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Abstract. The computational simulation of physical phenomena is a
highly complex and expensive process. Traditional simulation models,
based on equations describing the behavior of the system, do not allow
generating data in sufficient quantity and speed to predict its evolution
and make decisions accordingly automatically. These features are partic-
ularly relevant in building energy simulations. In this work, we introduce
the idea of deep data-driven simulation models (D3S), a novel approach
in terms of the combination of models. A D3S is capable of emulating
the behavior of a system in a similar way to simulators based on physical
principles but requiring less effort in its construction—it is learned au-
tomatically from historical data—and less time to run—no need to solve
complex equations.

Keywords: Data-driven simulation model · Deep Learning · Building
Energy Management.

1 Introduction

According to a 2019 report by the consulting firm ABI Research [14], in the next
five years, it is expected that more than 100,000 companies around the world
will use simulation software, implying a business volume of over 2,500 million
dollars annually in 2025.

However, computer simulation of physical phenomena, such as meteorology,
energy transfer, or nuclear reactions, is costly. On the one hand, to create a sim-
ulation model of a system, it is necessary that the relationship between inputs
and outputs is known and can be expressed in a calculable way. Thus, these
models are generally created manually by coding the equations that describe
the physical behavior of the system. On the other hand, running a complex sim-
ulation model can take several hours (or even days) and require large amounts
of computational resources. Consequently, in most common problems, it is im-
possible to use these models to predict the evolution of the system in real-time
and automatically make decisions from these simulations.

Taking the energy behavior of buildings (residential and non-residential) as
an example, a physical simulation model characterizes the response of its com-
ponents to the action of the equipment and the environmental conditions, em-
ploying differential equations that reproduce the energy transfer laws. These
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models are built with specialized applications (e.g., Modelica or EnergyPlus) by
assembling predefined modules that imitate the thermal response of different
structures, materials, and equipment. Leveraging a simulation model, one can
build an automatic control software that estimates the behavior of the building
under different operating sequences (air conditioning, lights, etc.) and selects
the one that involves the lowest energy consumption while maintaining comfort
conditions (indoor temperature, humidity, CO2 concentrations, etc).

This approach is known as Model Predictive Control (MPC) [11] and can be
applied in many areas beyond energy. Solutions based on MPC offer numerous
advantages over traditional reactive controllers, especially in terms of optimizing
the process in the medium / long term by taking into account the inertia of
the systems. However, its implementation is limited for the problems mentioned
above: creating the models requires much human effort, and their execution takes
too long to generate operation plans within a reasonable time dynamically [9].

Although the literature has been demonstrated the possibility of significantly
improving the control of a building and reducing energy consumption [7], nu-
merous difficulties were also encountered in extending the approach to other
contexts. The main bottleneck is to develop the physical simulation models that
the control algorithm uses since these are created from scratch and cannot be
reused from one building to another. This problem is even more acute when
trying to apply Deep Reinforcement Learning techniques in the field of energy
control [6]. In these cases, traditional simulation models cannot generate data in
sufficient quantity and speed to train and validate the proposed algorithms.

As an alternative to physical simulation models, some approaches have been
proposed in the literature to create prediction models of the behavior of sys-
tems using Machine Learning. However, these prediction models alone are not
capable of addressing various needs that a simulation model must satisfy, such
as the stability of the model against minor variations in inputs, the influence
of the environment on the behavior of the system, the possibility of modifying
its behavior through control instructions, or the use of sensor data affected by
imprecision and uncertainty.

For these reasons, we aim to develop new algorithms, based on Deep Learning,
to automatically learn fast, accurate, and realistic simulation models of a physical
system from data. These models could be used in numerous applications and
particularly in the MPC processes for energy optimization mentioned above.

The rest of this paper summarizes the background and state of the art (Sec-
tion 2), and describes the key concepts and approach of our proposal (Section 3).

