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Abstract. We propose the Automatic-differentiated Physics-Informed
Echo State Network (API-ESN). The network is constrained by the phys-
ical equations through the reservoir’s exact time-derivative, which is com-
puted by automatic differentiation. As compared to the original Physics-
Informed Echo State Network, the accuracy of the time-derivative is
increased by up to seven orders of magnitude. This increased accuracy
is key in chaotic dynamical systems, where errors grows exponentially
in time. The network is showcased in the reconstruction of unmeasured
(hidden) states of a chaotic system. The API-ESN eliminates a source of
error, which is present in existing physics-informed echo state networks,
in the computation of the time-derivative. This opens up new possibilities
for an accurate reconstruction of chaotic dynamical states.

Keywords: Reservoir Computing · Automatic Differentiation · Physics-
Informed Echo State Network.

1 Introduction

In fluid mechanics, we only rarely have experimental measurements on the entire
state of the system because of technological/budget constraints on the number
and placement of sensors. In fact, we typically measure only a subset of the state,
the observed states, but we do not have data on the remaining variables, the hid-
den states. In recent years, machine learning techniques have been proposed to
infer hidden variables, which is also known as reconstruction. A fully-data driven
approach to reconstruction assumes that data for the hidden states is available
only for a limited time interval, which is used to train the network [8]. On the

? A. Racca is supported by the EPSRC-DTP and the Cambridge Commonwealth,
European & International Trust under a Cambridge European Scholarship. L. Magri
is supported by the Royal Academy of Engineering Research Fellowship scheme and
the visiting fellowship at the Technical University of Munich – Institute for Advanced
Study, funded by the German Excellence Initiative and the European Union Seventh
Framework Programme under grant agreement n. 291763.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_25

https://dx.doi.org/10.1007/978-3-030-77977-1_25


2 A. Racca and L. Magri

other hand, a physics-informed approach to reconstruction employs the govern-
ing equations [4, 10]. In this work, we use automatic differentiation to eliminate
the source of error in the Physics-Informed Echo State Network, which originates
from approximating the time-derivative of the network [4]. Automatic differenti-
ation records the elementary operations of the model and evaluates the derivative
by applying the chain rule to the derivatives of these operations [2]. With auto-
matic differentiation, we compute exactly the time-derivative, thereby extending
the network’s ability to reconstruct hidden states in chaotic systems. In section 2,
we present the proposed network: the Automatic-differentiated Physics-Informed
Echo State Network (API-ESN). In section 3, we discuss the results. We sum-
marize the work and present future developments in section 4.

2 Automatic-differentiated Physics-Informed Echo State
Network (API-ESN)

We study the nonlinear dynamical system

ẏ = f(y), (1)

where y ∈ RNy is the state of the physical system, f is a nonlinear operator, and
˙ is the time-derivative. We consider a case where y consists of an observed state,
x ∈ RNx , and a hidden state, h ∈ RNh : y = [x;h], where [· ; ·] indicates vertical
concatenation and Ny = Nx +Nh. We assume we have non-noisy data on x, and
its derivative, ẋ, which can be computed offline. We wish to reconstruct h given
the data. The Nt+1 training data points for the observed states are x(ti) for i =
0, 1, 2, . . . , Nt, taken from a time series that ranges from t0 = 0 to tNt

= Nt∆t,
where ∆t is the constant time step. We introduce the Automatic-differentiated
Physics-Informed Echo State Network (API-ESN) to reconstruct h at the same
time instants, by constraining the time-derivative of the network through the
governing equations. The network is based on the Physics-Informed Echo State
Network (PI-ESN) [3, 4], which, in turn, is based on the fully data-driven ESN [5,
9]. In the PI-ESN, the time-derivative of the network is approximated by a first-
order forward Euler numerical scheme. In this work, we compute the derivative
at machine precision through automatic differentiation [1, 2].

