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Abstract. Understanding the community structure of countries in the
international food network is of great importance for policymakers. In-
deed, clusters might be the key for the understanding of the geopolitical
and economic interconnectedness between countries. Their detection and
analysis might lead to a bona fide evaluation of the impact of spillover
effects between countries in situations of distress. In this paper, we intro-
duce a clustering methodology that we name Higher-order Hierarchical
Spectral Clustering (HHSC), which combines a higher-order tensor fac-
torization and a hierarchical clustering algorithm. We apply this method-
ology to a multidimensional system of countries and products involved
in the import-export trade network (FAO dataset). We find a structural
proxy of countries interconnectedness that is not only valid for a specific
product but for the whole trade system. We retrieve clusters that are
linked to economic activity and geographical proximity.

Keywords: Tensor decomposition, Factor analysis, Clustering analysis, Spec-
tral clustering, Multidimensional data, Multilayer networks, Food networks

1 Introduction

In this paper, we propose a clustering methodology that can be used by poli-
cymakers to analyse and extrapolate community structures in multidimensional
datasets, such as the FAO data network. Food networks have been widely stud-
ied in the literature [26,20,10,21,11,17,31,12]. The interest on the subject comes
from different perspectives, such as the study of trade networks [17,12,1], the
fragility of the food network [20,31], health-related shocks which can flow from
contaminated food through the trade network [10] and the connection between
the food import-export and economic development of countries [21]. Other stud-
ies tried to detect common pattern of countries in relation to specific products
through clustering techniques [26,11]. However, all these papers analyse the food
networks product by product without exploiting the multidimensionality of the
data. In this paper, we instead introduce a methodology that is able to produce
a synthetic proxy of geopolitical and economic interconnectedness by applying
a multidimensional data consistent approach.
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Several dimensionality reduction techniques have been introduced in the liter-
ature to synthesize datasets. In particular, factor analysis is a dimensionality
reduction technique which has been extensively applied in time series and cross-
sectional data [23,3]. The main objective of factor analysis is to reduce the full
dataset to a set of few relevant factors which explain most of the information
contained in the original dataset [3,24]. These models have been also extensively
employed in multivariate analysis to inspect latent features of the data [23,25]
and has then been later extended to the analysis of multidimensional data, i.e.
tensors [13,27]. Tensors, also known as multiway or multidimensional data [16,15]
arise in several research fields, e.g. economics, 3D tomographic images, psycho-
metrics, and factor analysis applied to these systems is commonly known as
tensor decomposition [15]. In this paper we use the higher order Tucker decom-
position [27], which is an extension of the bilinear factor analysis to multidimen-
sional data. With respect to community detection, several clustering algorithms
have been proposed in the literature. In this paper, we apply the Directed Bub-
ble Hierarchical Tree (DBHT), which is a hierarchical filtering algorithm able to
retrieve clusters, without the need of choosing the number of clusters a priori or a
threshold parameter. This clustering is an unsupervised learning technique that
can be applied to multivariate data and in particular, when applied to bilateral
economic networks, can be employed to tailor economic and political interven-
tions [26,11] or to create synthetic factors combining intra-cluster components
[28]. Often when applied to multidimensional data, clustering techniques are
commonly employed on single slices of data, e.g. layers in a multiplex resulting
in a computationally intensive procedure and do not synthesize the dataset, re-
sulting in different clustering outputs for each layer. In this paper we propose
a methodology which overcomes this issue by implementing a tensor decom-
position analysis in combination with a hierarchical clustering technique. The
application of this methodology to the Food and Agriculture Organization of the
United Nations (FAO) network is able to produce a proxy granted by geographic
and economic interpretation. The paper is structured as follows. In Section 2 we
describe the methodology, in Section 3 we report the results of the application
of this methodology to the network of the FAO while Section 4 concludes.

2 Clustering multidimensional data

The higher-order hierarchical spectral clustering method is based on the combi-
nation of tensor decomposition [27,15] and the DBHT clustering tool [22,28] by
means of a 2-steps approach. In the first step, we decompose the multidimen-
sional dataset using the Tucker decomposition [27,15] from which we obtain a
set of factor loadings matrices that projects the higher dimensional dataset in
a low-dimensional space which compresses the information on common factors.
Then, the DBHT algorithm [22,28] is performed on such matrices to obtain clus-
ters of specific dimension, e.g. countries or product. In the next subsections, we
provide a brief review of the methods applied in the 2-steps approach.
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2.1 Tensor decomposition

