
Deep Learning for Solar Irradiance Nowcasting:
A Comparison of a Recurrent Neural Network

and Two Traditional Methods

Dennis Knol1, Fons de Leeuw2, Jan Fokke Meirink3, and Valeria V.
Krzhizhanovskaya1,4

1 University of Amsterdam, Amsterdam, The Netherlands
2 Dexter Energy Services, Amsterdam, The Netherlands

3 Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
4 ITMO University, Saint Petersburg, Russia

Abstract. This paper aims to improve short-term forecasting of clouds
to accelerate the usability of solar energy. It compares the Convolutional
Gated Recurrent Unit (ConvGRU) model to an optical flow baseline
and the Numerical Weather Prediction (NWP) Weather Research and
Forecast (WRF) model. The models are evaluated over 75 days in the
summer of 2019 for an area covering the Netherlands, and it is stud-
ied under what circumstance the models perform best. The ConvGRU
model proved to outperform both extrapolation-based methods and an
operational NWP system in the precipitation domain. For our study, the
model trains on sequences containing irradiance data from the Meteosat
Second Generation Cloud Physical Properties (MSG-CPP) dataset. Ad-
ditionally, we design an extension to the model, enabling the model also
to exploit geographical data. The experimental results show that the
ConvGRU outperforms the other methods in all weather conditions and
improves the optical flow benchmark by 9% in terms of Mean Absolute
Error (MAE). However, the ConvGRU prediction samples demonstrate
that the model suffers from a blurry image problem, which causes cloud
structures to smooth out over time. The optical flow model is better
at representing cloud fields throughout the forecast. The WRF model
performs best on clear days in terms of the Structural Similarity Index
Metric (SSIM) but suffers from the simulation’s short-range.

Keywords: Nowcasting · Solar Irradiance · Deep Learning · Convolu-
tional GRU · Numerical Weather Prediction · WRF · Optical Flow.

1 Introduction

To help constrain global warming, the energy produced by fossil fuels is be-
ing replaced more and more by renewable energy. This transition is accelerated
because wind and solar energy are now cheaper than energy from traditional re-
sources [1,2]. However, in terms of usability, wind and solar are not yet fully com-
petitive due to their variable nature. The way the energy market works dictates
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that more accurate weather forecasts are essential to increase solar usability. The
energy supply must continuously match demand, keeping the electricity grid in
balance. As renewable resources replace conventional power plants, balancing
the grid is becoming increasingly complex [3, 4].

One of the critical challenges is forecasting solar irradiance at the Earth’s
surface. When it comes to solar irradiance forecasting, clouds are the most criti-
cal driver and notoriously challenging to predict [5]. More traditional forecasting
methods to forecast clouds divide roughly into two classes: image-based extrap-
olation methods (e.g., optical flow) and Numerical Weather Prediction (NWP)
based methods. Extrapolation based methods perform well on a small temporal
scale, but accuracy decreases markedly for increasing temporal scales as these
methods do not take into account the evolution of clouds. NWP models gener-
ally have a better forecast accuracy for larger temporal scales, particularly for
clear sky conditions [6]. However, performance decreases for cloudy conditions
as NWP models do not explicitly resolve sub-grid cloud processes. Unresolved
processes are parameterised and add a source of uncertainty to the model.

More recent studies propose to address these limitations from a machine
learning perspective, taking advantage of the vast amount of weather data avail-
able. These studies formulate nowcasting as a spatiotemporal sequence forecast-
ing problem and specifically focus on nowcasting precipitation, using Recurrent
Neural Networks (RNN). Shi et al. [7] propose a novel Long Short Term Memory
(LSTM) with convolutional layers to capture spatial correlation, which outper-
forms the optical flow based ROVER algorithm. A follow-up study proposes a
Convolutional Gated Recurrent Unit (ConvGRU) [8], an architecture which is
less complicated and more efficient to train. Google’s MetNet is the first deep
learning model to produce more accurate precipitation nowcasts than NWP [9].

This paper describes the implementation of a ConvGRU model for the now-
casting of solar irradiance trained on satellite observations. The ConvGRU model’s
performance is evaluated using two more traditional models as the benchmark:
an optical flow algorithm and the Weather and Research Forecast (WRF) NWP
model. We implement parameterisations specifically designed to meet the grow-
ing demand for specialised numerical forecast products for solar power applica-
tions for the latter. We also study the strengths and weaknesses of each method.
A method’s performance depends on the weather conditions (e.g., clear sky vs
cloudy) and different models perform well on different temporal scales. This
study aims to assess under what particular circumstances and spatiotemporal
scales the models perform best.

