally, our conclusions are presented in Section 6.
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2 Detection of transits in TESS light curves

This section briefly summarises the purpose of TESS space mission and the
different analysis of its light curves presented in the literature. After the first
planets were discovered outside the solar system in 1992 [19], and the subsequent
successful observations of additional ones, astronomers started an intense and
multi-approached search for exoplanets. With the advance of newest technologies,
the search for exoplanets has become one of the most dynamic research field in
astronomy.

TESS is the most recent transit survey to join the exoplanets-hunting field. It
is a space-borne NASA mission launched in 2018, whose principal objective is to
discover transiting Earths and Super-Earths orbiting nearby, bright dwarf stars
[6]. In order to achieve its goal, TESS employs a “stare and step” observation
strategy: its four on-board cameras observe a 24-by-96-degree sector of the sky
for 27 days, then the spacecraft is reoriented to observe the next sector, which
has a marginal overlap with the previous one. Over the past two years, TESS
used this strategy to tile the entire sky with a total of 26 observation sectors.

The time-series photometric observations collected by TESS have been anal-
ysed in several studies with different computational approaches. Here, we focus
on those based on ML techniques.

In particular, in [7, 8] ML approaches based on Deep Neural Networks (DNNs)
are applied to predict and classify stellar properties from TESS noisy and sparse
time series data. Among the family of DNNs, the authors exploit a powerful model
(a Convolutional Neural Network) for classifying TESS light curves. Nevertheless,
before training on the data, several pre-processing steps are required. The pre-
processing pipelines embedded into the ML algorithms mentioned above rely
on a sequential approach to the problem, thus requiring long execution times,
somehow affecting the performance of the whole process.

Many efforts have been done in the last years for improving performances. In
particular, in [9] the framework BATMAN is presented, together with a state
of the art study. BATMAN is a Python package for modeling exoplanet transit
and eclipse light curves. It supports calculation of light curves for any radially
symmetric stellar limb darkening law, using a new integration algorithm for models
that cannot be quickly calculated analytically. The code uses C extension modules
to speed up model calculation and it is developed for multi-core environment, by
means of the OpenMP library.

3 Mathematical background

TESS performs a photometric collections of a large number of stars with a regular
time sampling, i.e. a two minutes cadence over a baseline of 27 days. These
images are read-out and made available to the community as target pixel files
(TPFs) and light curves [10], i.e. tables of the flux emitted by the source over
time (Figure 1).
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Fig. 1. The plot shows the the normalized flux of a star measured by TESS over
the course of approximately one hour. The decrease in the flux at the center is due
to an exoplanet tranist.

When an exoplanet transits in front of its host star (as seen from Earth), a
portion of the star light is blocked out and a decrease in the observed flux is
measured [11]. This phenomenon is described by a complex model, including
quadratic or nonlinear limb darkening effects [20, 21]. However, we can simplify
it here for the sake of clarity by considering the ratio of the observed variation in
flux, ∆F , to the stellar flux, F , proportional to:

∆F

F
∝
R2

p

R2
∗

(1)

where Rp and R∗ are the planetary and stellar radii respectively, with the
radius of the star related to its luminosity L∗ and temperature T∗ by the Stefan-
Boltzmann law:

L∗ = 4πR2
∗σBoltzT

4
∗ .

This relation shows that depending on the star luminosity and the planet size,
the detection of the transit can be difficult because of the low contrast, making
the removal of possible outliers critical to the analysis.

Outliers can be defined as extreme entries hovering around the fringes of a
normal distribution that are unlikely part of the population of interest, defined
as the one within ±3.0 standard deviations σ from the mean µ [12].

Let us define:

D = {X0, X1, . . . , Xd−1} (2)

where d is the cardinality of D, i.e. the number of light curves we want to
pre-process. For each light curve Xi, i = 0, . . . , d − 1 of size N , it is: Xi ∼
U [a, b] (a, b ∈ R), where U is a uniform distribution within the boundary values
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[a, b]. Thus, we can set the class:

C =

{
1, outlier

0, not-outlier
(3)

In our case, Xi = {x0, x1, . . . , xN−1} refers to the measured flux F and the range
[a, b] represents the boundary values of TESS light curves.