Tensors are a generalization of vectors and matrices and are ideal instruments
to study multidimensional data. Tensors, like matrices, can be decomposed into
smaller (in terms of rank) objects [15]. Among several tensor decomposition
methods, we employ the Tucker decomposition, which is mainly used for factor
analysis or dimensionality reduction and extends the bilinear factor analysis
to the higher dimensional case [27,6,4,7]. Throughout this work, the notation
follows the standard convention introduced in [15]: x is a scalar, x is a vector, X
is a matrix and X is a tensor. Take an n-th order tensor X ∈ RI1×I2···×IN , the
Tucker decomposition of X can be written as a n-mode product, i.e.:

X ≈ F×1 Λ(1) ×2 Λ(2) · · · ×N Λ(N) = F× {Λ(n)}, (1)

where Λ(n) are the factor loading matrices and F is the core tensor and it is
usually of smaller dimension than X.

2.2 DBHT clustering algorithm

Directed Bubble Hierarchical Tree (DBHT) is a machine learning hierarchical
clustering method that exploits the topological property of the Planar Maxi-
mally Filtered Graph (PMFG) in order to find the clusters [22,28]. The PMFG
is a generalization of the Minimum Spanning Tree (MST), that allows for loops
and more edges by preserving all hierarchical properties of the MST. This is
constructed following the same procedure of the MST, except that the non-loop
condition is replaced with the weaker condition of planarity (i.e. each added
link must not cut a pre-existent link). Thanks to this more relaxed topologi-
cal constraint, the PMFG is able to retain a larger number of edges, hence of
information. In particular, it can be shown that each PMFG contains exactly
3(N − 2) edges for a system of N nodes. The key elements of a PMFG are the
three-cliques elements, subgraphs made of three nodes all reciprocally connected
(i.e., triangles). The DBHT exploits this topological structure, and in particular
the distinction between separating and non-separating three-cliques, to identify
a clustering partition of all nodes in the PMFG. A complete hierarchical struc-
ture is then obtained for both inter-clusters and intra-clusters by following a
traditional agglomerative clustering procedure. The algorithm requires as inputs
a distance matrix D and a similarity matrix S.

2.3 Higher-order hierarchical spectral clustering (HHSC)

After presenting the 2-steps approach, we here introduce the HHSC used to ex-
tract the clusters from the multidimensional dataset. In the first step, HHSC ex-
tracts a set of factor matrices Λ(n) by means of Equation 1 and then it computes
a distance and a similarity matrix between the factor loadings corresponding to
each element, i.e. country or product. In the second step, by inputting the two
matrices in the DBHT algorithm, we identify the clusters.4 This approach follows

4 The algorithm’s time complexity is described in Appendix A.
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the same spirit of spectral clustering [30] by not directly performing the cluster-
ing procedure on the original dataset but rather, on the dimensionally reduced
system. This avoids the over-dispersion of information in the original dataset,
which can make the analysis very noisy. Some papers in the tensor literature use
the values of the factor loadings matrices to directly cluster the data (nodes in
the case of tensor networks) by identifying to which factors they are more related
to [2]. Even if this is a sensible approach, it neglects the distribution of the factor
loadings by focusing only on the maximum value for each node. Conversely, the
use of the DBHT algorithm in our procedure, takes into account the full distri-
bution of the factor loadings. Despite it is clear that the maximum loading of
each node will weight more, they will not be the only drivers of the community
detection in our procedure because all factor loadings are considered. Indeed,
the DBHT has been proved to outperform standard factor model analyses [28].

3 FAO trade network

In this section, we apply the HHSC described in Section 2 to an economic net-
work, i.e. the FAO trade network. In particular, we show how HHSC can be used
to extrapolate relevant structures from a multidimensional dataset and synthe-
size the information in geographically and economically meaningful clusters.

3.1 Data

The dataset is collected from the Food and Agriculture Organization of the
United Nations (FAO) website.5 The FAO trade matrix is an economic network
in which nodes correspond to importing and exporting countries, layers represent
the products and the last dimension is related to the time. Edges at each layer
represent the trade relationships of a specific product between countries in a
specific time period. We have collected yearly data between 1986 and 2018 for
123 countries and 137 products. We represent this data by a 4-th order tensor
Yt of dimension 128 × 128 × 137 × 33.6. In order to mitigate the difference in
magnitude between the data and avoid the model to only fit high data values,
we apply the log transformation which is commonly used in the literature for
bilateral trades, i.e. Ȳt = log(1 + Yt). Finally, to ensure data stationary, we use
the following first-order difference of the log-transformed trade tensor, i.e.:

Xt = Ȳt − Ȳt−1,

where Xt is a tensor of dimension 128× 128× 137× 32 and t is the time index.
This transformation represents the rate of change of the original dataset.

