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Abstract. We discuss the application of a supervised machine learning
method, random forest algorithm (RF), to perform parameter space ex-
ploration and sensitivity analysis on ordinary differential equation mod-
els. Decision trees can provide complex decision boundaries and can help
visualize decision rules in an easily digested format that can aid in under-
standing the predictive structure of a dynamic model and the relation-
ship between input parameters and model output. We study a simplified
process for model parameter tuning and sensitivity analysis that can be
used in the early stages of model development.

Keywords: Parameter estimation · Machine learning · Sensitivity anal-
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1 Introduction

Machine learning, a sub-field of artificial intelligence, is most commonly used to
produce an accurate classifier given data. For example, given a data set contain-
ing various predictors such as blood pressure and age, a machine learning model
could be used to predict whether a given patient has diabetes. This type of ap-
plication requires adequate experimental data to produce a good classifier, and
then the function of such a machine learning model is to accurately classify a new
case given predictors. Dynamical systems models, in contrast, offer greater flex-
ibility and more information about the time course of a system rather than just
an outcome. Yet these models contain parameters that can be hard to estimate
given limited data and model complexity, and the effectiveness of a model de-
pends on the quality of the connection between model parameters and output. In
deterministic models such as the ordinary differential equations model presented
here, the only model inputs are the model parameters and initial conditions and
so these are the sources of any uncertainty in model prediction. Before such a
model can be deemed useful for prediction, this uncertainty must be quantified
by performing sensitivity analysis. This is a critical step in the model building
process, since knowledge of influential parameters will guide experimental de-
sign, data assimilation, parameter estimation, and model refinement in the form
of complexity reduction.

Machine learning techniques have previously been applied to the problem
of parameter estimation in ordinary differential equations, and to identifying
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multicollinearity among parameters. For example, support vector clustering (a
combination of support vector machine and clustering) has been used for model
parameter estimation [24], and clustering (an unsupervised learning method) has
also been used to reduce the number of parameters that need to be estimated
by identifying collinearities in pairwise groupings of parameters [6, 23]. Neural
networks have also been combined with differential equations to produce models
with large data sets [18, 19], and in the case of limited data, sparse identification
of nonlinear dynamical systems has been used to discover model structure [5] .
Since machine learning uses pattern recognition methods to construct classifiers
for data sets, it can also be used to uncover the predictive structure of a model,
i.e. the strength of the connection between inputs and outputs. If the goal of
developing a good dynamical model is that the model can produce an expected
range of biologically reasonable outcomes (epidemic or endemic in SIR models,
for example, or survival versus extinction in a predator prey model), then we al-
ready have some idea of how output could be classified. When we know the class
of each observation in the data set, we can use a supervised learning method to
classify future observations. Decision tree algorithms, also called classification
and regression tree algorithms (CART), developed by Breiman [3], are one ex-
ample of many available supervised learning methods, and this is the method we
apply here. Decision trees are ideal for parameter space exploration and global
sensitivity analysis because the complex relationships between parameters can
be easily visualized and decision rules can guide parameter subset selection.

By combining uncertainty analysis (UA) using Latin Hypercube Sampling,
as developed by Marino et al. [12], and sensitivity analysis using decision trees,
intuition can be gained about how partitions in parameter space produce differ-
ent model behaviors. In this way we can gain early insight into what behaviors
the model is capable of producing and which parameters are driving outcomes.
This preliminary exploration can also serve several practical purposes:

– Visual communication of the significance of model parameters to
non-mathematicians. The tree format allows interactions between multi-
ple parameters and the associated output to be represented simultaneously.
In this way it can be made clear that the same behavior can result from
different combinations of parameters. Most other learning-based methods of
parameter exploration are not easily visualized or are restricted to pairwise
parameter plots.

– Sensitivity analysis. The first step in estimating model parameters is to
identify sensitive parameters - the parameters that impact model output [23].
This is easily obtained from decision tree algorithms as a feature importance
measure. In general, this a very quick way of getting a first look at the
key parameters that drive model behavior. We can change class definitions
dependant on the behavior for which we want to identify these important
parameters; for example, instead of endemic versus epidemic we can consider
stable versus unstable.

