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Abstract. The focus of this study is to simulate realistic fluid flow,
through Machine Learning techniques that could be utilised in real-time
forecasting of urban air pollution. We propose a novel Latent GAN
architecture which looks at combining an AutoEncoder with a Generative
Adversarial Network to predict fluid flow at the proceeding timestep of a
given input, whilst keeping computational costs low. This architecture
is applied to tracer flows and velocity fields around an urban city. We
present a pair of AutoEncoders capable of dimensionality reduction of
3 orders of magnitude. Further, we present a pair of Generator models
capable of performing real-time forecasting of tracer flows and velocity
fields. We demonstrate that the models, as well as the latent spaces
generated, learn and retain meaningful physical features of the domain.
Despite the domain of this project being that of computational fluid
dynamics, the Latent GAN architecture is designed to be generalisable
such that it can be applied to other dynamical systems.

Keywords: Generative adversarial networks · Reduced order models ·
Urban air pollution.

1 Introduction

Computational Fluid Dynamics (CFD) concerns itself with using applied math-
ematics and/or computational software to resolve fluid flows in a domain. A
crucial component of CFD are the Navier-Stokes (NS) equations; these describe
the motions of incompressible fluid flow. A major drawback of CFD is the ex-
treme difficulty in solving the NS equations due to their non-linearity. Another is
the high dimensionality involved. Although the introduction of computers has
allowed researchers to automate the calculations involved, with current hard-
ware limitations, the computational complexity involved is far too great to solve
in a reasonable amount of time. The revolution of Machine Learning (ML) in
recent years has been invaluable for the field of CFD [6]. Previous data-driven
studies tend to represent the fluids using linear basis functions such as principal
component analysis (PCA). However, CFD is a non-linear problem and so more
complex methods are required.

The aim of this study is the development of a neural network that could
be utilised in real-time forecasting of urban air pollution in London. Accurate
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and fast forecasts of air pollution simulations have tremendous potential for
healthcare, especially to explore the impact of exposure of individuals to air
pollution. Generalising to the wider field of CFD, historically velocity fields and
turbulent flows have been extremely difficult to resolve. The non-linearity of the
problem leads to complex solutions that are far too difficult to solve analytically,
with numerical solutions being too slow to do within a reasonable amount of
time. A wider objective of this project is to train a surrogate generative model
capable of predicting velocity fields in real-time.

In this study, we propose a novel Latent GAN architecture that looks at
combining a Convolutional AutoEncoder (CAE) with a Generative Adversarial
Network (GAN) [7] to produce surrogate generative models capable of predicting
fluid flows such as tracers and velocity fields, whilst keeping computational costs
low. The CAE focuses on reducing the dimensionality of given data samples
before passing it to the GAN, which attempts to predict outputs that are a
single timestep ahead. Despite the domain for this study being that of CFD, the
network architecture is designed to be general such that it could be applied to
many other dynamical domains that aren’t necessarily related to CFD.

One study [8] of interest looks at combining an autoencoder (AE) with a
generative model to predict fluid flows, which shows promising results. Another
model of interest is the variational autoencoder (VAE)/GAN [9] which looks at
generations of random faces using a combination of VAEs with GANs. Further,
the Structural and Denoising Generative Adversarial Network (SD-GAN) [5]
makes use of a piece-wise loss function to guide its GAN generations. This is
useful as we also want to restrict the generations of our GANs; namely, to predict
at the proceeding timestep. Other studies that have successfully combined fluid
predictions with machine learning include: an application to a realistic case
in China [17], application to unsteady flows [15], prediction of flow fields with
deep convolutional recurrent autoencoders [16], and for data assimilation [3]
with ROMs indoors [2] and outdoors [13,10]. Furthermore, [12] used adversarial
training to improve the divergence of the data-driven forecast prediction over
time and achieve better compression from full-space to latent space of urban air
pollution CFD simulations.

In summary, in this paper we

– propose a novel Latent GAN architecture that combines a CAE along with
a GAN to produce a model that is capable of predicting fluid flow. The
Generator is restricted to generate data at the proceeding timestep, given an
input data sample. The architecture has been designed to be generalisable
such that it can be applied to any dynamical system.

