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Abstract. Data Assimilation (DA) is a Bayesian inference that com-
bines the state of a dynamical system with real data collected by instru-
ments at a given time. The goal of DA is to improve the accuracy of the
dynamic system making its result as real as possible. One of the most
popular technique for DA is the Kalman Filter (KF). When the dynamic
system refers to a real world application, the representation of the state
of a physical system usually leads to a big data problem. For these prob-
lems, KF results computationally too expensive and mandates to use
of reduced order modeling techniques. In this paper we proposed a new
methodology we called Latent Assimilation (LA). It consists in perform-
ing the KF in the latent space obtained by an Autoencoder with non-
linear encoder functions and non-linear decoder functions. In the latent
space, the dynamic system is represented by a surrogate model built by
a Recurrent Neural Network. In particular, an Long Short Term Memory
(LSTM) network is used to train a function which emulates the dynamic
system in the latent space. The data from the dynamic model and the
real data coming from the instruments are both processed through the
Autoencoder. We apply the methodology to a real test case and we show
that the LA has a good performance both in accuracy and in efficiency.

Keywords: Data Assimilation · Machine Learning · Neural Network ·
Convolutional Autoencoder · Long Short Term Memory.

1 Introduction and Motivation

Data Assimilation (DA) is an approach for fusing data (observations) with prior
knowledge (e.g., mathematical representations of physical laws; model output)
to obtain an estimate of the distribution of the true state of a process [24]. In or-
der to perform DA, one needs observations (i.e., a data or measurement model),
a background (i.e., a priori state or process model) and information about the
distribution of the errors on these two. In real world applications, DA is usually
used to improve the accuracy of dynamic systems which represent the evolution
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of some physical fields in time (e.g. weather, climate, ocean, air pollution). For
those applications, the background is defined in big computational grids which
lead to a big data problem sometimes impossible to handle without introducing
approximations or space reductions. To overcome this problem, Reduced Order
Modeling (ROM) techniques are used [1, 2]. ROM allows to speed up the dy-
namic model and the DA process. Popular approaches to reduce the domain
are the Principal Component Analysis (PCA) and the Empirical Orthogonal
Functions (EOF) technique both based on a truncated singular value decompo-
sition (TSVD) analysis [17]. The simplicity and the analytic derivation of those
approaches are the main reasons behind their popularity in atmospheric and
ocean science. However, the physical interpretability of the obtained patterns is
a matter of controversy because of the constraints satisfied by these approaches,
e.g. orthogonality in both space and time. Also, despite those are powerful ap-
proaches, the accuracy of the obtained solution exhibits a severe sensibility to
the variation of the value of the truncation parameters. This issue introduces
a severe drawback to the reliability of these approaches, hence their usability
in operative software in different scenarios [16]. An approach to reduce the di-
mensionality maintaining information of the data is the Neural Network (NN),
precisely the Autoencoders. NNs have the ability to fit functions and they can
fit almost any unknown function theoretically. That is the ability which makes it
possible for neural networks to face complex problems. Autoencoders (AE) with
non-linear encoder functions and non-linear decoder functions can thus learn a
more powerful non-linear generalization of methods based on TSVD. The co-
domain of an encoder function is named latent space. The latent space is also
the domain of the decoder function. In the latent space, the evolution of the
transformed state variables defined in time, is still a dynamical system. Thanks
to what the Universal Approximation Theorem [14, 21] claims, we can assume
that any non-linear dynamical system can be approximated to any accuracy by
a Recurrent Neural Network (RNN), with no restrictions on the compactness of
the state space, provided that the network has enough sigmoidal hidden units.
In the present work, we propose a new methodology we called Latent Assimila-
tion (LA). It consists in reducing the dimensionality with an AE and perform
both prediction through a surrogate dynamic model and DA directly in the la-
tent space. In the latent space, the surrogate dynamical system is built by a
RNN which learns the dynamic of the transformed variable. We apply LA to
improve the prediction of air flows and indoor pollution transport. In fluid dy-
namics problems such as the propagation of air pollution, the data represents
physical variables that are spatial distributed and contains information about
geographical position (e.g. the sensor placement). We have to take into account
those variables in our process. On the other hand, usually, such problems are
defined in high dimensional spaces. To reduce the complexity of the problem
we use the Autoencoder. The AE performs a non-linear transformation on the
input. We process the system states and the observations coming from sensors
using the same AE. In this way, we have a latent version of the model states and
observations transforming the physical variables in the same way.
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1.1 Related works and contribution of the present work