2 Methods

2.1 Deep Neural Networks in the Nowcasting Domain

One of the most recent advances in the space of nowcasting is the use of Deep
Neural Networks (DNN). Contrary to Optical Flow and NWP, deep neural net-
works can exploit the large amount of data collected continuously from ground-
based cameras, radars, weather stations, and satellites.
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Most progress is made in nowcasting precipitation. One of the early studies
tackling the nowcasting problem from a deep learning perspective is [7]. In this
study, researchers introduce an end-to-end trainable model, where both input
and output are spatiotemporal sequences. The proposed model architecture is
a Convolutional Long Short-Term Memory (ConvLSTM), which captures tem-
poral dependencies using the LSTM cells and spatial dependencies with the
convolutional layers. The model is trained using 812 days of radar data and out-
performed a state-of-the-art operational optical flow algorithm called ROVER.

The follow-up study [8], led to the emergence of two more accurate model
architectures: Convolutional Gated Recurrent Unit (ConvGRU) and Trajectory
Gated Recurrent Unit (TrajGRU). The first updates the ConvLSTM by replac-
ing the LSTM cells with Gated Recurrent Unit (GRU) cells. The latter differs
from ConvLSTM and ConvGRU. In the TrajGRU model, convolutions generate
flow fields, and this enables the model to learn the location-variant structures
and capture spatiotemporal correlations more efficiently.

More recently, Google’s researchers introduced MetNet and showed that the
model outperforms the current operational NWP by the National Oceanic and
Atmospheric Administration (NOAA), High-Resolution Rapid Refresh (HRRR),
at predictions up to 8 hours. MetNet is a neural network model trained on both
radar and satellite data. The data are first processed by a convolutional LSTM,
second by axial attention layers. The attention mechanisms allow the model to
ignore some parts of the data and focus on others and enable the model to learn
long-term dependencies.

To our knowledge, solar nowcasting based on satellite data and deep learning
techniques has not been covered by literature yet. The published literature on
nowcasting irradiance with DNNs is based on sky-images retrieved from ground-
based camera’s [10,11]. This approach limits the forecast’s lead time because the
ground-based cameras cover only a small geographic area. Consequently, models
trained on such data can only consider the clouds’ possible motion over a very
short period. Using satellite data, we can model larger geographical areas and
generate forecasts further ahead in time.

2.2 Sequence-To-Sequence Model

Similar as in [7, 8], this paper considers irradiance nowcasting a spatiotemporal
sequence forecasting problem. A definition is presented in (1), where the input
is a sequence of length J containing previous observations and the forecast a
sequence of K frames ahead:

Ĩt+1, . . . , Ĩt+K = arg max
It+1,...,It+K

p
(
It+1, . . . , It+K | Ît−J+1, Ît−J+2, . . . , Ît

)
(1)

Here, the input and predictions are a sequence containing tensors, more for-
mally I ∈ RC×H×W . The spatial dimensions are H and W , the temporal di-
mension C. The input sequence contains the current observation, It. The model
learns by minimising the forecast error through back-propagation and learns spa-
tiotemporal relations without explicit assumptions about atmospheric physics.
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For the problem, we adapt the encoder-decoder sequence-to-sequence struc-
ture proposed by [8]. This structure maps the input sequence with a fixed length
on an output sequence with a fixed length and allows the input and output
to have different lengths. An example is visualised in Figure 1. First, the en-
coder processes the elements in the spatiotemporal input sequence and creates a
smaller and higher dimensional representation. Subsequently, the decoder learns
to generate the predictions from the hidden state through multiple layers.
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Fig. 1: Example of the sequence-to-sequence structure with three RNN layers,
where J = 2 and K = 2. In the example, the model predicts the next two images
based on the input of two images. Convolutions with stride, in between RNN
layers, downsample the input in the encoder. Deconvolutional layers upsample
the hidden representation in the decoder. We implement ConvGRUs as the RNN
units, represented by the coloured cells. Figure inspired by [12].

2.3 Convolutional Gated Recurrent Unit

The ConvGRU convolutional layers assign importance to specific objects in the
image, learn what parts of an input frame are important, and differentiate be-
tween different objects. The Gated Recurrent Unit (GRU), represented by the
formulas in (2), captures the temporal dependencies by learning what previous
information in a sequence is important to predict the future.