2 Background

Various proposals in the literature aim to perform computational simulation of
physical systems using numerical models learned from available data. This ap-
proach is a generalization of the concept of system identification, a discipline
close to classical control that studies the calculation of the parameters of a pre-
defined model to adjust its outputs to those of the real system [13]. Traditionally,
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works on system identification have used algebraic and statistical methods [5],
including time series analysis by autoregression with ARIMA or ARIMAX [19].
This is because the knowledge and availability of these tools have been tradi-
tionally broader, although in most cases, they are not the most effective, as we
recently concluded in a review of works in the field of energy efficiency [16].

It was not until recently that machine learning techniques began to be ap-
plied in system identification [3]. For example, in [1] techniques based on Gaus-
sian kernels are used to emulate the behavior of molecules at the electronic level
without the need to solve differential equations. In contrast, in [10] similar tech-
niques are applied to recognize galaxies from spectral data analysis, a process
that typically requires running multiple simulations. In both cases, the proposed
solutions manage to approximate the systems accurately because 1) there is a
reduced number of output variables, and 2) aspects of the problem are encoded
in the own model (e.g., which variables are relevant, what structure have the
kernels that define the process). On the other hand, it is not easy to extend
these models to other settings, even if they are only slightly different.

Deep Learning techniques have been investigated to learn [17] and cali-
brate [22] data series prediction models to address these limitations in recent
years. They allow the automatic extraction of system characteristics and achieve
more precision in the data series results than classical techniques. Among the
many possible architectures, recurrent neural networks (RNNs), which allow cy-
cles in the calculation graph, are the most effective for modeling the temporal
behavior of a dynamic system [2], improving the results of the classic autoregres-
sive techniques [18]. On the other hand, convolutional neural networks (CNNs),
which are used mainly for image processing, allow ordered data sequences to be
processed [8], although their adjustment is complex even for simple problems.

Simulation using Deep Learning techniques is, therefore, a new area of re-
search in which there are hardly any works that exploit the capabilities of deep
neural networks for processing multivariate data series from sensors. Further-
more, due to their own characteristics, neural networks present various additional
problems regarding the connection of the prediction models with the actual phe-
nomenon: robustness in the face of variations in the inputs, detection of errors in
the data, characterization of cause-effect relationships, etc. Thus, for example,
in the field of energy efficiency of buildings, there are some results about the
modeling of thermal behavior [4,12], but on a very small scale, with a very short
time horizon, and with little explanatory capacity.

In contrast, RNNs have been very successful in the field of natural language
processing, as they are capable of learning predictive models of language. These
networks are widely used in machine translation so that the network obtains the
phrase in the target language that most closely matches the phrase in the source
language. This type of architecture, called sequence-to-sequence [15], implements
a procedure that first encodes the input phrase as a sequence of numbers (embed-
dings) and then decodes them to form the output phrase. Various improvements
to this architecture, such as transformers [20], are close to the precision of a
human translator in non-specialized domains.
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3 Proposal

The fundamental concept we based our proposal on is that of a data-driven sim-
ulation model (DDS). A DDS model is capable of emulating the behavior of a
system in a similar way to that of traditional simulators based on physical prin-
ciples, but requiring less effort in its construction—it is automatically learned
from historical data—and less time for its execution—no need to perform com-
plex calculations. Recent advances in the area of Deep Learning suggest that it is
possible to create DDS models based on deep neural networks1, which we will call
D3S (deep data-driven simulation models), improving the prediction capabilities
of current time series algorithms. The D3S concept is very close to that of the
digital twin [21], highlighting the essential properties of creation from data and
the use of neural networks. Although neural networks are usually highly costly
in terms of training, inference (simulation, in our use case) can be performed
efficiently and quickly.