– Decision rules can be used to find representative sets for simula-
tion. Collections of parameters that serve as input to a model can represent
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different hypothetical individuals and sub-populations in a biological model.
To model these individuals or groups specifically, we can choose parameter
sets from value ranges restricted to those suggested by a decision tree.

– Decision rules can be used to set bounds on parameter space for
fitting. Given experimental data, we know the ultimate class of the observa-
tion. Setting bounds on the parameter space and choosing initial parameter
values for data fitting is nontrivial and can be time consuming. Generation
of a decision tree from simulated data is relatively fast and straightforward.
We can then refer to the decision rules on parameters that result in the same
class the observation is in to initiate parameter estimation.

– Decision rules can be used to restrict parameters to those that
produce biologically reasonable behavior. When representative sub-
sets of parameters found using decision rules are investigated and found to
produce non-physiological behavior, these parameter sets can be excluded or
constraints can be identified. This could also be done by labeling output as
either biologically viable or nonviable in the data set as the class label.

To perform sensitivity analysis using decision tree algorithms, we first perform
uncertainty analysis by sampling model output over a range of parameter values.
Next, a data set is created by appending associated model output to the matrix
containing all sampled parameter sets. Each parameter set, together with its
output, is then given a binary class label that characterizes the behavior of
interest which will serve as the class in the decision tree classifier. Since model
output is continuously defined, this is done by defining a criteria on output
values which transforms each output value to one of the two class labels. The
decision tree is then trained, pruned, and tested on the data. Given acceptable
classification accuracy, the tree, or an ensemble of trees, can then be used to
analyze parameter importance and identify subsets of parameters that produce
particular model outcomes.

2 Methods

First, we perform uncertainty analysis using Latin Hypercube Sampling (LHS),
the most efficient of the Monte Carlo methods. LHS is a stratified sampling
without replacement method developed by McKay et al. [14, 12, 8, 10] in which
each parameter is independently sampled from a statistical distribution in order
to efficiently create an unbiased collection of parameter sets that can each be
used to generate model output, thus simulating a variety of responses. The choice
of statistical distribution from which to sample will be determined by knowledge
of the modeled phenomena or an examination of available data. In the absence of
information about the underlying distribution, the usual choice is to sample from
a uniform distribution, with maximum and minimum values for each parameter
determined by physiological constraints or through experimentation.

Next, we combine the matrix of parameter vectors with a vector (or vectors)
of model output sampled at a particular time or times where we expect behavior
to differ for different outcomes. Each row is labeled with a binary classifier
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according to a criterion on model output values which transforms each output
value to a class label. A simplified table showing the representation of data is
given in Figure 1, where the classes are labeled “0” or “1”.

In statistical learning, measurements are first made on an observation. The
goal is to predict which class the observation is in based on the measurements.
In this case, the measurements are the parameters ~θ sampled using LHS which
serve as input to the model for simulation and generation of model output. Each

observation is a vector of m measurements ~θ(i) =
[
θ
(i)
1 , θ

(i)
2 , · · · , θ(i)m

]
which are

the parameter sets that are used in combination as model input, and Ω is the
parameter space of all possible parameter vectors which is defined by the LHS
sample space.

Next, we employ a feature importance calculation with random forest algo-
rithm (RF) to determine the sensitive parameters. A RF is composed of a large
number of individual decision trees which sample from the data set with replace-
ment [9, 4, 1]. Finally, we examine an individual decision tree to obtain the rules
on parameters which lead to each of the states of interest. Using these rules, we
obtain subsets of parameters that may exhibit different behavior.

3 Simple Benchmark model example

Here we illustrate the process of using decision trees to identify parameter subsets
and significant parameters, decision tree sensitivity analysis). Ultimately, we
will apply this method to more complex, large-scale systems which can benefit
from its simplicity, but here we aim to compare the method to more traditional
approaches, including solution of the sensitivity equations, so a simple model was
chosen. We test the method by comparing results to global sensitivity analysis
performed using PRCC as well as the magnitude of computed local sensitivities
integrated over time for a well studied model of HIV infection.