The GRU takes two sources of information: the memory state holding in-
formation of the previous units denoted with Ht−1 and the information new to
the model. The latter is denoted as Xt and is a single element of an inputted
sequence. The first step in a GRU is to determine what information to pass on
into the future using the update gate Zt. Subsequently, the reset gate Rt deter-
mines what information to forget. With the output of the reset gate, the unit
computes the new memory content H ′t through the activation function f . As the
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last step, the unit computes the memory state Ht passed on to the next unit in
the network. The corresponding formulas are as follows:

Zt = σ (Wxz ∗Xt +Whz ∗Ht−1)
Rt = σ (Wxr ∗Xt +Whr ∗Ht−1)
H ′t = f (Wxh ∗Xt +Rt ◦ (Whh ∗Ht−1))
Ht = (1− Zt) ◦H ′t + Zt ◦Ht−1

(2)

where Xt ∈ RCi×H×W and Ht, Rt, Zt, H
′
t ∈ RCh×H×W . Here C is the number

of input channels, H the height of the input image, and W the width. In the
formulas, the convolutional operation is denoted as ∗, the Hadamard product as
◦ and f is the Leaky Rectified Linear Unit (ReLU) activation function with a
negative slope of 0.2. The sigmoid activation function is applied to the update
and reset gates.

2.4 Model Extension

Recent work in the medical field introduced model architectures that can exploit
both static and dynamical medical data features, such as gender and patient vis-
its [13]. The proposed architectures combine RNNs to process dynamic data with
an independent Feed Forward Neural Networks processing the static data. The
weather is also driven by a combination of dynamic and static features. Elevating
terrain height, for example, causes orographic lifting and stimulates the forma-
tion of clouds. The ConvGRU model discussed above is specifically designed to
work with sequence data and not exploit such data types. For the static input
data, we develop an independent CNN with ReLU activation functions and batch
normalisation, and we adapt the encoder-decoder structure. The encoder part
of the network runs parallel to the encoder of the RNN and outputs the hidden
state representation of the static information. Both encoders’ hidden state is
concatenated mid-way through the decoder and provide this information to the
last layers, which output the irradiance prediction.

2.5 Optical Flow Baseline

The optical flow baseline used for this paper is an ensemble model of three optical
flow algorithms available in the RainyMotion library [14]. The ensemble model,
introduced by [15], combines the predictions of the Farneback, DeepFlow and
Dense Inverse Search algorithms and provided more accurate irradiance forecast
than the individual algorithms. The model is computed by taking the mean of
the prediction of N optical flow algorithms:

ēt(x, y) =
1

N

N∑
i=1

pt(x, y) (3)

where i is the summation index, ēt(x, y) is the forecast of the ensemble model
at lead time t and at coordinates x, y. The prediction of the optical flow algo-
rithms is represented by pt. We initialise the model on an input sequence of 5
frames containing the satellite-based irradiance parameter (see Section 2.7).
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2.6 The WRF Baseline Model

Jimenez et al. [6] introduced an augmentation to the standard WRF model that
makes the model appropriate for solar power forecasting. One of the studies
that implemented the WRF model augmentation compares the model to the
forecasts provided by the Global Forecasting System (GFS) and finds that the
forecasting error is lower than of the GFS baseline [16]. However, this study does
not consider Data Assimilation (DA), meaning that the WRF model suffers from
incomplete information on the initial atmospheric state.

This limitation is addressed by a follow-up study [17]. This work incorporates
satellite and ground-based observations into the WRF model’s initial conditions
using 3DVAR or 4DVAR initialisation. Both approaches improve the next-day
forecast accuracy and the use of the latter results in the most accurate irradi-
ance forecasts at all lead times. However, this comes at a computational expense.
The 4DVAR initialisation takes 2 hours to compute on a high-performance ma-
chine. Given the steep increase in computational requirements and the studied
forecasting window of 0 to 6 hours lead time, we did not apply DA in our study.

To set a baseline for this study, we use version 4.2 of the Advanced Research
WRF. The 00:00UTC release of the Global Forecast System (GFS) provides
the initial conditions of for the WRF model and updates the lateral boundary
conditions hourly throughout the forecast. We set up the WRF model with a
nested domain and implement the two-way nest option. The parent domain has
a grid size of 60×60 and a horizontal resolution of 27 km, the middle point is at
latitude 52.3702 and longitude 4.8952. The nested domain’s resolution is 9 km
and spans 70×70 grid cells, and we use the Lambert conformal conic projection.
We summarise the important parameterisations in Table 1.