5 http://www.fao.org/faostat/en/data/TM.
6 We filtered out some data from the full dataset. We report the data filtering method-

ology in Appendix B.
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3.2 Step-by-step HHSC methodology

In the multivariate time series and panel data literature, the dynamic factor
model [3,24] starts from a function of the data of the following form:

Xt = ΛFt + Et, (2)

where Xt is the data, Λ is the factor loading matrix, Ft is the factor matrix
and Et is the error term. By assuming Gaussianity of Ft and Et, Cov(Xt) =
ΛΛ′ + Σ2, where Σ2 is a diagonal matrix representing the idiosyncratic error
of each component of Xt incorporated in Et while ΛΛ′ is the factor covariance
matrix with rank equal to the number of factors in Λ. This is equivalent to the
n-mode product formulation of the Tucker decomposition in Equation 1, i.e.:

Xt = Ft ×1 Λ + Et. (3)

This model can be easily extended to the multidimensional case by using the
higher-order Tucker representation [14] as:

Xt = Ft ×1 Λ(1) ×2 Λ(2) · · · ×N−1 Λ(N−1) + Et, (4)

where now Xt is a tensor representing the multidimensional dataset at time t, Ft

is the dynamic core factor tensor while each Λ(i) is a factor loading matrix for
the i-th mode. This formulation corresponds to the ’N−1’ Tucker decomposition
where the time dimension is not factorized but rather used to estimate the factor
components of the other modes. As for the multivariate case, each mode covari-

ance matrix is assumed to be of the form Cov(X
(n)
t ) = Λ(n)Λ′(n) + Σ(n)Σ′(n),

where Λ(n) is estimated through the Higher Order Singular Value Decomposition
(HOSVD) [9] for the Tucker model, and Σ(n) is estimated through the flip-flop
algorithm applied to the residuals of the model [6,14]. This algorithm is based on
the assumption that the residuals follow the array Normal distribution [14] and
iteratively estimate the covariance matrix of each mode considering the others
as fixed. The Algorithm 1 is reported below:

Algorithm 1 Flip-flop algorithm for covariance estimation

1: Initialize the algorithm to some Σ(1) · · ·Σ(N)

2: Compute Et = Xt − F̂t ×1 Λ̂
(1)

×2 Λ̂
(2)

· · · ×N Λ̂
(N)

3: for n = 1, . . . , N

4: Compute E
(n)
t = Et ×1 Σ(1) · · · ×n−1 Σ(n−1) ×n I(n) ×n+1 Σ(n+1) · · · ×N Σ(N)

5: Compute Σ̂
(n)

Σ̂′(n)
= E[E(n)E

T
(n)]

6: Return Σ̂
(1)

Σ̂′(1)

Tr(Σ̂
(1)

Σ̂′(1))
· · · Σ̂

(N)
Σ̂′(N)

Tr(Σ̂
(N)

Σ̂′(N)
)

It is important to notice that Σ̂
(n)

Σ̂′(n) are not identifiable because by mul-
tiplying one of the covariance matrices for a scalar w and another covariance
matrix for the inverse value w−1, the optimization logarithm reaches the same
value. For this reason, and to have covariance matrices which are comparable in
magnitude, we estimate the covariance matrices normalized by their trace, that
is the sum of the elements of the main diagonal. In this paper, we do not assume
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any structure of the error term and compute the covariance matrices only as
post-modeling diagnostic to check if any residual information is present in the
error term, i.e. strongly non-diagonal covariance matrices, and to check if the
autocovariance matrix (the fourth mode covariance matrix) exhibits any sort of
dynamics that can be exploited in a forecasting setting. Yet, the latter analysis
is beyond the scope of the present paper since our main focus is on the factor
loadings matrices. From each factor loading matrix, we compute a distance and
a similarity matrix which are then used as inputs in the DBHT algorithm. For
the distance matrix, we use the Euclidean distance7, i.e.:

D
(i)
a,b =

∥∥∥Λ(i)
a −Λ

(i)
b

∥∥∥ (5)

where Λ
(i)
j is the j-th element (country or product) of the i-th factor loadings

matrix. The distance synthesizes the dissimilarity between two items’ factor
loadings. For the similarity matrix, we use the Gaussian kernel [22,30], i.e:

S
(i)
a,b = e

−‖Λ(i)
a −Λ

(i)
b ‖

2

2σ2 , (6)

where σ2 is the variance of the set of distances in D. This matrix weights more

pairwise distances D
(i)
a,b near to 0 and less values with higher distances. These two

matrices suffice for the DBHT to cluster the data as the algorithm first extracts
the PMFG and then uses its three-cliques elements to hierarchically cluster the
nodes. In the next section, we present the results of our analysis of the FAO
international trade network using the HHSC method.