3.1 Decision tree sensitivity analysis example: an HIV infection
model

Perelson et al. developed a simplified model of HIV interaction with T cells
consisting of four differential equations with eight parameters that model con-
centration of uninfected (T ), latently infected (T ∗), and actively infected (T ∗∗)
CD4+ cells and free infectious virus particles [17]:

dT

dt
= s− µTT + rT

(
1− T + T ∗ + T ∗∗

Tmax

)
− k1V T (1)

dT ∗

dt
= k1V T − µTT

∗ − k2T ∗ (2)

dT ∗∗

dt
= k2T

∗ − µbT
∗∗ (3)

dV

dt
= NµbT

∗∗ − k1V T − µV V. (4)
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mathematical

model
A LHS parameter sampling 

PDF

class 0

class 1

...

classify

output Y

generate time-series data

for N parameter sets

output B

C D create data set

D = [ X Y ]

E random forest classifier

...

...

Fig. 1: Process overview. (A) An example mathematical model, an n-
dimensional system of ordinary differential equations, where ~x represents a vec-
tor of state variables and ~θ is the parameter vector with m model parameters.
Model output y depends on state variables and parameters. (B) LHS sampling
is performed over all non-fixed parameters, by random sampling of each parame-
ter without replacement from a specified probability density function (a uniform
distribution is pictured) over N equally-size bins. This creates N parameter sets,
each containing all m model parameters, to form LHS matrix X. (C) N sets of
time-series data is produced using all parameter sets. A vector Y of model output
sampled at a specified time is selected as the response variable. (D) Assign class
label to each output y and create data set D, the set of parameter sets and their
associated labeled output. (E) Train random forest classifier with bootstrapping.
(F) Obtain feature or permutation importance measure on averaged results as
a parameter sensitivity measure. Examine decision trees individually to obtain
parameter subsets for parameter space exploration.
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Parameters and constants that Perelson et al. defined are in Table 1. Initial
conditions used in the model are T (0) = 1000 mm-3, T ∗(0) = T ∗∗(0) = 0, and
V (0) = 10−3 mm-3. Marino et al. performed uncertainty analysis using LHS
and sensitivity analysis using PRCCs, and the range used for sampling is also
given in Table 1. We will use the same ranges on parameters for LHS sampling
to create a data set for constructing decision trees, for comparison to PRCC
results.

Two steady states are possible in this model: an uninfected state EB with
no virus, and an endemically infected state EP with a constant level of the virus
[12, 17].

Table 1: Parameters and constants from Perelson et al. [17] and parameter ranges
used for LHS sampling by Marino et al. [12].
Parameter Description [17] Default [17] LHS range [12]

s Rate of supply of CD4+ T cells from
precursors

10 day-1 mm-3 [10−2, 50]

r Rate of growth of CD4+ 0.03 day-1 [10−4, 0.2]

µT Death rate of infected and latently in-
fected CD4+ cells

0.02 day-1 [10−2, 50]

Tmax Maximum CD4+ population level 1500 mm-3 1500

k1 Rate at which CD4+ cells become in-
fected

2.4 × 10−5 mm3

day-1
[10−7, 10−3]

k2 Rate at which latently infected CD4+

cells become actively infected
3 × 10−3 day-1 [10−5, 10−2]

µb Death rate of actively infected
CD4+ cells

0.24 day-1 [10−1, 0.4]

N Number of free virus produced by
lysing a CD4+ cell

Not fixed [1, 23]

µV Death rate of free virus 2.4 day-1 [10−1, 10]

Perelson et al. discovered that a criterion for achieving the uninfected steady
state EB is

N <
(k2 + µT )µV + k1T0

k1k2T0
, (5)

and showed further showed analytically that parameters contained in this critical
value for N , defined as Ncrit, are bifurcation parameters.