In the API-ESN, the data for the observed state, x, updates the state of the
high-dimensional reservoir, r ∈ RNr , which acts as the memory of the network.
At the i-th time step, r(ti) is a function of its previous value, r(ti−1), and the
current input, x(ti). The output is the predicted state at the next time step:
ŷ(ti) = [x̂(ti+1); ĥ(ti+1)] ∈ RNy . It is the linear combination of r(ti) and x(ti)

r(ti) = tanh (Win[x(ti); bin] + Wr(ti−1)) ; ŷ(ti) = Wout[r(ti);x(ti); 1] (2)

where W ∈ RNr×Nr is the state matrix, Win ∈ RNr×(Nx+1) is the input matrix,
Wout ∈ RNy×(Nr+Nx+1) is the output matrix and bin is the input bias. The
input matrix, Win, and state matrix, W, are sparse, randomly generated and
fixed. These are constructed in order for the network to satisfy the echo state
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property [9]. The input matrix, Win, has only one element different from zero
per row, which is sampled from a uniform distribution in [−σin, σin], where σin is
the input scaling. The state matrix, W, is an Erdős-Renyi matrix with average
connectivity 〈d〉. This means that each neuron (each row of W) has on average
only 〈d〉 connections (non-zero elements). The value of the non-zero elements is
obtained by sampling from an uniform distribution in [−1, 1]; the entire matrix
is then scaled by a multiplication factor to set its spectral radius, ρ. The only
trainable weights are those in the the output matrix, Wout. The first Nx rows

of the output matrix, W
(x)
out, are computed through Ridge regression on the

available data for the observed state by solving the linear system(
RRT + γI

)
W

(x)T

out = RXT , (3)

where X ∈ RNx×Nt and R ∈ R(Nr+Nx+1)×Nt are the horizontal concatenation of
the observed states, x, and associated reservoir states, [r;x; 1], respectively; γ is
the Tikhonov regularization factor and I is the identity matrix [9]. The last Nh

rows of the output matrix, W
(h)
out, are initialized by solving (3), where we embed

prior knowledge of the physics by substituting X with H ∈ RNh×Nt , whose rows
are constants and equal to the components of the estimate of the mean of the

hidden state, h ∈ RNh . To train W
(h)
out only, we minimize the loss function, LPhys

LPhys =
1

NtNy

Nt∑
j=1

|| ˙̂y(tj)− f(ŷ(tj))||2, (4)

where ||·|| is the L2 norm; LPhys is the Mean Squared Error between the time-

derivative of the output, ˙̂y, and the right-hand side of the governing equations
evaluated at the output, ŷ. To compute ˙̂y, we need to differentiate ŷ with respect
to x, because the time dependence of the network is implicit in the input, x(t),
i.e. dŷ

dt = ∂ŷ
∂x

dx
dt . The fact that ˙̂y is a function of ẋ means that the accuracy of

the derivative of the output is limited by the accuracy of the derivative of the
input. In this work, we compute ẋ exactly using the entire state to evaluate f(y)
in (1). Furthermore, ŷ depends on all the inputs up to the current input due
to the recurrent connections between the neurons. In Echo State Networks, we
have the recursive dependence of the reservoir state, r, with its previous values,
i.e., omitting the input bias for brevity

r(ti) = tanh

(
Winx(ti) + Wtanh

(
Winx(ti−1) + Wtanh(Winx(ti−2) + . . . )

))
. (5)

Because of this, the time-derivative of the current output has to be computed
with respect to all the previous inputs in the training set

˙̂y(ti) =
dŷ

dt

∣∣∣∣
ti

=
∂ŷ(ti)

∂x(ti)

dx

dt

∣∣∣∣
ti

+
∂ŷ(ti)

∂x(ti−1)

dx

dt

∣∣∣∣
ti−1

+
∂ŷ(ti)

∂x(ti−2)

dx

dt

∣∣∣∣
ti−2

+ . . . (6)

This is computationally cumbersome. To circumvent this extra computational
cost, we compute ˙̂y through the derivative of the reservoir’s state, ṙ = ∂r

∂x
dx
dt . By
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differentiating (2) with respect to time, we obtain ˙̂y = Wout[ṙ; ẋ; 0]. Because ṙ is
independent of Wout, ṙ is fixed during training. Hence, the automatic differen-
tiation of the network is performed only once during initialization. We compute
ṙ as a function of the current input and previous state as the network evolves

ṙ(ti) =
dr

dt

∣∣∣∣
ti

=
∂r(ti)

∂x(ti)

dx

dt

∣∣∣∣
ti

+
∂r(ti)

∂r(ti−1)

dr

dt

∣∣∣∣
ti−1

, (7)

in which we initialize ṙ(t0) = 0 and r(t0) = 0 at the beginning of the washout
interval (the washout interval is the initial transient of the network, during which
we feed the inputs without recording the outputs in order for the state of the
network to be uniquely defined by the sequence of the inputs [9]).