Table 1: The key physics settings used for the baseline WRF model.
Setting Implemented scheme

Microphysics Aerosol Aware Thomson micro-physics scheme [18]
SW Radiation Rapid Radiative Transfer Model (RRTMG) scheme [19]
LW Radiation Rapid Radiative Transfer Model (RRTMG) scheme [19]
Shallow Cumulus Deng cumulus scheme [20]
Cumulus Updated Kain-Fritsch cumulus scheme [21]
Land Surface model Noah Land Surface Model [22]

2.7 Irradiance Data

We chose the irradiance data from the Meteosat Second Generation Cloud Phys-
ical Properties (MSG-CPP) algorithm developed by the KNMI to derive cloud
parameters and solar radiation at the surface from the SEVIRI instrument on-
board the Meteosat Second Generation satellite [23]. The data is available per
15 minutes, and the spatial resolution is 3 × 3 km2. The MSG-CPP algorithm
retrieves cloud properties, such as cloud optical thickness, thermodynamic phase
and particle size, from the SEVIRI measurements of radiation reflected and emit-
ted by the Earth and the atmosphere. Based on the computed cloud properties,
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the algorithm derives the direct and diffuse surface irradiance components in
W/m2 [24]. We use the MSG-CPP irradiance data to initialise the optical flow
and ConvGRU models and to evaluate the performance of all models.

A limitation of using this particular dataset is that the range of the processed
data is somewhat shorter than the range of actual sunlight. The algorithm can
only derive the cloud properties when the solar zenith angle (SZA) is not too
high, as the estimations otherwise become very inaccurate. In the current version,
the cloud properties are computed when the SZA is less than 78◦, consequently
missing a part of the day.

The data is retrieved from a geostationary satellite and spans an area much
larger than the studied domain. For the preprocessing, we reproject the data to
the Lambert Conformal Conic projection. Subsequently, we cut out the model
domain presented in Section 3.

3 Experimental Setup

We next describe the overall setup for this research. We first compare different
versions of the ConvGRU model. After that, we compare the best performing
ConvGRU model to the baseline models. We consider a forecasting window of
0 to 6 hours and assess the forecasts at 15-minute intervals. We evaluate the
models over 75 days in 2019, from July 18 until October 31.

This research’s case study area is a geographical area corresponding to the
Netherlands and is centred at latitude 52.4◦ and longitude 4.9◦. For the WRF
model, we rely on a nested domain setup. The optical flow and ConvGRU models’
domain correspond to the outer domain in Figure 2. This domain provides a
spatial context of approximately 300km in all direction to the domain of interest.
The spatial context is essential as it provides the information to model incoming
clouds. For all models, we evaluate the forecast in the inner domain.

Fig. 2: Domain decomposition. The WRF domains have a spatial resolution of 9
and 27 km. The ConvGRU and optical flow models’ resolution is 3km.
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3.1 Training Set

The training data for the ConvGRU model comprises frames containing the
MSG-CPP irradiance data, which have a resolution of 323×323 pixels. To reduce
the computational requirements needed to train the models, we downsample
the images to a resolution of 108 × 108. The ConvGRU model receives a four-
dimensional tensor of size [t, c, h, w] with dimensions time, number of channels,
height and width. The time dimension of the input patch is 5, ranging from
08:00 - 09:00UTC as one frame is provided every 15 minutes. The output tensor
contains 24 predicted frames, corresponding to 6 hours lead time. For training
the models, we used 486 days of irradiance data (2018-03-15 - 2018-09-30, 2019-
03-15 - 2019-07-17 and 2020-03-15, 2020-08-25) and the test set contains 75 days
(2019-07-18 - 2019-09-30). By the time of the experiments, these were all the
available days of MSG-CPP data with at least seven hours of irradiance data
on the studied domain. We train all models using the Adam optimiser with a
learning rate of 10−4, 3000 epochs and a batch size of 6. The loss function we
optimise is the smooth L1 loss function.

3.2 Forecast Evaluation

We calculate the Mean Bias Error (MBE) and the Mean Absolute Error (MAE)
to determine the forecast accuracy of the models and quantify the strength of
the error signal over the whole image. To complement the error-based metrics,
we also compute the Structural Similarity Index Metric (SSIM) [25]. This metric
accounts for patterns and textures in the images and can be used to assess the
quality of the predicted images as it measures the loss of structural information
by comparing local patterns in images. We compute the metrics based on nor-
malised data to account for varying irradiance strengths throughout the day. We
normalise the data with the clear sky irradiance from the MSG-CPP dataset.