Generating the data set LHS was performed in MATLAB with sample size
N = 1000, using code provided by Marino et al. [13]. A data matrix was cre-
ated such that each row of the matrix contained a parameter set consisting of
parameters s, r, µT , k1, k2, µb, µV , and N was sampled from a uniform distribu-
tion. The model given in Equations (1)-(4) tracks four variables that are possible
model outputs to define as a classifier in decision tree sensitivity analysis. We
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chose concentration of free virus particles, V , as a binary classifier, sampled at
time t = 4000 days, since this output should characterize the two steady states
of biological interest: uninfected (EB) or endemically infected (EP ). We labeled
model output as uninfected if its value was near zero (V < 1 × 10−6), and en-
demically infected otherwise. Finally, the data set was balanced such that each
class was equally represented, resulting in a data set of size N = 434 in the form
given in Figure 1.

Random forest for the model of HIV infection In the RF algorithm, indi-
vidual decision trees in the forest are built using bootstrap samples selected with
replacement from the total data set, and the predictions of all trees are averaged
in the final step. In this way, variance is reduced. For each tree, observations not
used for fitting (out-of-bag or OOB observations) can then be used for validation
using each of the individual decision tree models for which it was not contained
in the bootstrap sample. The out-of-bag score (OOB score) is then the number
of correctly predicted observations from the out of bag sample.

There are many RF implementations available. In our example, we use Ran-
domForestClassifier in the Python scikit-learn machine learning package [16]. A
brief overview of the general RF algorithm, with reference to important argu-
ments that can be used to tune the model, is:

1. Draw a same-size bootstrap sample from the original data set (argument:
number of samples to draw, max sample). Observations left out of the sample
(OOB data) is used as an unbiased accuracy measure (out-of-bag score) and
in computing feature importance.

2. Train a tree on the bootstrapped sample by randomly selecting features with-
out replacement at each node (argument: number of features to consider at
each split, max features), then splitting according to the feature choice that
optimizes the objective function (argument: splitting criterion, criterion).

3. Repeat (argument: number of trees in forest, n estimators).
4. Aggregate the predictions of all trees by majority voting. The OOB score

of the RF is then computed as the averaged correct predictions of OOB
observations using trees for which they are OOB.

5. The feature importance, used here as a measure of parameter sensitivity, is
averaged over all trees.

In Figure 2, we show the impact of tuning several of the RF algorithm pa-
rameters on prediction accuracy for a RF trained on the LHS-generated data
for the HIV dynamical system, with the eight model input parameters defined
in Table 1 as features and model output variable free virus concentration after
4000 days defined as class. In this example, limiting the number of model input
parameters to consider as candidate predictors at each split does not impact
model performance. A minimum number of trees in the forest to achieve a high
accuracy as measured by OOB score could be as low as 50 trees, however for a
data set of this size a larger forest is also a reasonable choice given the negligible
difference in computation time. Large decision trees can suffer from overfitting,
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so it is best to choose the smallest tree size with sufficient classification accuracy.
Here it appears that a maximum tree depth of four, or even three, is sufficient.
Boulesteix et al. [2] contains an excellent practical guide to RF tuning parame-
ters important in computational biology applications.

max_features='sqrt'

max_features='None'

n_estimators
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B
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o
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max_depth

Fig. 2: Dependence of OOB score on RF tuning parameters. On the
left, out-of-bag accuracy score is computed for varying number of trees in the
forest (n estimators), for two different values of number of features (model
parameters) to consider at each split (max features). On the right, out-of-bag
accuracy score is computed for varying tree size ((max depth).

Feature importance: comparison to PRCC and local sensitivity analy-
sis. A comparison between RF feature importance, PRCCs, and sensitivities as
measures of parameter importance is shown in in Figure 3, with sensitive param-
eters as determined by each method appearing with (*). PRCCs (Partial Rank
Correlation Coefficients) uses partial rank correlation to first rank transform the
vectors containing sample parameters and associated outputs, and then calcu-
lates the correlation between each parameter and output after discounting the
effects of the remaining parameters [12, 7]. Thus this global method apportions
variability in model output to variability in parameters, allowing us to determine
how each parameter effects model output (sensitivity analysis). Traditional, local
sensitivity analysis methods, unlike RF feature importance or PRCC methods,
neglect relationships between parameters and consider only the impact of in-
dividual parameters on model output by holding all others fixed. These values
are obtained by integrating the partial differential equations for each parame-
ter with respect to free virus V over the whole time course, something that is
computationally intensive or impossible for a larger model.