The use of machine learning in correcting model forecasts is promising in several
geophysics applications [15, 10]. In some operational centres, data driven models
have been already introduced to support CFD simulations [13, 20, 9]. The future
challenges of numerical weather prediction (NWP) include more accurate initial
conditions that take advantage of the increasing volume of real-time observa-
tions, and improved post-processing of model outputs, among others [9]. Neural
networks for correction of error in forecasting have been previously studied in
[5–7]. However, in this literature, the error correction by NN does not have a
direct relation with the updated model system in each step and the training is
not on the results of the assimilation process. In [3, 25] the authors describe a
framework for integration of NN with physical models by DA algorithms. In this
approach, the NNs are iteratively trained when observed data are updated. How-
ever, this approach presents a limit due to the time complexity of the numerical
models involved, which limits the use of the forecast model for large data prob-
lems. In [11], the authors presented an approach for employing artificial neural
networks (NNs) to emulate the local ensemble transform Kalman filter (LETKF)
as a method of data assimilation. In [19], the authors combined Deep Learning
and Data Assimilation to predict the production of gas from mature gas wells.
They used a modified deep Long Short Term Memory (LSTM) model as their
prediction model in the EnKF framework for parameter estimation. In [8] and
[23], modified versions of KF based on NNs are applied to simulated pendulum
and other four visual tasks (an agent in a plane with obstacles, a visual version
of the classic inverted pendulum swing-up task, balancing a cart-pole system,
and control of a three-link arm with larger images), respectively.

In the present work, we focus on the problem of assimilating data to improve
the prediction of air flows and indoor pollution transport [22]. We propose a
methodology we called Latent Assimilation (LA) which consists in:

– Dimensionality reduction: The dimensionality of both background of the
dynamic model and observations (real data coming from the instruments) is
reduced by Autoencoder;

– Surrogate Model: A data driven version of the dynamic model we call
”surrogate dynamic model” is build using RNN. In particular, an LSTM is
used to train a function which emulates the dynamic system in the latent
space;

– Data Assimilation: In the latent space, DA is performed by a modification
of a standard KF;

– Physical space: The results of the DA in the latent space are then reported
in the physical space through the Decoder.

In this paper, we apply Latent Assimilation to improve the prediction of air flows
and indoor pollution transport. However, the technology and the model are very
general and can be applied to other kinds of computational fluid dynamic systems
which simulate other dynamical systems. Both prediction and DA show a speed
up in the reduced space. We apply the methodology to a real test case and we

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_30

https://dx.doi.org/10.1007/978-3-030-77977-1_30


4 Authors Suppressed Due to Excessive Length

show that the LA has a good performance both in accuracy and in time.
This paper is structured as follows. In the next section the Kalman Filter is
described. Then, it follows a section where the Latent Assimilation is introduced.
Next, experimental results are provided. Finally, in the last section we summarize
conclusions and future works.