Formulation: A general simulation model can be seen as a computational
process that transforms several inputs—corresponding to the previous states of
the system, the applied control signals, and the expected conditions of the envi-
ronment from the current instant—into an output that represents the sequence
of n states through which the system passes from the current state to a final state
(Figure 1). Usually, the environmental conditions are not known a priori and can
be estimated or even unknown. As for the control signals, they can be the result
of an automatic optimization process. In the simplest case, the simulator would
only consider a previous state and a following state. Likewise, it may happen
that the system is not controllable or that the environmental conditions are not
relevant. In more complex cases, in addition to the previous states, it would be
necessary to incorporate the environmental conditions and the previous control
actions. For simplicity, and without loss of generality, we will keep the general
formulation of Figure 1.

SIMULATION 
MODELprevious states

environment

control

t, t+1, … , t+n

t, t+1, … , t+n

next states

t-k, ..., t-1, t t+1, … , t+n, t+n+1

prediction►

optimization►

Fig. 1. Schematic view of a general simulation model.

1 see, for instance, ICLR 2021’s workshop “Deep Learning for Simulation (SIMDL)”
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Approximation: We formalize the data-driven simulation problem as a mul-
tivariate time series prediction problem. Thus, the simulation model learns to
predict a series of data representing the following states from the series of data
representing the previous states, the environment, and the control, each of them
including observations of several variables. As explained, classical data series
analysis techniques are insufficient to solve this problem since they present diffi-
culties in predicting more than one variable at the output. They also have limi-
tations when it comes to capturing non-linear relationships between inputs and
outputs. For these reasons, there is a need for new techniques in Deep Learning
for handling data series (Figure 2). A source of inspiration is automatic trans-
lation, which obtains the sequence of words in the target language that best
represents the sequence of words in the original language, taking into account
the context and the lexical-semantic relationships between them. Similarly, we
propose the creation of algorithms capable of transforming the sequences of in-
put values (environment, previous states, and control actions) into sequences of
values (following states) with a relationship that is not necessarily linear consid-
ering the interrelation between states, control, and environment.
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Fig. 2. Schematic view of our proposal for a Data-driven deep simulation model (D3S).

Challenges: This approach to data-driven simulation faces several chal-
lenges. In the following, we discuss several aspects that must be taken into
account in building energy management:

1. Data availability: Data-driven simulations require a considerable amount
and diversity of data to be performed. While data is generally available in
modern buildings from SCADA systems, it is less commonly representative
of exceptional or anomalous situations. Therefore, the scale of data needed
by modern Deep Learning techniques, particularly transformer architectures,
may exceed what can be obtained from a regular building.

2. Physics constraints: Physical systems are subject to bounding conditions,
which should be incorporated into a D3S model. Neural networks can in-
corporate such conditions as regularizations, i.e., penalties in loss functions.
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However, it is not trivial to translate from one language to another, i.e.,
PDEs to regularization terms. Hence, there is a growing interest in physics-
informed machine learning, which investigates new neural architectures that
integrate PDEs as additional optimization targets.

3. Dynamic behavior: Simulation models must evolve as their underlying pro-
cess. This fact is commonplace in buildings, subject to renovations, aging,
and changes in uses. Consequently, detecting model shift and activating re-
calibration must be automatically performed. Studies on continuous learning
and data assimilation with Deep Learning suggest that this goal is achiev-
able, but it may also impact the models’ stability.

4. Explainability: Building management systems are cyber-physical systems
that involve human operators’ participation and sometimes the realization
of critical tasks (e.g., CO2 control). Therefore, the use of D3S for automated
(or semi-automatic) decision-making requires at least some explanation of
the outputs. Besides, experts’ experience may be beneficial to bootstrap the
training of D3S (e.g., by pre-identified relevant variables, periodicity, or spu-
rious correlations). The growing body of knowledge on explainable AI should
play a role here to make D3S more interpretable.

5. Computational cost: Learning a D3S model remains an expensive process
that may require substantial computational resources, time, and energy. Ac-
cordingly, measuring the environmental impact of these models is essential
to evaluate energy savings precisely. Model reuse from one building to an-
other by transfer learning followed by fine-tuning could significantly reduce
the data and energy needed to train the models.
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