
Low-dimensional Decompositions for Nonlinear
Finite Impulse Response Modeling ?
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Abstract. This paper proposes a new decomposition technique for the
general class of Non-linear Finite Impulse Response (NFIR) systems.
Based on the estimates of projection operators, we construct a set of
coefficients, sensitive to the separated internal system components with
short-term memory, both linear and nonlinear. The proposed technique
allows for the internal structure inference in the presence of unknown
additive disturbance on the system output and for a class of arbitrary
but bounded nonlinear characteristics.
The results of numerical experiments, shown and discussed in the pa-
per, indicate applicability of the method for different types of nonlinear
characteristics in the system.
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1 Introduction

Continuous development of technology results in new challenges in various engi-
neering fields, but some basic fundamental problems remain invariably relevant
and, to some extent, open. Among them, one can indicate modelling of nonlinear
phenomena, [10], often encountered in various types of cyber-physical systems
[9], technical processes, etc. In this paper, we focus on a modelling task for a
wide class of stationary nonlinear dynamical systems with almost unknown in-
ternal structure. Assuming only that the system at hand has a finite memory
and bounded non-linearity, we discuss a family of Non-linear Finite Impulse Re-
sponse (NFIR) objects [5, 6, 11]. However, rather than direct identification, our
goal is to reveal (if it exists) their hidden internal structure, cf. [4, 1], leading
to the decomposition of the system into smaller, short-term memory linear or
non-linear, elements. Such an approach leads to at least two benefits. Firstly,
it potentially simplifies system identification through the reduction of problem
dimensionality. Secondly, it supports inference about the role and properties of
the particular short-term memory substructures. Our main motivation is that
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estimation of the separability of the system can be helpful in choosing a suitable
model structure before estimating the system. The proposed method is based on
the projection operators technique [7, 8] and allows to infer about systems with
almost arbitrary non-linearity in the presence of additive output disturbance.

The paper is organized as follows. Section 2 formally introduces the class of
NFIR systems and defines the general decomposition problem. Sections 3 and 4
introduce the proposed methodology, its motivation, and dedicated algorithms.
Sections 5 and 6 present results of numerical experiments and final remarks.

2 Problem statement

We consider single-input single-output (SISO), time-invariant, Non-linear Finite
Impulse Response (NFIR) systems with memory length d, described by

yn = g(vn) + en (1)

vn = [un, un−1, . . . , un−d], (2)

where g : Rd+1 −→ R1 is an unknown nonlinear characteristic, un, yn are the input
and output signals, respectively, and en is an additive output disturbance; cf.
Fig. 1. Regarding the system (1)–(2), input signal and output noise, we assume:

A1. The system has a finite memory of known length d <∞, and unknown but
bounded nonlinear characteristic g : Rd+1 → R1.

A2. Input un is an i.i.d. sequence, uniformly distributed on the interval [0, 1].
A3. The noise en is a zero mean i.i.d. sequence with a finite variance σ2

e < ∞
and is independent of un.

The requirements above are general in this sense that (for large enough d) the
considered NFIR systems well approximate a general class of fading memory
nonlinear objects, cf. [2]. We admit that assumption A2 is rather restrictive
and, in practice, allows to apply the proposed method if the system at hand
can be actively excited by the user defined inputs, cf. [3]. Assumption A3 is a
standard assumption in literature.

Fig. 1. The system under consideration. The non-linearity g(·) is shown as a mono-
block, as its internal structure is unknown; q is the time-shift operator
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Based on the set of measurements of the input and output of the system,
{(u1, y1), (u2, y2), . . . , (uN , yN )}, captured in a steady state, the aim is to inves-
tigate a potential separability of characteristic g(·) for its alternative represen-
tation, composed of additive, Short-Term Memory Nonlinear blocks (STMN),
cf. exemplary decompositions in Fig. 2b, 2c. Here, short-term memory refers to
splitting nonlinear characteristic g(·), which has memory length d, into a sum of
two or more nonlinear characteristics gξi , each having a memory length shorter
than d. A more formal description is provided in the next sections.