3.3 Application of HHSC to FAO data

The number of factors introduced in Section 3.2 used in the Higher-order Tucker
decomposition can be chosen in two ways: either by using a theoretically or eco-
nomically motivated number of factors or by using some data-driven methods
[29] which heuristically choose the best model compared to its complexity. How-
ever, standard information criteria cannot be used in this context because of
the strong imbalance between the huge multidimensional data and the number
of parameters. To select the number of components, we fit various models with
increasing number of factors, starting from the [1 1 1] specification (one-factor
model) to the [50 50 50] specification and search for the elbow in a scree type of
plot [8] in which we compare the log of the Explained Sum of Squares (ESS) and
the number of parameters in the model. Figure 1 shows that the right combina-
tion of the explained variance and the number of parameters is [28 28 17], which
corresponds to the elbow of the curve. Using this rank specification, we obtain
three factor loading matrices, i.e. the import matrix Λ(1) ∈ R128×28, the export
matrix Λ(2) ∈ R128×28, and the product matrix Λ(3) ∈ R137×17. These matrices
represent the information related to each mode of the tensor filtered by the effect

7 We row normalize the factor loadings before computing the distance and similarity
measures in order to harmonize the different items, i.e. countries or products.
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Fig. 1: Logarithm of the Explained Sum of Squares vs the number of model parameters.
The circle corresponds to the specification at the elbow of the plot.

of the other modes. They can be used both as outputs to directly analyze or as
inputs for a clustering algorithm. In fact, for each row of the matrix (country or
product) we identify a set of factor loadings and these provide the information
on which factor (hub) the country or product is more related to. Countries or
products with similar factor loadings in terms of distribution and magnitude are
expected to have a strong similarity and to be allocated to the same cluster.
However, by the use of a clustering algorithm, the analysis is made more robust
as the full distribution of factor loadings for each country or product will be used
instead of taking only the maximum value. By applying the DBHT algorithm
on the set of latent factor matrices, we obtain 12 clusters for the import mode,
13 clusters for the export mode, and 9 clusters for the products mode. Results
are graphically reported in Figures 2-4.8 From Figure 2, we can observe that
clusters are mainly explained by geographical proximity and economic growth.
Indeed, we detect the European clusters highlighted in blue, cyan, yellow, and
orange on the center left of the plot. However, even if geographically close to
each others, they have different trading patterns for some products which make
them to fall in different clusters. There is a second block of European countries
on the opposite side of the plot, highlighted in magenta, violet and light blue.
It is important to observe that these represent Eastern European and ex URSS
countries. The Asian countries are shown in purple on the top of the plot and a
mixture of high growth countries of Asia and America are highlighted in green
emerald on the top of the plot. Then, there is a cluster of mostly African coun-
tries highlighted light green on the bottom left. The two remaining clusters (red
and green) are more convoluted. Indeed, they both share slow growth and fast
growth countries in Africa and South America.
Regarding the export countries clusters, also in this case the main drivers can
be attributed to geographical proximity and economic activity. We can easily
identify the European cluster and a few ex URSS countries in magenta, purple,
violet, blue, light blue, and light green on the top of the plot. Moreover, we can
observe that there are dissimilarities in how different European groups cluster
together. We can observe that Eastern European and ex URSS countries cluster

8 A set of additional figures is reported in in Appendix C.
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Fig. 2: HHSC clustering for imports. The size of the node is proportional to the total
rate of growth of products the country imported between 1986 and 2018.