Following [16], we assess the models’ performance under different weather
conditions. We compute Clear Sky Index (CSI) and categorise days into sunny,
partly cloudy and very cloudy. We compute the CSI by dividing the average
irradiance over a day by the average clear sky irradiance. We define days on
which the average CSI is higher than 0.85 as sunny days and days with a lower
CSI than 0.6 as mostly cloudy days. Days on which the CSI is between those
values are defined as partly cloudy days.

4 Results

4.1 The ConvGRU Experiments

With the ConvGRU models, we conduct three experiments. The first experiment
is based on the model introduced by [8] and trained on only a sequence of
irradiance data. As we have a limited amount of data, we transpose the training
data for the second experiment, doubling the number of images in the training
set and increasing diversity. We thus train the ConvGRU model on twice as much
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data. The third experiment is based on the model we introduced in Section 2.4.
In this model, we input the sequence data into the ConvGRU and model the
static data in the neural network specifically designed to model such features.
The static features we add are terrain height, and land mask [26]. The frames
containing these features cover the same spatial area as the WRF parent domain
and have a 60 x 60 pixels resolution.

The model that performs best overall is the ConvGRU trained on only se-
quence data. Figure 3 shows an exemplary forecast, demonstrating that the
model learned the advection of clouds. Additionally, we find that in all Con-
vGRU model experiments, image quality degrades rapidly and that structures
are not preserved as a consequence of blurriness. The blurring effect, also visible
in Figure 3, can be explained by the optimisation of a global-evaluating loss
function and could be a result of the relatively small training set.

08:00 UTC 08:15 UTC 08:30 UTC 08:45 UTC 09:00 UTC 09:15 UTC

ConvGRU

09:30 UTC 09:45 UTC 10:00 UTC 10:15 UTC 10:30 UTC 10:45 UTC 11:00 UTC

Fig. 3: Two-hour prediction sample of the ConvGRU model trained on only se-
quence data on 2019-07-24. The top row shows MSG-CPP data, of which the five
left images are input to the model and the other images are the expected output.
The second row shows the model’s predictions. The normalised irradiance ranges
from 0 (white) to 1 (black). One is the clear sky irradiance.

4.2 Comparison to the Baseline Models

Figure 4 contains prediction samples from each method. The optical flow al-
gorithm generates the top prediction sample. In this prediction, clouds closely
resemble the clouds in the expected output, and throughout the first two hours
of the simulation, we note that the structures from the initialisation frames are
preserved. This can be explained by the model’s primary assumption that pixel
values do not change over time. When comparing the methods, we note a clear
difference at 09:15 UTC between the WRF prediction and the two others. This
is because WRF is initialised on GFS data, while the ConvGRU and optical flow
models are both initialised on the MSG-CPP data, and therefore, the output at
the first lead time is very similar. After that, both generate increasingly different
forecasts and portray the behaviour specific to both methods.

In the MSG-CPP images on the top rows of the figure, the shape of the clouds
evolves over the forecast. In the optical flow predictions, the clouds found in the
input sequence move across the images and are stretched out in the figure. The
ConvGRU model blurs the images to optimise the global error metrics and as a
result, causes cloud-like shapes to disappear over time. The WRF model is the
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OF
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OF

ConvGRU

WRF
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Fig. 4: Examples of two-hour irradiance predictions by the three different meth-
ods on 2019-07-24 (top) and 2019-08-20 (bottom). For each date, the images in
the top row are the input and expected output, and the images in the second,
third and fourth row are the predictions by the optical flow, ConvGRU and
WRF model, respectively.

only forecasting method that can simulate the formation, growth and dissipation
of clouds over time, but it suffers from inadequate initialisation and requires a
spin-up time before more realistic cloud fields are simulated.

Figure 5 demonstrates that in terms of MBE and MAE, the WRF model is
outperformed by the other models. In the first couple of model-steps, the opti-
cal flow and ConvGRU model performance are very similar, whereas the WRF
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Fig. 5: The MBE, MAE and SSIM for the three methods. The metrics are aver-
aged over the model domain and over all days from 2019-07-18 to 2019-09-30.
Time is in UTC and the metrics are computed after normalisation of the data.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77977-1_24

https://dx.doi.org/10.1007/978-3-030-77977-1_24


Deep Learning for Solar Irradiance Nowcasting 11

performance is particularly poor due to the spin-up problem. After about 45
minutes, ConvGRU outperforms optical flow in terms of MAE and, on average,
improves the MAE by 9%. In terms of SSIM, the optical flow model is best
during the first 3.5 hours, and the WRF model has the highest score after that.
All models tend to overestimate irradiance (positive MBE) for nearly the entire
forecast range in the study period.