3 Separation algorithm

We begin with a simple observation: due to assumptions A1 and A2, g(·) is
square integrable in a domain of system input. Let {1, 2, . . . , d + 1} be a set
denoting indices of the consecutive arguments of g(·), and ξ1 ⊆ {1, 2, . . . , d+ 1}
be its arbitrary subset. Let ξ2 = {1, 2, . . . , d+ 1} \ ξ1 be a complement of ξ1. We
say that g(·) is separable with respect to (wrt) {ξ1, ξ2} if g ≡ gξ1 + gξ2 , where
gξj is a function depending only on the variables with indices from ξj . Recur-
sive extension of this rule defines separability of g(·) for extended separation
schemes {ξ1, ξ2, . . . , ξµ;µ ≤ d+ 1}. We note that g(·) in (1)–(2) is separable wrt
{ξ1, ξ2, . . . , ξµ} iff S(ξ1, ξ2, . . . , ξµ) := S1−S2 equals zero [7, Th. 2] (cf. [8]), with

S1 =

∫
[0,1](d+1)

∫
[0,1](d+1)

g(s)(g(s) + (µ− 1)g(t))dsdt (3)

S2 =

∫
[0,1](d+1)

∫
[0,1](d+1)

g(s)

µ∑
j=1

g(sξj , t{1,2,...,d+1}\ξj )dsdt, (4)

and with g(sξj , t{1,2,...,d+1}\ξj ) denoting the value of g(·) for the argument com-
posed of ξj–indexed entries of s and ({1, 2, . . . , d+ 1} \ ξj)–indexed entries of t.

Clearly, the above integrals cannot be evaluated analytically without system
knowledge. Yet, based on their stochastic interpretation as expectations wrt
the uniform probability distribution, one can estimate S1 using input-output
observations of the system (cf. assumption A2). The corresponding estimator is

Ŝ1 =
1

|I|
∑
i∈I

yi(yi + (µ− 1)yi+c), (5)

where I = {n : n = (d + 1), 2(d + 1), 3(d + 1), . . . ; d + 1 ≤ n ≤ c(d + 1)},
c = bN/(2(d+ 1))c and |I| is the cardinality of set I.

Slightly more effort is needed to estimate integral S2, since due to argument
(sξj , t{1,2,...,d+1}\ξj ) of non-linearity g, the system has to be excited with a prop-
erly designed input, determined by the actually probed separation scheme ξj .
We, therefore, design a supplementary input sequence U according to Algorithm
1, excite the system with U and collect the corresponding output, denoted as Y .
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Algorithm 1 Data Generation For Active Experiment

1: Input: {u1, u2, . . . , uN}, candidate separation scheme {ξ1, ξ2, . . . , ξµ}
2: c := bN/2c
3: for i = 1 to µ do
4: for j = 1 to c do
5: for k = 1 to d+ 1 do
6: if k ∈ ξi then U(i−1)(d+1)c+(j−1)(d+1)+k := uc(d+1)+k+(d+1)(j−1)

7: else U(i−1)(d+1)c+(j−1)(d+1)+d+1−(k−1) := ud+1−(k−1)+(d+1)(j−1)

8: end if
9: end for

10: end for
11: end for
12: Output: Supplementary input sequence U .

Based on the active experiment outcome, the following estimate of integral
Ŝ2 can be defined

Ŝ2 =
1

|I|
∑
i∈I

µ∑
j=1

yiYc(j−1)(d+1)+i. (6)

Finally, as a resulting estimate of separability coefficient S(ξ1, ξ2, . . . , ξµ) we take

Ŝ(ξ1, ξ2, . . . , ξµ) = Ŝ1 − Ŝ2.

Remark 1. Theoretical analysis of estimates Ŝ1, Ŝ2 is out of scope of the paper.
Here, we only note that Ŝ1 is in fact a biased estimate of S1 (with a bias equal
to the variance of the output noise, σ2

e). In effect, Ŝ is a biased estimate of S,
with bias{Ŝ} = σ2

e . This is exploited in the numerical experiments in Section 5.

4 Short-Term Memory Separation Searching

We are now about to apply empirical coefficient Ŝ in decomposition of NFIR
systems (with total memory length d) into a parallel connection of Short-Term
Memory Nonlinear blocks (STMN); cf. Fig. 2b, 2c. Assuming its existence, such
a representation is equivalent to the requirement that the genuine separation
scheme, {ξ1, ξ2, . . . , ξµ;µ ≤ d+ 1}, is an ordered set of indices. For instance, for
d = 2, g(·) could be separable with respect to ξ1 = {1, 2}, ξ2 = {3}, but not
with respect to ξ1 = {1, 3} and ξ2 = {2}. Hence, the resulting representation of
the system, if exists, is composed of the Short-Term Memory blocks. In general,
observe that if g(·) is separable with respect to ξp = {1, 2, . . . , p} and ξq =
{1, 2, . . . , q}, some p < q, then it is also separable with respect to {1, 2, . . . , p}
and {p+1, p+2, . . . , q}. Therefore, the proposed separation procedure estimates
all the coefficients Ŝ for ξp = {1, . . . , p}, vs. its complement for p = 1, 2, . . . , d+1,
and the outcome is next used as a recommendation for the final inference about
the considered NFIR system separation scheme.
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Algorithm 2 Short-Term Memory Separation Searching