2 Kalman Filter

DA merges the estimated state xt ∈ Rn of a discrete-time dynamic process at
time t:

xt+1 = Mt+1xt + wt (1)

with an observation yt ∈ Rm:

yt = Htxt + vt (2)

where Mt is a dynamics linear operator and Ht is called linear observation op-
erator. The vectors wt and vt represent the process and observation errors, re-
spectively. They are usually assumed to be independent, white-noise processes
with Gaussian probability distributions

wt ∼ N (0, Qt), vt ∼ N (0, Rt)

where Qt and Rt are called errors covariance matrices of the model and obser-
vation respectively.
DA is a Bayesian inference that combines the state xt with yt at each given
time. The Bayes theorem conducts to the estimation of xa

t which maximise a
probability density function given the observation yt and a prior from xt. This
approach is implemented in one of the most popular DA methods which is the
Kalman filter (KF) [18]. The goal of the KF is to compute an optimal a posteri-
ori estimate, xa

t , that is a linear combination of an a priori estimate, xt, and a
weighted difference between the actual measurement, yt , and the measurement
prediction, Htxt as described in equation (5) where the quantity dt = yt −Htxt

is called misfit and represents the distance between the actual and the predicted
measurements at time t. For big data problems, KF is usually implemented in a
simplified version as an Optimal Interpolation method [4] which consists of fix
the covariance matrix Qt = Q, for each time step t. It mainly consists of two
steps: a prediction and a correction step:

1. Prediction:

xt+1 = Mt+1x
a
t (3)

2. Correction:

Kt+1 = QHT (HQHT + Rt+1)−1 (4)

xa
t+1 = xt+1 + Kt+1(yt+1 −Hxt+1) (5)
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Fig. 1. The work flow of the Latent Assimilation model. Let us assume that we want
to predict the state of the system at time t and we assume that the LSTM needs one
observation back to predict the next time-step. The input of the system is the state
xt−1. We encode xt−1 producing its encoded version ht−1. From ht−1 we compute ht

through LSTM. To perform the Kalman Filter, we need the observation yt at time-
step t. We encode yt and we combine the result, ĥt, with the prediction ht through the
KF. The result ha

t is the updated prediction. We report the updated prediction in its
physical space through the Decoder, producing xa

t .

The prediction-correction cycle is complex and time-consuming and it man-
dates the introduction of simplifications, approximations or data reductions tech-
niques. In the next section, we present the Latent Assimilation approach which
consists in performing KF in the latent space of an Autoencoder with nonlin-
ear encoder and nonlinear decoder functions. In the latent space, the dynamic
system in (3) is replaced by a surrogate model built with a RNN.

3 Latent Assimilation

Latent Assimilation is a model that implements the new idea of assimilating
real data in the Latent Space. Instead of using PCA or others mathematical
approaches to reduce the space, we decide to experiment the reduction with
non-linear transformations using Deep NNs. Specifically, we choose to use Con-
volutional Autoencoder to reduce the space.
Figure 1 is a graphical representation of the Latent Assimilation model.
The model is structured in four main parts:

Dimensionality reduction: The dimensionality reduction is implemented by
a Convolutional Autoencoder which produces a representation of the state vector
xt ∈ Rn in (1) in a “latent” state vector ht ∈ Rp defined in a Latent Space where
p < n. We denote with f : Rn → Rp the Encoder function

ht = f(xt) (6)

which transforms the state xt in a latent variable ht.

Surrogate model: In the latent space we perform a regression through a LSTM
function l : Rp×q → Rp

ht+1 = l(ht,q) (7)

where ht,q = {hi}i=t,...,t−q is a sequence of q encoded time-steps up to time t.
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Data Assimilation: The assimilation is performed in the latent space. In order
to merge the observations in (2) with the “latent” state vector ht, the observa-
tions are processed by the Encoder in the same way as the state vector. As
yt ∈ Rm where usually m ≤ n, i.e. the observations are usually held or measured
in just few point in space, the observations vector yt is interpolated in the state
space Rn obtaining ŷt ∈ Rn. The observations ŷt are then processed in the same
way as the state vector trough f :

ĥt = f(ŷt) (8)

The “latent” observations ĥt, transformed by the Encoder in the latent space,
are then assimilated by the prediction-correction steps as described in equations
(9)-(11):