3 Reconstruction of hidden states in a chaotic system

We study the Lorenz system [7], which is a prototypical chaotic system that
models Rayleigh–Bénard convection

φ̇1 = σL(φ2 − φ1), φ̇2 = φ1(ρL − φ3)− φ2, φ̇3 = φ1φ2 − βLφ3, (8)

where the parameters are [σL, βL, ρL] = [10, 8/3, 28]. To obtain the data, we
integrate the equation through the implicit adaptive step scheme of the function
odeint in the scipy library. The training set consists of Nt = 10000 points with
step ∆t = 0.01LTs, where a Lyapunov Time (LT) is the inverse of the leading
Lyapunov exponent Λ of the system, which, in turn, is the exponential rate at
which arbitrarily close trajectories diverge. In the Lorenz system, Λ = LT−1 '
0.906. We use networks of variable sizes from Nr = 100 to Nr = 1000, with
parameters 〈d〉 = 20, γ = 10−6 and ρ = 0.9 [8]. We set σin = 0.1, bin = 10,
and h = 10, to take into account the order of magnitude of the inputs (∼ 101).
We train the networks using the Adam optimizer [6] with initial learning rate
l = 0.1, which we decrease during optimization to prevent the training from not
converging to the optimal weights due to large steps of the gradient descent.

In Fig. 1, we compare the accuracy of the Automatic Differentiation (AD)
derivative of the API-ESN with respect to the first-order Forward Euler (FE)
approximation of the PI-ESN [4]. Here, we study the case where the entire state
is known, y = x, to be able to compute the true derivative of the predicted state,
f(ŷ), (1). In plot (a), we show f(ŷ) in an interval of the training set for Nr = 100.
In plot (b), we show in the same interval the squared norm of the error for FE,
LFE, and AD, LAD, with respect to f(ŷ). In addition, we show the squared norm
of the error, LY, of the output, ŷ, with respect to the data, y. Because FE and
AD share the same ŷ, LY is the same for the two networks. In plot (c), we show
the time average of the squared norms, indicated by the overline, as a function
of the size of the reservoir. In the case of LFE and LAD, they coincide with LPhys

(4). AD is four to seven orders of magnitude more accurate than FE. The error
of the FE numerical approximation is dominant from Nr = 100. This prevents
its accuracy from increasing in larger networks.
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Fig. 1. Time-derivative of the output for Nr = 100 in an interval of the training set,
(a). Squared norm of the error of the output derivative, LFE and LAD , and output,
LY, in the same interval, (b). Mean Squared Error of the output derivative, LFE and
LAD , and output, LY, as a function of the reservoir size, (c).

We use the API-ESN to reconstruct the hidden states in three testcases:
(i) reconstruction of h = [φ2] given x = [φ1;φ3]; (ii) reconstruction of h =
[φ3] given x = [φ1;φ2]; (iii) reconstruction of h = [φ2;φ3] given x = [φ1]. We
choose (i) and (ii) to highlight the difference in performance when we reconstruct
different variables, and (iii) to compare the reconstruction of the states φ2 and
φ3 when fewer observed states are available. We reconstruct the hidden states
in the training set and in a 10000 points test set subsequent to the training
set. The reconstructed states in an interval of the training set for networks
of size Nr = 1000 are shown in plots (a,d) in Fig. 2. The network is able to
reconstruct satisfactorily the hidden states. The accuracy deteriorates only in
the large amplitude oscillations of φ3, (d). To visualize the global performance
over both the training set and the test set, we plot the Probability Density
Functions (PDF) in (b,e), and (c,f), respectively. The PDFs are reconstructed
with similar accuracy between the two sets. Interestingly, the increased difficulty
in reconstructing φ3 is due to the dynamical the system’s equations (rather than
the network’s ability to learn). Indeed, φ3 appears in only two of the three
equations (8), whereas φ2 appears in all the equations and it is a linear function
in the first equation. In other words, we can extract more information for φ2
than for φ3 from the constraint of the physical equations, which means that the
network can better reconstruct the dynamics of φ2 vs. φ3. In the lower part
of large amplitude oscillations of φ3 in particular, we have small values for the
derivatives, so that the error in the governing equations is small.