– demonstrate the ability to encode fluid data on unstructured meshes down
to a latent space with several orders of reduction through the use of a CAE,
an architecture typically used on structured domains that do not have real
physical meanings, such as images.

– present a pair of Generator models, trained via the Latent GAN architecture,
that are capable of predicting tracer flows and velocity fields at the proceeding
timestep of a given input.
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2 Latent GAN

The Latent GAN architecture looks at combing a Convolutional AutoEncoder
with a Generative Adversarial Network to predict the proceeding timestep, given
an input data sample. A high level overview of the model architecture proposed is
displayed in Figure 1. The AutoEncoder comprised of an Encoder and a Generator,
as shown. The Encoder model reduces dimensionality of the data down to a
reduced latent space. This is done to reduce the computational complexity when
training the GAN and to attempt to reduce the instability that is inherit when
training GANs.

Fig. 1. High level overview of Latent GAN architecture.

Initially, we attempted to train all three models in a single training process.
Whilst in theory this is expected to work, in practice the training process showed
extreme instability across all three models. This is understandable as we were
essentially trying to find three solutions simultaneously with targets that were
constantly moving as each of the three networks were updated. A further, less
obvious, issue with this technique is that an unintuitive latent space is being
generated. As the Encoder is encoding w.r.t timestep t and the Generator is
decoding w.r.t timestep t+1, this meant the latent space became a strange cross
between both timesteps. Whilst this may not have been an issue for scope of
this particular project, it meant the AE could not be used alone as it provided
no useful latent space. Instead, we opted to train the AE and GANs separately.
The AE training process is performed, as standard, with a Mean Squared Error
(MSE) loss being calculated. Once a stable AE is trained, the Decoder is dropped,
and the Encoder is implemented as a fixed standalone pre-trained model into the
Latent GAN architecture displayed previously in Figure 1.

The input of the Latent GAN network is a data sample at time t. This is
reduced into a latent space representation via the pre-trained Encoder. The
output is then passed through the Generator which attempts to reconstruct
the data back to its original size, but also incrementing the time by one. The
generated outputs, along with real data at time t + 1 are then fed into the
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Discriminator for classification. As per standard GAN training [7], Binary Cross
Entropy (BCE) losses were calculated for the Discriminator and Generator, based
on whether the generated outputs had successfully “tricked” the Discriminator. In
addition, a separate MSE is calculated for the Generator between its generations
and the ground truths at t+ 1. This is done to guide our Generator to produce a
specific output, and not one that only appeared to be plausibly from the dataset
as per regular GANs.

To summarise, the losses for each network were as follows:

LAE(xt) = min
[ 1

N

N∑
i=1

[AE(xt)− xt]
2
]

(1)

LD(xt) = max
[
logD(xt+1) + log (1−D(G(E(xt))))

]
(2)

LG(xt) = max
[
logD(G(E(xt)))

]
+min

[ 1

N

N∑
i=1

[G(E(xt))− xt+1]
2
]

(3)

where AE represents a forward pass through both Encoder and Decoder archi-
tectures, E represents the Encoder alone, G represents the Generator and D
represents the Discriminator. A full Algorithm of both training processes can be
seen in section 3.1.

3 Models

The full codebase constructed as part of this study can be found at the following
repository:
https://github.com/DL-WG/LatentGAN

3.1 Algorithms

For the AutoEncoder, training is as described in Algorithm 1. The inputs to this
were unstructured tracer / velocity field data arrays at time t.

For the GAN, training is as described in Algorithm 2. The inputs to this were
unstructured tracer / velocity fields at time t, and t+ 1 for the Generator loss.

It is worth noting that in Algorithm 2 Line 23, the order of magnitude of the
two components of the Generator’s error are starkly different. Typical values for
the BCE loss are of 1 order of magnitude, whereas for the MSE error, we’d hope
for this to be as small as possible. From our experimentations, we noticed that
some MSE errors reaches as small as 10−7. Therefore, an α coefficient is included
with the MSE to try to balance the scales of the errors to be of the same order.
If we were to perform the standard addition of both components (α = 1), the
MSE error would become irrelevant and ignored when calculating the gradients
for gradient descent. For example, say errBCE = 2.3 and errMSE = 0.0000006,
then errG = 2.3 + 0.0000006 = 2.3000006 ≈ 2.3. This then means the Generator
is just learning to become a standard GAN Generator, and ignores information
about t+ 1.
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Algorithm 1: AutoEncoder Training
1 Instantiate Encoder (E) and Decoder (D) architectures;
2 Initialise E and D weights from normal distribution;
3 Instantiate DataLoader;
4 for epoch ← 0 to max_epoch do