The most widely adopted technique for attributing the class 0 or 1 to any
data point xj ∈ Xi is the Z−Score method, defined as follows:

Zj =
xj − µ
σ

. (4)

Assuming as threshold the value ±3.0 σ, we assign the value λj = C at each data
point xj according to the following rule:

λj =

{
1, |Zj | > 3

0, |Zj | ≤ 3.
(5)

The above discussion allows us to introduce the following scheme, Algorithm
1, to solve the numerical problem.

Algorithm 1 Sequential algorithm

Input: D, T,N
1: matD[i] = Xi

2: for each i in matD do
3: compute: µi, σi

4: x[j] = X
(j)
i % Z-Score

5: for each j=1 to N do
% compute λj % as in (4)

6: λX(i) ← λj

7: end for
8: λD ← λX(i)

9: end for
Output: λD[ ]

The above algorithm is designed by the following steps:

STEP 1 Loading each light curve Xi as row into matrix matD. For each row, both µ
and σ are computed.

STEP 2 Starting from previous computed information, a new loop-for starts for
computing Z−Score value for each xj ∈ Xi. By using (5), a value of C
is assigned to xj . Hence, it is added to λX(i) , which contains the overall
classification results.

STEP 3 In order to obtain the ensemble λD, a collection operation is performed on
each λX(i) , where λD contains the classification results of every λX(i) .

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_34

https://dx.doi.org/10.1007/978-3-030-77977-1_34


6 S. Fiscale et al.

Starting from good results achieved, according to aims of Z−Score method
as in [22], we observed that executing the algorithm sequentially even on the
latest-generation CPU requires very long execution times, due to polynomial
computational complexity. In particular its upper bound is O(dN2).

4 GPU-Parallel algorithm

In order to improve the performance of the Algorithm 1, we decided to take
advantage of the computational power offered by the most modern HPC architec-
tures [14–17]. We developed a parallel implementation through GPU architecture,
based on a suitable Domain Decomposition (DD) strategy. Moreover, in order
to distribute the overall work to a GPU grid of threads and then to design a
good DD, the shared-memory is exploited. In fact, with a proper management of
this kind of memory, available from the NVIDIA-CUDA environment for GPUs
that we used, a considerable improvement, in terms of execution times, has been
achieved.

We started by the following consideration: light curves of the TESS dataset
D are related to different stars, which means that there is no correlation between
data of two different light curves. Thanks to this, data distribution can be made
by assigning at each CUDA-block the data structure corresponding to a single
light curve, using d CUDA-block to process all data in a parallel-embarrassingly
way. Each block will exploit its own shared memory to store and computing data
of each single light curve.

More specifically, in each block th threads work, following the SIMT paradigm,
on N elements of each array Bi, i = 0, ..., d− 1, corresponding to a light curve,
indicated with Xi in the previous section. The workload distribution is organized
by assigning to each thread a sub-set of data of size L, where:

L =

{
N
th if mod(N,th) = 0
N
th + 1 if mod(N,th) 6= 0

(6)

The described DD schema is illustrated in Figure 2.
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Fig. 2. Domain decomposition strategy with pitch allocation method.

The d light curves are distributed respectively on d blocks, in each of them th
threads are activated to process each light curve. In particular, for each threads a
chunk of L is processed. Moreover, for each row, the columns number is computed
by using the pitch method for an efficient memory allocation and storage. In
fact, the pitch method provides to compute the length each row should have so
that the number of memory accesses to manage (fetch/insert) data is minimized,
[18] and this can be done, exploiting the CUDA routine cudaMallocPitch. After
the data distribution, in each block the values µ and σ have to be computed, in
parallel by all threads activated, and stored efficiently using the fast read/write
access of the shared memory. Therefore, the global values of µ and σ will be used
to compute the Z-score of each light curve element, in each CUDA block. The
parallel procedure, which includes the implemented CUDA kernel, is reported in
Algorithm 2.
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Algorithm 2 GPU algorithm

Input: D, th
STEP 1: % Domain Decomposition.