To quantitatively assess the reconstruction, we compute for each compo-
nent, hi, of the hidden state, h, the Normalized Root Mean Squared Error:

NRMSE(hi) =
√
N−1

∑N
j (ĥi(tj)− hi(tj))2/(max(hi)−min(hi)); where (max(hi)

−min(hi)) is the range of hi. In Fig. 3, we show the values of the NRMSE for
different sizes of the reservoir, Nr, in the training (continuous lines) and test
(dash-dotted lines) sets for FE, (a,c), and AD, (b,d). The error of the FE approx-
imation dominates the reconstruction of φ2, (a), while AD produces NRMSEs
up to one order of magnitude smaller, (b). In the reconstruction of φ3, (c,d), AD
and FE perform similarly because of the dominant error related to the math-
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Fig. 2. Reconstruction of the hidden variables for Nr = 1000 in an interval of the
training set, (a) and (d), Probability Density Function (PDF) in the training, (b,e),
and test set, (c,f). Reconstruction of h = [φ2] (top row) and h = [φ3] (bottom row):
testcase (i) is shown in (a-c), testcase (ii) is shown in (d-f), and testcase (iii) is shown
in (a-f).

ematical structure of the dynamical system’s equations, as argued for Fig. 2
(e,f). In general, the values of the NRMSE are similar between the training and
test sets, which indicates that the reconstruction also works on unseen data.
There is a difference between the two sets only in the reconstruction of φ2 given
x = [φ1;φ3], (b). In this case, the NRMSE in the test set is smaller than the
NRMSE we obtain when using data on the hidden state to train the network,
through the network described in [8] (results not shown). In addition, we com-
pare the reconstruction of the states when fewer observed states are available.
When only φ1 is available (x = [φ1]), the larger error on φ3 limits the accuracy
on the reconstruction on φ2. This results in a reconstruction of φ3, (d), with
similar accuracy to the case where x = [φ1;φ2], while there is a larger error in
the reconstruction of φ2, (b), with respect to the case where x = [φ1;φ3].

4 Conclusions and future directions

We propose the Automatic-differentiated Physics-Informed Echo State Network
(API-ESN) to leverage the knowledge of the governing equations in an echo state
network. We use automatic differentiation to compute the exact time-derivative
of the output, which is shown to be a function of all the network’s previous
inputs through the recursive time dependence intrinsic in the neurons’ recurrent
connections. Albeit this long time-dependence in the past would make the com-
putation of the time-derivative computationally cumbersome, we eliminate this
cost by computing the derivative of the reservoir’s state. We apply the API-ESN
to a prototypical chaotic system to reconstruct the hidden states in different
datasets both in the training points and on unseen data. We compare the API-
ESN to the forward Euler approximation of the Physics-Informed Echo State
Network. We obtain a Normalized Mean Squared Error up to one order of mag-
nitude smaller in the reconstruction of the hidden state. Future work will focus
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Fig. 3. NRMSE for in the training (continuous lines) and test (dash-dotted lines) sets
as a function of the size of the reservoir. The reconstruction is performed through
forward Euler, (a,c), and automatic differentiation, (b,d). Reconstruction of h = [φ2],
(top row) and h = [φ3] (bottom row): testcase (i) is shown in (a,b), testcase (ii) is
shown in (c,d), and testcase (iii) is shown in (a-d).

on using the API-ESN to reconstruct and predict (by letting the network evolve
autonomously) hidden states from experimental data.
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