1. Prediction:
ht+1 = l(ht,q) (9)

2. Correction:
K̂t+1 = Q̂ĤT (ĤQ̂ĤT + R̂t+1)−1 (10)

ha
t+1 = ht+1 + K̂t+1(ĥt+1 − Ĥht+1) (11)

where l in (9) is the surrogate model defined in (7) computed by the LSTM, Q̂
and R̂ are the errors covariance matrices of the transformed background ht and
observations ĥt respectively, they are computed directly in the latent space. Ĥ
is the observation operator: if m = n, it is the identity function, otherwise it
is an interpolation function. The background covariance matrix Q̂ is computed
with a sample of s model state forecasts h that we set aside as background such
that:

h = [h1, ..., hs] ∈ Rp×s, V = (h− h̄) ∈ Rp×s (12)

where h̄ is the mean of the sample of background states, then Q̂ = V V T . The
observations errors covariance matrix R̂ can be computed with the same pro-
cess in (12) replacing ht with ĥt, ∀t or, it can be estimated by evaluations of
measurements (instruments) errors. K̂ is the Kalman Gain matrix defined in the
latent space and Ĥ is the observation operator.

Physical space: The results of the DA in the latent space are then reported in
the physical space through the Decoder, applying the function g : Rp → Rn to
compute

xa
t+1 = g(ha

t+1). (13)

The Decoder is almost a mirror of the Encoder: it is composed of a Fully Con-
nected Layer followed by some Convolutional Layers.
In the next Section we apply Latent Assimilation to the problem of assimilating
data to improve the prediction of air flows and indoor pollution transport in a
real scenario [22]. We show the performance of the model step by step and we
compare results with a standard DA performed in the physical space.
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4 Experimental Results

Latent Assimilation is here applied to merge indoor air quality measurements
from sensors with an indoor air quality simulation made by a computational
fluid dynamic (CFD) software named Fluidity.

CFD data: The domain is an office room in the Clarence Centre in the Bor-
ough of Southwark, London [22]. The CFD simulation constitutes a time series
composed of 3500 time-steps. For each time step, the CFD simulation provides
a matrix of dimension 180 × 250 where each value of the matrix represents the
concentration of CO2 expressed in PPM in a specific location of the room.
The time series we use is composed of 2500 time-steps, then the size of the data
set is O(108) just considering the data related to the CFD simulation. The CFD
data represents the real simulation of a flow and it doesn’t change much between
two consecutive steps. For this reason, we decided to divide the data in train,
validation and test set making small jumps. We consider two consecutive time-
steps for train and we make a jump. Every position not considered yet (the ones
we jump) is assigned to validation and test set alternately.
Considering a jump=1, the series is divided as in Figure 2:

Fig. 2. Train, Validation and Test split

Observed data from sensors: For the observations, we have measurements
from 7 sensors providing information for 10 time-steps. The sensors are spa-
tially distributed in the room. In fluid dynamics problems, the data contains
physical variables that are spatial distributed and contains information about
geographical position. It’s important to maintain those information during the
data assimilation process. We preserve them processing both CFD and observed
data with the same AE. We first bring the observation in the same space of the
CFD data using an interpolation function. Then we process the system states
and the observations coming from sensors using the same AE. In this way, we
have a latent version of the model states and observations transforming the phys-
ical variables in the same way. The measurements from sensors are extended in
the radius of 30cm in the room. Then the values are linearly interpolated using
the Scipy library obtaining matrices of the same dimension of the data from the
CFD, i.e. 180 × 250. The interpolation is repeated for each time-step. All the
data are normalized in the range [0, 1]. We normalized the dataset with Min-
Max Normalization considering the global minimum and maximum PPM values
found in both dataset and observations.
The LA code and the pre-processed data can be downloaded using the link
https://github.com/DL-WG/LatentAssimilation.
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4.1 Dimensionality reduction

The Autoencoder we implement is a Convolutional Autoencoder. In particu-
lar, the Encoder is composed of some Convolutional layers followed by a Fully
connected layer that determines the shape of the Latent space. The Decoder is
nearly the mirror of the Encoder.
The construction of the Autoencoder is divided in two steps: the search of the
structure and the Grid Search of hyper-parameters. All the experiments were
performed with 4 GPUs K80.