4.3 Weather Dependent Analysis

We next examine the metrics in different weather conditions. In terms of MAE,
it is clear that the ConvGRU outperforms the other methods in all weather
conditions and from Figure 6, we see that the difference is largest on cloudy
and very cloudy days. On such days, the ConvGRU model improves the optical
flow MAE by 12% and 10%, respectively. On days with a clear sky index higher
than 0.85, the improvement is 4%. The ConvGRU model, however, degrades
more rapidly than the Optical Flow model in terms of SSIM. Especially on
sunny days, optical flow is much better at predicting the irradiance than the
ConvGRU model in terms of structural similarity. On average, the optical flow
SSIM is 78% higher when compared to the ConvGRU SSIM.

Overall, the WRF model’s performance is affected more strongly by the pres-
ence of clouds than the other models’ performance. The MAE, for example, on
partly cloudy days is more than double when compared to the same metrics for
sunny days and increases by 42% for very cloudy days. Similarly, the MBE of
the WRF forecast increases under more cloudy conditions (not shown), mean-
ing that the model overestimates the irradiance more under such conditions.
This demonstrates that the model consistently underestimates the irradiance
absorbed and reflected (back to space) by clouds. The ConvGRU and optical
flow predictions are less dependent on the weather than the WRF model.
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Fig. 6: The MAE (top) and SSIM (bottom) for all models grouped per weather
type.
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5 Conclusion

This research shows that the ConvGRU model trained on only sequences of MSG-
CPP data provides the most accurate solar irradiance forecasts and improves the
optical flow predictions by 9% in terms of MAE. The ConvGRU samples demon-
strate that the model learned to represent clouds’ advection, but it does show a
blurring effect. The latter can be explained by the fact that the ConvGRU model
is guided by a global-evaluating loss function and by the relatively small dataset
the model is trained on. The blurring effect is the model’s primary shortcoming
as it causes the model not to represent cloud-like structures.

The cloud structures are better represented by the optical flow algorithm,
especially on mostly clear days. The optical flow forecasts result in a 36% higher
SSIM when compared to the ConvGRU predictions. Because of the assumption
that pixel values stay constant from one frame to the next, optical flow mostly
preserves the cloud-like structures from the initialisation data and advects the
clouds over time. This enables the model to provide accurate predictions on a
very short-term, but accuracy decreases for larger temporal scales as the optical
flow model fails to represent the growth or dissipation of clouds.

One of the main strengths of trained DNNs and optical flow based methods is
that models are easily initialised on the latest available weather data. Initialising
WRF on the latest cloud data through data assimilation is a complex process,
introduces uncertainty into the model and significantly increases the computa-
tional requirements. Because WRF was not initialised on the latest weather in
our study, we cannot perform a reasonable comparison with the optical flow and
ConvGRU models in the simulation’s short range.

Which model is best depends on the forecast horizon and use cases. We also
found that the performance of the different models depends on weather condi-
tions. For that reason, operational forecasts are often provided by a forecasting
system composed of several models. At lead times of 0 - 1 hour, the predictions
by the optical flow model are best. On clear days and when cloud fields do not
quickly dissipate or grow, the model performs well for a longer time. When com-
pared to the ConvGRU model, optical flow is better at preserving the cloud field
structure. This is a significant benefit when producing very short-term predic-
tions of the PV output in a specific area, i.e. a solar farm. However, at longer
lead times, predicting clearly defined cloud structures that are slightly different
from the real clouds or in a different location can result in a very imprecise
estimation of the future PV output of a specific solar farm. In such cases, the
blurry output of the ConvGRU model might be preferred.

For future work, we recommend modifying the DNN model to optimise
for a locally-oriented loss function to solve the blurry image problem of the
ConvGRU model. Recent literature on precipitation nowcasting replaced the
globally-oriented L1 loss function with a loss function based on the SSIM and
showed that this approach improves the quality of the predictions and signifi-
cantly reduces blurry image issue [12]. Furthermore, we recommend training the
ConvGRU model on more data. This increases variability and generally improves
the performance of RNNs and can be achieved in various ways.
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