1: Input: {(u1, y1), (u2, y2), . . . , (uN , yN )}
2: for p = 1 to d+ 1 do
3: Design supplementary input U : apply Algorithm 1. for ξp = {1, . . . , p}.
4: Excite the system with U and measure the corresponding output sequence Y .
5: Compute Ŝ = Ŝ1 − Ŝ2 according to (5)–(6).
6: end for
7: Output: Ŝ(ξ1), Ŝ(ξ2), . . . , Ŝ(ξd+1).

Remark 2. Note that Ŝ(ξd+1) with ξd+1 = {1, . . . , d + 1} is an estimate of σ2
e .

Indeed, for the above-mentioned separation scheme, characteristic g(·) is ‘sepa-
rable’, and therefore, due to biasness of Ŝ (see Remark 1), it converges to σ2

e .

Clearly, any system (1)–(2) is ‘separable’ with respect to the full set of indices
ξd+1 = {1, 2, ..., d+ 1}, and therefore, based on the observation in Remark 2, we
use Ŝ(ξd+1) as a reference for the relative assessing of Ŝ(ξ1), Ŝ(ξ2), . . . , Ŝ(ξd). If
g(·) is not separable for some subset of indices, the corresponding value of Ŝ is
high (for large enough N) with respect to Ŝ(ξd+1). Hence, for the interpretational
purposes, all the values Ŝ(ξ1), Ŝ(ξ2), . . . are scaled according to the formula

S̄(ξp) = |Ŝ(ξp)|/
∑d+1
i=1 |Ŝ(ξi)|. Finally, the comparison of S̄(ξd+1) with respect

to S̄(ξp) is used as the indicator of separability. Although the above approach is
not yet theoretically justified, the results of numerical experiments are promising,
as we show in the next section.

Remark 3. The proposed method has a simple construction and linear time com-
plexity with respect to N , although the computing time strongly depends on the
total system memory length d.

5 Numerical experiments

In this section, we present selected results of numerical experiments, performed
for the NFIR systems with various types of admissible separation schemes and
memory length d = 9. The following types of systems are considered: (A) non-

separable system with non-linearity gA(vn) =
∑d
i=1(100(u2n−i − un−i+1)2 +

(un−i−1)2), see Fig.2a, (B) partially separated system with non-linearity gB(vn) =∑b(d+1)/2c
i=0 (100(un−2i+1 − un−2i)2), see Fig. 2b, and (C) fully-separable system

gC(vn) =
∑d
i=0(u2n−i − 10 cos (2πun−i) + 10), see Fig. 2c. All the systems, A,

B, C, are driven with uniformly distributed signal U [0, 1], scaled internally to
U [−2, 2], U [−3, 3], U [−5.12, 5.12], respectively, cf. [7]. We ran the simulations for
the three different numbers of samples N and three levels of output noise, as
indicated in Table 1. According to the results (see Table 1), one can infer which
sets of indices indicate separability. Note, that for S̄(ξ10) in the case of systems
A and B the results are very small (but in fact S̄(ξ10) > 0). This is also the
case for indices revealing separability. However, different type of the results are
visible for system C, where most of the values are high compared to S̄(ξ10).
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Fig. 2. Internal structure of a) a non-separable system A, b) a partially separable
system B, and c) a fully separable system C. d) algorithm outcomes for the systems
A, B, and C. Notice the small relative values of ξ10 for systems A, B and a higher one
(with respect to ξ1, . . . ξ9) for system C (in red).

6 Conclusions and future work

A new separation method was introduced for NFIR systems, representing a wide
class of non-linear models with finite memory. The proposed method allows for
the recovering of hidden short-term memory structures in the system under mild
requirements regarding the form of non-linearity in the system. The method
was investigated numerically for the systems with various levels of potential
separability. According to the results shown in Table 1, the method correctly
indicates separability patterns in the considered cases.

Future work includes a theoretical analysis in which separability is deter-
mined based on different threshold levels. Furthermore, the convergence rates of
the proposed estimates, as well as the computational complexity of the method
with respect to the system memory length will be thoroughly investigated.
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