Structure: The search of the structure is conducted progressively. We start
comparing few autoencoders (that, for example, differ on the number of hidden
convolutional layers). We pick the best structure and we create new configura-
tions to compare. The model used to create new configurations, is here called
baseline. We use the Mean Squared Error6 (MSE) as metrics to evaluate the
model. For each configuration, we compute a 5-Cross Fold Validation7 (CV) and
we choose the model with lower mean and standard deviation of the MSE values
(Mean-MSE and Std-MSE respectively). A low standard deviation tells us that
the model is stable and it does not depend on the data we use to train and vali-
date it. We fix the following parameters: number of filters 32, activation function
ReLu8, Kernel size 3, latent space 7, optimizer Adam, epochs 300 and batch size
32. We use the MSE as loss function. This choice of value for the latent space is
the result of an analysis of accuracy and efficiency.
We shuffle the data before to start to make the neural network independent from
the order of the data. We first check the good number of hidden Convolutional
layers. We try three different configurations:

1. Encoder with 3 Convolutional layers and Decoder with 4 Convolutional lay-
ers

2. Encoder with 4 Convolutional layers and Decoder with 5 Convolutional lay-
ers

3. Encoder with 5 Convolutional layers and Decoder with 6 Convolutional lay-
ers

Comparing in table 1 configurations 1, 2 and 3 for which only the number of
convolutional layers is changing, configuration 2 is the one highlighting the best
performance in terms of both Mean-MSE and Mean-MAE with MSE two order
of magnitude lower than configurations 1 and 3. Moreover, configuration 2 is
the most stable regarding the standard deviations, reflecting well that this CAE
network architecture does not depend on the data used to train and validate
it. In addition, the execution time of configuration 2 is relatively acceptable to
answer real-time problems. Hence, in the following, the number of layers is taken
as the same than configuration 2: 4 for the encoder and 5 for the decoder.

6 https://www.tensorflow.org/api_docs/python/tf/keras/losses/

MeanSquaredError
7 https://scikit-learn.org/stable/modules/cross_validation.html
8 https://www.tensorflow.org/api_docs/python/tf/keras/layers/ReLU
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Table 1. Convolutional AutoEncoder performance. N denotes the configuration num-
ber as listed in the main text. Time is given in seconds.

N Mean-MSE Std-MSE Mean-Time Std-Time

1 1.324e-02 2.072e-02 775.665 5.606e+00

2 2.435e-04 3.851e-05 812.293 1.436e+00

3 2.293e-02 2.763e-02 828.328 1.574e+00

Configuration 2 is then our baseline. We substitute the Convolutional layers
with the Convolutional Transpose layers in the Decoder and we will call this
the configuration number 4. As we can see from Table 2, the accuracy (Mean-
MSE) and the stability (Std-MSE) are slightly better, while the execution time
is slightly longer, when using convolutional layers (config. 2) rather than trans-
pose convolutional layers in the decoder. As no major improvements in terms
of MSE is observed when switching from convolutional (config. 2) to transpose
convolutional layers in the decoder, convolutional layers are used for the decoder.

Table 2. Performance of the baseline (config. 2) and the baseline with Convolutional
Transpose layers (config. 5).

N Mean-MSE Std-MSE Mean-Time Std-Time

2 2.435e-04 3.851e-05 812.293 1.436e+00

4 2.587e-04 4.114e-05 746.804 3.089e+00

Finally, we discard the Convolutional Transpose layers and we change the kernel
size increasing it a little bit. We build the model with Kernel size equal to 5×5
everywhere, defining the configuration number 5. Table 3 shows that this choice
works well but not better than the baseline.