together as well as ex Yugoslavia countries. There are then the Mediterranean
countries clustering together and the North Eastern countries. In the European
macro-cluster, it is possible to notice a cluster composed by the Francophone
countries, i.e. France, Belgium, and Luxembourg. On the bottom of the plot, it
is possible to observe the Asian counties in turquoise and emerald green, and the
Arabic countries highlighted in cyan. At the center right of the plot, the South
American countries are shown in orange. There is a small cluster highlighted
in green composed by Chile, South Africa, and Zimbabwe. The first two have
enhanced trading agreements while South Africa is the leading exporter and
importer for Zimbabwe. The other two clusters (in red and yellow) are mixed
and contain the leading importers and exporters, which do not necessarily fol-
low geographical proximity. Indeed, it is important to mention that even though
most of the clusters’ countries can be explained by geographical proximity, im-
port/export size, or growth rates, there are some of them, especially the world
leading importers/exporters, which do not always follow this pattern. This is be-
cause their interrelations with other countries exhibit deeper connections, which
go beyond their geographical positions. With respect to the products cluster,
Figure 4 shows that the DBHT has good performance also in this case. Indeed,
the fruits and vegetable clusters are on the center left part of the plot highlighted
in turquoise and red, while on the bottom of the plot there are two meat-related
clusters highlighted in magenta and violet, with the second one more related to
pig meat type of meat. We can then observe the beverages cluster in light blue
and an hyper cluster, highlighted in orange, which connects the other clusters.
Indeed, this hyper cluster has different products, but those products are similar
to the nearest clusters. Finally, there are other two mixed clusters which corre-
spond to high growth/high amount exported products in green and light green.
Finally, in Figure 5 we report the modes’ covariance matrices estimated by using
the flip-flop Algorithm 1. As it is possible to see, the data is heteroskedastic, as
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Fig. 3: HHSC clustering for exports. The size of the nodes is proportional to the total
rate of growth of products the country exported between 1986 and 2018.

the diagonal elements of the covariance matrices have different magnitudes. It is
important to highlight that the static modes have diagonal covariance matrices,
meaning that the model correctly factorizes the data while the time mode has a
negative first-order autocovariance, in line with an autoregressive specification.

4 Conclusions

In this paper, we have proposed a new methodology, the Higher-order Hierarchi-
cal Spectral clustering (HHSC), to cluster multidimensional data by means of a
2-steps approach. In the first step, we decompose the multidimensional data via
the Tucker decomposition, while in the second step, we use the DBHT algorithm
on the factor loading matrices. We can appreciate that the clusters retrieved by
this methodology can be easily explained by economic and geographical factors.
Therefore, the tensor factor model in combination with hierarchical clustering
is a promising tool to extract clusters and analyse the bilateral food network.
Moreover, to better understand and predict the specific factors which drive the
formation of clusters, an econometric model based on the Multinomial Logit
can also be implemented to link the clusters to economic variables, in particular
to understand cases where geographical proximity and rate of growth are not
enough to explain the clustering results, e.g. Germany. Finally, the model can be
extended to perform a forecasting analysis. This can be done by exploiting the
dynamics of the core factor tensor by assuming a Tensor Autoregressive model
[6,5]. A further extension would consist in adopting a fully dynamic setting in
the spirit of data assimilation through a Kalman filter approach [18]. The HHSC
algorithm proposed in this paper is general enough to be used to exploit infor-
mation contained in a variety of empirical networks which evolve over time with
multidimensional interactions, e.g. ecological networks, financial networks.
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Fig. 4: HHSC clustering for products. The size of the nodes is proportional to the total
rate of growth of each product all the countries imported and exported between 1986
and 2018.

Fig. 5: Covariance of the error tensors modes estimated via the flip-flop algorithm: a)
imports mode, b) exports mode, c) products mode, d) Autocovariance matrix.
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A Time complexity

The HHSC algorithm is composed by two components, i.e. Tucker decomposi-
tion and the DBHT clustering algorithm. Assuming a third order tensor X ∈
RI1×I2×I3 with I1 = I2 = I3 = I, the time complexity of the DBHT algorithm
is of the order O(I3) [22] for each mode of the tensor. Regarding the Tucker
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decomposition with Tucker rank ∈ RR1×R2×R3 with R1 = R2 = R3 = R, the
time complexity is in the order of O(I3R+ IR4 +R6) [19]. Being the HHSC the
combination of the two algorithms, also the time complexity follows. However,
being R of much smaller dimension of I, the latter dominates the algorithm’s
running time.

B Data filtering

The complete dataset corresponds to 255 countries, 425 products, and 33 years.
We first filter the countries that were inactive for more than 10 years and the
products for which there were no transactions for more than 10 years. We then
filter the dataset with respect to sparseness. In particular, we filter out countries
and products for which the density is less than 1%. This resulted in a final
dataset of 128 countries, 137 products, and 33 years.

C Clustering with growth related size of the nodes

In this Appendix we report the same clustering plots reported in Figures 2-4 in
which the dimension of the nodes is proportional to the total amount (in dollars)
exchanged during the period analysed.

Fig. 6: HHSC clustering for the imports. The size of the nodes is proportional to the
amount of products (in $) the country import between 1986 and 2018.
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Fig. 7: HHSC clustering for exports. The size of the nodes is proportional to the
amount of products (in $) the country exported between 1986 and 2018.

Fig. 8: HHSC clustering for products. The size of the nodes is proportional to the
amount of the each product (in $) all the countries imported and exported between
1986 and 2018.
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