1: L = (6) % chunk size

2: i = threadIdx.x+(blockDim.x× blockIdx.x) % thread id

3: Xk ← D[k]% load light curve k

STEP 2:% Mean value computation

4: for each thread i do

5: xi %local sums

6: count = count+ 1

7: end for

master thread 0:

8: µk ← 1
counti

∑th
i=0 xi

STEP 3: Threads synchronization and Z-score computation

9: for each thread i do

10: sqi =
∑

j∈L(xj − µ)2

11: end for

master thread 0:

12: σk ←
√∑th

i=0(sqi)

counti

13: for each thread i do

14: for ji ∈ Li do

%compute Z−Score as in Eq. (4)

15: λk(i) ← λj

16: end for

17: end for

STEP 4:% Data collection

18: for each thread i do

19: λD ← λk(i)

20: end for

Output: λD[ ]

Main operations of Algorithm 2 are summarized in the following steps:

STEP 1 - Data distribution: the Domain Decomposition approach describe previously
is here used by computing for each thread its id-number and its portion of
the data set D. Therefore, each block k = 0, ..., d− 1 of threads loads locally
a row of D by extracting the related light curve stored into Xk, which is the
data-structure representing Bk, the k − th light curve.

STEP 2 - Mean value computation: each thread computes a local sum related to its
chunk. Hence, starting from each chunk’s sum, the master thread computes
the global sum and the mean value, which is just stored into the shared
memory.

STEP 3 - Threads synchronization and Z-score computation: after the parallel com-
putation and in order to preserve the memory consistent, all threads of each
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block have to be synchronized by using the CUDA routine syncthreads().
Therefore, in a similar way the standard deviation is computed. Finally, the
Z−Score value is computed for each element within the chunk (line 14),
leveraging on shared-memory data as in Eq. (4).

STEP 4 - Data collection: the final operation is to collect the local λ values, computed
by each thread. In particular, in order to perform a correct memory access
and avoid any memory contention, each thread i copies into the global λD,
in the position Li, the local results.

5 Results

In this section we discuss different experimental tests in order to highlighting
the gain of performance achieved by the GPU-parallel algorithm with respect to
the sequential CPU-based one. Two different metrics are used: we first show a
comparison between the two implementations in terms of execution times; then
we present a comparison in terms of Gflops.

The parallel code runs on a machine with the following technical specifications:

– 1 x CPU Intel i7 860 with 4 cores, 2 threads per core, 2.80 Ghz, 8 GB of
RAM

– 1 x GPU NVIDIA Quadro K5000 with 1536 CUDA Cores, 706 MHz Core
GPU Clock, and 4 GB 256-bit, GDDR5 memory configuration.

In order to exploit the overall parallel powerful nature of GPUs, the CUDA
framework has been adopted. The high programming flexibility of this framework
allow us to model specific memory strategies for improving the performance. In
fact, different experimental tests with different ad-hoc memory-based strategies
will be considered. The main aim of these tests is to find the best strategy so
that we can confirm the reliability of our proposed algorithm. Two different GPU
memory strategy will be discussed, the first one with basic global memory data
allocation, the second one making use of the pitch technique.

The following tests have been performed by repeating the executions 10 times.

Test 1: CPU vs GPU execution times comparison.

The first experimental test shows the gain in execution time of the GPU
version with respect to CPU-version.
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Table 1. Execution times: CPU vs GPU for different input sizes. N = 16741, block ×
thread = d× 1024.

d Sequential Time (s) GPU Time (s)

5 000 1.591 0.142

10 000 2.970 0.284

15 000 4.392 0.426

20 000 6.523 0.521

25 000 8.114 0.724

Table 1 highlights the appreciable gain of performance of the GPU-based
version with respect to the CPU version. As d increases, the execution time of
the GPU-based algorithm decreases of 90% with respect to that of the sequential
algorithm on the CPU Here, the memory strategy is based on global memory
storing of D without pitch. In particular the reliability of parallel algorithm is
confirmed by varying the input data problem. The CUDA configuration block

× threads is fixed to d× 1024, according to Domain Decomposition strategy
adopted. Next text deals with find the best CUDA configuration.

Test 2: GPU execution times comparison with different memory strate-
gies. Despite the appreciable performance obtained in previous experimental
test, we observed that the execution times can slow down by choosing a different
memory strategy. In particular the next test adopt the global memory allocation
with pitch technique.