In comparison, feature importance is calculated as part of the RF classifi-
cation algorithm in scikit-learn [16]; this is the total amount that the selection
criterion decreases with each split on the given feature (the selection criterion
used here is Gini impurity). Since we are splitting on parameters with model
output defined as class, this is a parameter importance measure that indicates
which parameters contribute most to determining model outcomes which im-
plicitly takes into account interactions between model parameters (unlike tradi-
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tional, local methods) [2]. Unlike PRCCs, these are values that range from 0 to
1 and are normalized to sum to 1. Averaged results for a random forest of 100
decision trees are shown in Figure 3, and we expect these results to be unbiased
since parameters are continuous variables [21]. With a feature importance cut-
off of 5%, we identify the same important parameters identified analytically by
Perelson et al. as bifurcation parameters, which in turn are the same parameters
identified by PRCC and traditional methods.

Sensitivity
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Fig. 3: Comparison of parameter importance measures. Parameters denoted sen-
sitive by each measure are denoted with (*). (A) Averaged feature importance
estimates for a random forest of 100 decision trees. The parameter importance
cutoff was set to 5%, with parameters contributing more than 5% to reduction
in the selection criterion considered sensitive. (B) Magnitude of the computed
sensitivities of free virus V to parameters integrated over time, obtained by solv-
ing the partial differential sensitivity equations. (C) PRCC results from Marino
et al. [12] computed by sampling HIV model output at time t = 4000 days with
sample size of N = 200. Additional PRCC values, including time t = 2000 days
and varying sample sizes, are given in Supplement D, Table D.1 in [12].

Parameter subset selection A unique benefit of decision tree classification
algorithms is visualization of complex relationships among features. While we
used a random forest of trees to check accuracy and determine parameter im-
portance, for visualization and interpretation of decision rules individual trees
are examined.
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Fig. 4: Decision tree for the HIV model. Classes are labeled as uninfected
(EB) or endemically infected (EP ). In the tree, each node has a decision rule
based on a parameter that splits the data. If evaluation of the rule has a true
result, the data will be sorted to the left in the split. A class is designated at
each node depending on which class is most represented (the number of data
points in each class is given in “value”.) For example, from the leftmost branch
of the tree, we see if 117.9 ≤ N ≤ 180.2 and k2 ≤ 0.009, the predicted model
steady state is uninfected.

For example, the decision tree shown in Figure 4 can be interpreted as col-
lections of parameter sets that are input into the model that produce particular
steady states. Classes are labeled as uninfected (EB , no virus remains in the long
term) or endemically infected (EP , a constant level of virus remains in the long
term). In the tree, each node has a decision rule based on one of the parameters
that splits the data. If evaluation of the rule has a true result, the data will be
sorted to the left in the split. A class is designated at each node depending on
which class is most represented (the number of data points in each class is given
in “value”.) From the leftmost branch of the tree, we see if 117.9 ≤ N ≤ 180.2
and k2 ≤ 0.009, where N is the number of free virus produced by lysing a CD4+

cell and k2 is the transition rate of CD4+ cells from latently to actively infected,
the predicted model steady state is uninfected unless µb ≤ 0.229.

A decision tree can exported in text format that is easily translated to code
for setting parameter ranges in running model simulation. For example, using
the export text function in Python scikit-learn for the decision tree in Figure
4 results in the output given in Listing 1.1 [16].

Listing 1.1: Text output of decision rules from export text function in Python
sklearn for the decision tree in Figure 4
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|−−− N <= 180.195709
| |−−− k2 <= 0.009193
| | |−−− c l a s s : 0
| |−−− k2 > 0.009193
| | |−−− mu b <= 0.229289
| | | |−−− c l a s s : 1
| | |−−− mu b > 0.229289
| | | |−−− c l a s s : 0
|−−− N > 180.195709
| |−−− k1 <= 0.000130
| | |−−− mu T <= 0.037840
| | | |−−− c l a s s : 1
| | |−−− mu T > 0.037840
| | | |−−− c l a s s : 0
| |−−− k1 > 0.000130
| | |−−− k2 <= 0.002005
| | | |−−− c l a s s : 0
| | |−−− k2 > 0.002005
| | | |−−− c l a s s : 1