Table 3. Performance of the baseline (config. 2) and the baseline with kernel size equal
to 5 (config. 5)

N Mean-MSE Std-MSE Mean-Time Std-Time

2 2.435e-04 3.851e-05 812.293 1.436e+00

5 1.055e-02 2.099e-02 1222.251 6.627e+00

Grid Search: We make a grid search varying (i) the number of filters ∈
{16, 32, 64}, (ii) the activation function ∈ {ReLu,Elu}, (iii) the number of
epochs ∈ {250, 300, 400} and (iv) the batch size ∈ {16, 32, 64}. Table 4 shows
the optimal hyper-parameters found.
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Table 4. Grid Search results of the Autoencoder.

Filters Activation Epochs Batch size

64 ReLu 400 32

The performance of the baseline with the hyper-parameters found are reported
in Table 5. Because we shuffle the data making the neural network independent
from the order of the data, we can say that the model is not dependent on the
set of input we choose to train it. This is important in our case because we will
use the encoder to reduce the data from the observations too.

Table 5. Autoencoder performance with the chosen hyper-parameters.

Mean-MSE Std-MSE Mean-Time Std-Time

8.509e-05 1.577e-05 1887.612 6.845e+00

4.2 Surrogate Model

The surrogate model is built implementing an LSTM on the results of the Au-
toencoder. All data are encoded with the Autoencoder: each sample is a vector
of 7 scalar. We followed the same strategy as for the Autoecoder: we define the
structure of the model and then we compute the grid search. To this purpose,
we encode the train and validation sets defined in Figure 2. We split the data in
small sequences based on the number of time-steps we look back and the number
of steps we want to predict. In this case, we predict one step forward. We do
not perform the CV but we repeated the fitting and the validation of the model
5 times. We fix the following parameters: neurons 30, activation function ReLu,
number of time-steps 3, optimizer Adam, epochs 300, batch size 32. We use the
MSE as loss function. LSTMs are stacked from 1 to 5 times in order to see if the
model gains in accuracy, stability and efficiency: the results are shown in Table 6.
The single layer LSTM is the one highlighting the best accuracy with the lowest
Mean-MSE value. Indeed, the input of the LSTM consists of a 7×1 vector and
adding more LSTM layer introduces overfitting bias. In addition, the standard
deviation, reflecting the stability, of the single layer LSTM are about one order
of magnitude lower than the other tested LSTM. The single layer LSTM is also
the most efficient in term of computation cost.
We compute the grid search changing the hyper-parameters: (i) number of neu-
rons ∈ {30, 50, 70}, (ii) activation function ∈ {ReLu,Elu}, (iii) number of
steps ∈ {3, 5, 7}, (iv) number of epochs ∈ {200, 300, 400} and (v) batch size
∈ {16, 32, 64}.
Table 7 shows the result of the Grid Search considering a single LSTM, while
table 8 shows the performance of the LSTM with the chosen hyper-parameters.
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Table 6. LSTM performance evaluation for 5 network architectures. N denotes the
number of stacked LSTMs. Time is given in seconds.

N Mean-MSE Std-MSE Mean-Time Std-Time

1 1.634e-02 8.553e-03 230.355 1.050e+00

2 2.822e-02 7.244e-03 360.877 6.618e-01

3 4.619e-02 1.942e-02 494.254 2.258e+00

4 5.020e-02 1.675e-02 658.039 2.632e+00

5 4.742e-02 1.183e-02 806.001 5.921e+00

Table 7. Grid Search results of the single LSTM.

Neurons Activation Steps Epochs Batch size

30 Elu 3 400 16

Table 8. Single LSTM performance with the chosen hyper-parameters.