Table 2. Execution times: GPU with different memory strategies by varying d, block
× thread = d× 1024.

d GPU no pitch (s) GPU Pitch (s)

5 000 0.142 0.125

10 000 0.284 0.260

15 000 0.426 0.384

20 000 0.521 0.503

25 000 0.724 0.672
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Table 2 shows the execution times for two different memory strategies. In
particular, the first column includes the results obtained with a GPU version
with global memory storing strategy without the pitch method, while in the
second column the ones with the pitch method. Indeed, an improving lower than
10% has been achieved. More in details, the pitch method is able to determine
the length that each row should have. Therefore, the number of memory accesses
to manage (fetch/insert) data is minimized.

Test 3: GPU times with shared-memory strategy Here, we show a com-
parison with another memory strategy applied to our parallel algorithm.

Table 3. Execution times: GPU with shared-memory strategies by varying d, block ×
thread = d× 1024.

d GPU GBt (s) GPU SMt (s)

5 000 0.125 0.121

10 000 0.260 0.255

15 000 0.384 0.375

20 000 0.503 0.495

25 000 0.672 0.617

where GBt and SMt are, respectively, the GPU times with the global memory
strategy and the shared-memory strategy, both with the pitch method. Table
3 confirms that our domain decomposition approach combined with ad-hoc
memory-based strategy is more performing with respect to previous memory
configurations. In particular, the shared-memory is involved in our algorithm due
to its hardware position close to the threads. In other words, the access time is
clearly reduced. In fact, according to the CUDA architecture, the shared-memory
is placed close to each blocks threads of grids. Moreover, by considering the
advantages achieved in the previous test, the pitch method was adopted in this
memory storing strategy as well.

Test 4: GPU times with different CUDA configurations. Here we show
the execution times achieved by varying the CUDA configurations and input size
problem. In particular, thanks to the appreciable results of last memory strategy
just shown, the next test is based on this configuration in order to retrieve the
best parallelism available. According to pitch-based memory strategy applied,
the parameter N is set to 16768.
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Table 4. GPU execution times comparison by varying input size and CUDA threads
configuration, block × threads = d× t.

# Threads

d t = 128 t = 256 t = 512 t = 1024 t = 2048

5 000 0.193 0.180 0.146 0.121 0.302

10 000 0.405 0.378 0.306 0.255 0.785

15 000 0.598 0.558 0.452 0.375 0.815

20 000 0.785 0.732 0.592 0.495 0.845

25 000 0.984 0.918 0.744 0.617 0.875

Table 4 is used to find the ideal CUDA configuration in order to confirm
the best exploit of overall GPU parallelism offered. We observe that the best
configuration relies on 1024 threads with the shared-memory strategy. In particu-
lar, according to coalescing rules of CUDA, a large threads number slow down
the performance due to hardware resource limits. In other words, the number of
Streaming Multiprocessor of our GPU is saturated, and an implicit overhead is
introduced. In fact, the remaining number of blocks will be scheduled in pipeline
mode when the run-time blocks complete the related computation.

Test 5: FLOPS comparison. In this test, in order to confirm the gain of per-
formance with respect to the sequential implementation, we analyse an addiction
theoretical metric, i.e. the performance analysis in Giga floating point operations
per second (Gflops). The results obtained are referred to the previous tests and
to the best observed CUDA configuration.

Table 5. Performance in terms of Gflops.

Input size Gflops CPU Gflops GPU

5 000 2.634 146.446

10 000 5.645 257.568

15 000 8.590 276.080

20 000 10.823 264.989

25 000 12.915 328.541
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Table 5 shows the gain in terms of Gflops, comparing the operation number
per seconds (CPU vs GPU) in several execution by varying the input size. We
observe an appreciable enhancement of performance obtained by exploiting the
GPU architecture. Indeed, the table shows an increasing of performance of about
37×, in terms of Gflops, for all the executions.

The results presented above confirm the reliability and growing of the perfor-
mance related to the parallel implementation.

6 Conclusion

In this work, we presented a GPU-parallel algorithm based on Z−Score for
detecting outliers in TESS light curve. The method we presented here allows to
significantly improve the efficiency of the outliers detection and cleaning on TESS
data. The same approach can be employed to all the remaining pre-processing
steps (such as e.g. noise reduction, flattening and folding of the light curves)
required to produce assimilated data, which are necessary for ML applications.
Therefore, we anticipate that a complete pre-processing pipeline based on GPU-
parallel computation will significantly contribute to accelerate the following
processes required during Machine Learning flow operations.
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