/* iterate over all batches in DataLoader */
5 for data in DataLoader do
6 Zero gradients in Encoder and Decoder;

7 output ← E(data); // Forward pass through Encoder
8 output ← D(output); // Forward pass through Decoder

9 loss ← MSE(data, output); // Calculate loss
10 Calculate gradients;
11 Update weights using Optimiser step;
12 end
13 end
14 Save models;
15
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Algorithm 2: GAN Training
1 Instantiate Encoder (E), Generator (G) and Discriminator (D) architectures;
2 Load pretrained E weights;
3 Initialise G and D weights from normal distribution;
4 Instantiate DataLoader;

5 real ← 1 ;
6 fake ← 0 ;

7 for epoch ← 0 to max_epoch do
/* iterate over all batches in DataLoader */

8 for data in DataLoader do
9 data_incr ← (data samples incremented by 1);

10 Zero gradients in D and G;
/* Discriminator Training */
/* Pass all-real batch */

11 outputD_real ← D(data) ;
12 errD_real ← BCE(outputD_real, real) ;

/* Pass all-fake batch */
13 outputE ← E(data) ; // Do not track gradients here
14 outputG ← G(outputE) ;
15 outputD_fake ← D(outputG) ;
16 errD_fake ← BCE(outputD_fake, fake) ;

17 errD ← errD_real + errD_fake ;
18 Calculate gradients;
19 Update D weights using Optimiser step;

/* Generator Training */
20 output ← D(outputG) ; // Pass outputG through updated D
21 errBCE ← BCE(output, real) ; // Use real labels as suggested by Goodfellow

22 errMSE ← MSE(data_incr, outputG) ;

23 errG ← errBCE + α errMSE ; // See comment below
24 Calculate gradients;
25 Update G weights using Optimiser step;
26 end
27 end
28 Save models;
29
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3.2 Model architectures

Note that all LeakyReLU layers had a negative_slope value of 0.2 and in_place set
to True. Tables 1, 2, and 3 show the final hyperparameters used. The visualisation
of the networks are shown in Figures 2 and 3.

Table 1. Model architecture for Encoder.

Layer Name Kernel Size Stride Padding

Conv1D 4 2 1
LeakyReLU
BatchNorm1D
Conv1D 4 2 1
LeakyReLU
BatchNorm1D
Conv1D 4 2 1
LeakyReLU
BatchNorm1D
Conv1D 4 2 1
LeakyReLU
BatchNorm1D
Conv1D 4 2 1
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Table 2. Model architecture for Decoder and Generator.

Layer Name Kernel Size Stride Padding Output Padding

ConvTranspose1D 4 2 1 0
BatchNorm1D
LeakyReLU
ConvTranspose1D 4 2 1 1
BatchNorm1D
LeakyReLU
ConvTranspose1D 4 2 1 0
BatchNorm1D
LeakyReLU
ConvTranspose1D 4 2 1 0
BatchNorm1D
LeakyReLU
ConvTranspose1D 4 2 1 0
Tanh

Table 3. Model architecture for Discriminator.

Layer Name Kernel Size Stride Padding

Conv1D 4 8 1
LeakyReLU
Conv1D 4 8 1
BatchNorm1D
LeakyReLU
Conv1D 4 8 1
BatchNorm1D
LeakyReLU
Conv1D 4 8 1
BatchNorm1D
LeakyReLU
Conv1D 4 4 1
BatchNorm1D
LeakyReLU
Conv1D 4 4 1
BatchNorm1D
LeakyReLU
Conv1D 1 2 1
Sigmoid
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Fig. 2. Encoder and Decoder model visualisation.

4 Testing and Evaluation on a real test case

The dataset used to train the network is that of an urban city comprising of tracers
with dimensionality 100, 040 and velocity fields with dimensionality 3× 100, 040.
Note that all screenshots displayed showcase a 2D slice of the 3D domain, using
ParaView [1].