These rules on parameters can be used to guide simulation and parameter
fitting to get a sense of the different paths to the same outcomes. For example,
given the tree in Fig 4 and the decision rules in Listing 1.1, we can choose
parameter sets that satisfy decision rules

1. N > 180.19571, k1 ≤ 0.00013, µT ≤ 0.03784 (parameter inputs sampled from
these ranges pictured in Figure 5A)

2. N > 180.19571, k1 > 0.00013, k2 > 0.00201 (parameter inputs sampled from
these ranges pictured in Figure 5B)

3. N ≤ 180.19571, k2 > 0.00919, µb ≤ 0.22929 (parameter inputs sampled from
these ranges pictured in Figure 5C).

The rules allow us to select collections of parameters that, when input in
the model, ultimately lead to the endemically infected steady state yet may ex-
hibit different behavior. Figure 5 depicts free virus versus time, with parameters
sampled from three regions of parameter space determined by each of the three
decision rules discovered with decision tree sensitivity analysis.

Parameter sets sampled from ranges set by decision rules produce different
behavior across groups even though most of trajectories end up in the endemi-
cally infected state as predicted. As compared to Figure 5A, the twenty simula-
tions run using the Rule 2 inputs shown in Figure 5B have an earlier peak, and
some exhibit an early spike in free virus concentration. In contrast to simulations
run using Rule 1 and Rule 2, simulations run using Rule 3 shown in Figure 5C
all have much lower magnitude of free virus concentration over the entire time
course of infection. This is not meant to be an exhaustive demonstration of how
decision rules could be used and is intended to show that we gain insight from
this simple approach if what are interested in is primarily an exploration of pa-
rameter space. We could also consider fixing all parameters that were not found
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Fig. 5: Free virus (model output) versus time in days. The three decision
tree paths that lead to the endemically infected steady state are used to set
parameter ranges for sampling. In (A), parameter inputs to the model are sam-
pled from ranges set by Rule 1 =N > 180.19571, k1 ≤ 0.00013, µT ≤ 0.03784. In
(B), parameter inputs to the model are sampled from ranges set by Rule 2=N >
180.19571, k1 > 0.00013, k2 > 0.00201. In (C), parameter inputs to the model are
sampled from ranges set by Rule 3=N ≤ 180.19571, k2 > 0.00919, µb ≤ 0.22929.

sensitive by the feature importance metric before allowing only the sensitive
parameters to vary within boundaries set by decision rules, for example.

4 Discussion and conclusion

We have demonstrated a process for qualitative analysis of dynamical model be-
havior using decision trees. The main advantages of this method are the clarity
in the connection between the model outcomes of interest and the parameters,
its ease of implementation, the simultaneous attainment of both important pa-
rameters (sensitivity analysis) and subsets of parameters linked to particular
outcomes (parameter subset selection), and the visualization of parameter rela-
tionships.

This method employs simulated data, which is a limitation that allows early
investigation of model behavior that can be expanded into a larger investigation
of parameter space as experimental data becomes available. In addition, as with
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most sampling-based global sensitivity methods, experimentation is required to
find an adequately sized data set to produce a good classifier. A benefit of this
method is that RF is known to implicitly account for interactions between fea-
tures, an important consideration where features are dynamical systems model
parameters [2, 20]; however, no information about the nature of interactions is
provided that can be obtained without sorting through tree decision rules. Meth-
ods for systematically analyzing RF results to obtain more information about
interactions have, however, been proposed in bioinformatics applications [22, 25,
11, 15].

In future work, we propose to further investigating how interactions among
parameters could be analyzed by comparing splitting attributes on parameters
across decision trees in a random forest, for more complex models with known
interactions. We will apply this process to such a larger-scale ordinary differential
equations model with many parameters next, as well as to an agent-based model,
for which traditional methods of sensitivity analysis are more difficult to conduct
and results are hard to interpret.
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