Mean-MSE Std-MSE Mean-Time Std-Time

1.233e-02 1.398e-03 949.328 7.508e+00

4.3 Data Assimilation

In this phase, we encoded both the states and the observations. The assimilation
is performed in the latent space. From the Test set of the CFD data, we select
the sequences that predict the time-steps where we have measurements from
sensors. We make the prediction through the LSTM and we update the predic-
tion using the corresponding observation with the Kalman Filter. In the KF,
the error covariance matrix Q̂ is computed as Q̂ = V V T where V is computed
as described in (12). Since both predictions of the model and observations are
values of CO2, i.e. the observations don’t have to be transformed, the operator
Ĥ is an identity matrix.
We studied how KF improves the accuracy of the prediction testing different val-
ues of R̂ computed by the procedure in (12) or, fixed as R̂ = 0.01 I, 0.001 I, 0.0001 I
where I ∈ Rp×p denotes the identity matrix. This last assumption is usually
made to give higher fidelity and trust to the observations.
The MSE of the background data in the latent space, without performing data
assimilation is MSE= 7.220e−01. Tables 9 shows values of MSE after the assim-
ilation in the latent space. It also reports values of execution time. As expected,
we can observe an improvement in the execution time in assuming R̂ as a diag-
onal matrix instead of a full matrix.
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Table 9. Value of MSE of ha
t and execution time of the Latent Assimilation for different

values of the observations errors covariance matrix R̂.

R̂ Cov 0.01 I 0.001 I 0.0001 I

MSE 3.215e-01 1.250e-02 1.787e-03 3.722e-05
Time 2.053e-03 3.541e-04 2.761e-04 2.618e-04

4.4 Physical space

After performing DA in the latent space, the results ha
t are reported in the

physical space through the Decoder which gives xa
t . Table 10 and Table 11 show

values of MSE after the assimilation in the physical space for LA and for a
standard DA respectively. They also report values of execution time. The MSE
in the physical space without the assimilation is MSE= 6.491e − 02. Tables 10
and 11 show that both LA and DA improve the accuracy of the forecasting.
Comparing the tables we can also observe that LA performs better both in
terms of execution time and accuracy with respect to a Standard DA where the
assimilation works directly with big matrices becoming very slow.

Table 10. Values of MSE of of xa
t in the Physical space for different values of the

observations errors covariance matrix R̂.

R̂ Cov 0.01 I 0.001 I 0.0001 I

MSE 3.356e-02 6.933e-04 1.211e-04 2.691e-06
Time 3.191e+00 2.899e+00 2.896e+00 2.896e+00

Table 11. Standard Assimilation in the physical space performed by a KF (see Equa-
tions (3)-(5)). Here R ∈ Rn×n is defined in the physical space.

R Cov 0.01 I 0.001 I 0.0001 I

MSE 5.179e-02 6.928e-03 6.928e-03 6.997e-03
Time 2.231e+03 2.148e+03 2.186e+03 2.159e+03

5 Conclusion and future works

In this paper we proposed a new methodology we called Latent Assimilation
(LA) to efficiently and accurately perform DA. LA consists in performing the
KF in the latent space obtained by an Autoencoder with non-linear encoder
functions and non-linear decoder functions. In the latent space, the dynamic
system is represented by a surrogate model built by an LSTM network to train
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a function which emulates the dynamic system in the latent space. The data
from the dynamic model and the real data coming from the instruments are
both processed through the Autoencoder. We apply the methodology to a real
test case and we show that the LA performs better than a standard DA in both
accuracy and efficiency. An implementation of LA to emulate variational DA [4]
will be developed as future work. In particular, we will focus on a 4D variational
(4DVar) method. 4DVar is a computational expensive method as it is developed
to assimilate several observations (distributed in time) for each time step of the
forecasting model. We will develop an extended version of LA able to assimilate
set of distributed observations for each time step and, then, able to perform a
4DVar.
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