Using DCGAN [14] as a basis for the GAN with modifications made to fit the
specific dataset, the Decoder is a duplicate of the Generator and the Encoder is
designed to be an inverse of this. All networks were run for 1000 epochs, taking
around 24 hours for the AutoEncoders and around 27 hours for the GANs. We
saved the networks every 200 epochs, and the best of these were chosen.

The final tracer AE, trained for 600 epochs, is capable of reducing the
dimensionality down to 256, whilst achieving an average MSE loss of 7.68× 10−7.
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Fig. 3. Discriminator and Generator model visualisation.

Showcased in Figure 4 is an AE reconstruction of timestep t = 3000 from our test
set along with its ground truth. We see similar reconstructions, with flow shapes
and intensities maintained. Its worth noting that the final timestep used to train
the tracer models is t = 988, demonstrating that the AE network has learnt
meaningful physical features of the dataset and is generalisable to unseen data.
The final tracer Latent GAN is trained for 400 epochs, achieving an average MSE
loss of 7.14× 10−6 as shown in Figure 8. An example of interpolation results can
be viewed in Figure 5. The network is fed in timestep t = 3000 and a prediction
is made for timestep t = 3001. We see that the shapes of the tracer are correctly
predicted along with the intensities. Despite this however, we notice that some
artifacts are created around the domain with a somewhat patchy prediction of
the actual flow. This is perhaps a side effect caused by the unstructured meshes
used, leading to the convolutional layers incorrectly learning features in the data
arrays that are not present in the actual flow.

The final velocity field AE, trained for 1000 epochs, reduces the dimensionality
down to 512, whilst achieving an average MSE loss of 1.49×10−2. We immediately
notice the degraded performance compared to that of the tracers. This is, however,
to be expected as the velocity fields are far more complex, with 3 channels instead
of 1 for the tracers, as well as having flows occurring across the entire domain
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instead of just the centre. Figure 6 displays AE reconstructions for t = 980, where
the final timestep to train the model is t = 899. We find that the reconstructions
appear to be very similar, maintaining shapes and intensities. The final velocity
field Latent GAN is also trained for 1000 epochs, achieving an average MSE
loss of 2.31 × 10−2 as shown in Figure 9. Note that the initial 25 timesteps
have been removed for better visualisation. Interpolated results of these can
be viewed in Figure 7, where the network is fed in t = 980 and a prediction
of t = 981 is generated. Similarly to the tracers, we find that the prediction
correctly maintained intensities as well as flow shapes. We do note however, that
the predictions here also suffer from patchy generations.

Fig. 4. Tracer AutoEncoder reconstruc-
tion.

Fig. 5. Tracer Latent GAN prediction
given input t = 3000

Fig. 6. Velocity field AutoEncoder re-
construction

Fig. 7. Velocity field Latent GAN pre-
diction given input t = 980

Fig. 8. Tracer MSE losses Fig. 9. Velocity field MSE losses
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Generating real timesteps, where the actual physical equations were solved,
took around 172 seconds using an E5-2650 v3 CPU with 250GB RAM. Predictions
using the Latent GAN models took only 1.1 seconds and 1.3 seconds for tracers
and velocities respectively using a single core of an i7-4790k with 16GB RAM.
Unfortunately, due to limitations we were unable to reproduce these on the same
hardware, although its worth noting that the i7 has around a 15% better single
core performance. Running on a NVIDIA CUDA [11] enabled GPU, a GTX 970
with 4GB of vRAM, took 0.25 and 0.3 seconds for tracers/velocities respectively.

5 Summary and future work

This paper introduced Latent GAN. We showed that the latent spaces generated,
learnt and retained meaningful physical features of the domain. Despite the
domain of this project being that of CFD, Latent GAN is generalisable such that
it can be applied to other dynamical systems.
As future work, exploiting other kinds of CAE using 3D data arrays would allow
us to incorporate known real physics into the network, in the form of physics
informed loss functions. A different possible route to take would be to look at
the Wasserstein GAN [4]. This is a modification to the existing GAN that are
generally more robust and stable, and so may allow us to train the entire Latent
GAN in a single training process. Further directions could be to possibly extend
the Latent GAN architecture by combining a Long-Short Term Memory (LSTM)
network. Currently, only a single timestep is fed as input to the network; it would
be interesting to see results where multiple timesteps are fed in instead.
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